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Understanding the link between tree root architecture and organic carbon

dynamics is critical for enhancing carbon sequestration in semi-arid regions.

This study, conducted from 2017 to 2019 in central India, evaluated the root

structure and carbon sequestration potential of three tree species: Neolamarckia

cadamba (Kadam), Leucaena leucocephala (Subabul), and Melia dubia (Malabar

neem). The species exhibited distinct root architectures: Subabul had a

symmetric, sparse root system; Kadam had moderately dense roots; and

Malabar neem developed a compact and massive root system. The highest

root density was recorded in the 0–30 cm topsoil layer near the collar region.

Primary roots initially grew vertically (0.15–0.30 m), then extended horizontally,

with Malabar neem showing the widest lateral spread (up to 4.4 m). Secondary

roots displayed greater angular spread than tertiary and quaternary roots. Lateral

root pruning, recommended after the first two years, could enhance resource

use efficiency and improve understory crop performance in agroforestry

systems. Malabar neem demonstrated significantly higher carbon sequestration

potential, storing 25.64 Mg C ha-¹ at three years—2.96 to 3.86 times greater than

Subabul (8.62 Mg C ha-¹) and Kadam (6.62 Mg C ha-¹). Annual sequestration rates

ranged from 2.20 to 2.87 Mg C ha-¹ yr-¹. Aboveground biomass contributed

80.4–84.3% of total carbon stocks, with belowground biomass contributing

15.7–19.6%. At a planting density of 500 trees ha-¹, Malabar neem achieved the

highest CO2-equivalent sequestration (94.09 Mg CO2e ha-¹). These findings

highlight Malabar neem-based agroforestry as a viable strategy for restoring

degraded lands while improving carbon storage and climate resilience in semi-

arid ecosystems.
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Introduction

Agroforestry is a holistic and multifunctional land use system

that has been widely acknowledged for enhancing both livelihood

security and environmental sustainability, particularly in developing

countries such as India (Jemal et al., 2018; Kmoch et al., 2018; Ansari

et al., 2022; Jinger et al., 2023). Its perennial component play a vital

role in combating climate change by absorbing atmospheric carbon

dioxide, regulating temperatures, conserving soil and water, and

supporting biodiversity. They act as natural carbon sinks, reduce

the effects of extreme weather, and provide renewable resources,

making them essential for both climate mitigation and adaptation. By

integrating trees with crops and/or livestock, agroforestry systems not

only capture atmospheric CO2 but also improve soil health, reduce

erosion, and increase farm productivity—making them powerful

tools for climate change mitigation and sustainable land

management. Few recent studies have highlighted the carbon

sequestration potential of the agroforestry systems in both soil and

biomass (Bettles et al., 2021; Siarudin et al., 2021; Singh et al., 2024).

As India has taken a pioneering role in promoting agroforestry by

becoming the first country to introduce a National Agroforestry

Policy in 2014. This policy has since been integrated into several

national initiatives, including the National BambooMission, National

Biofuel Policy, Green India Mission, National Horticulture Mission,

and the National Mission on Sustainable Agriculture. As of 2023,

approximately 28.42 million hectares of land in India are under

agroforestry (Ram et al., 2023). Moreover, land suitability

assessments reveal that 32.8%, 40.0%, and 11.7% of the country’s

total land area are classified as highly, moderately, and marginally

suitable, respectively, for the expansion of agroforestry (Ahmad et al.,

2019). Evidently, the strategic promotion of agroforestry could play a

crucial role in achieving India’s target of 33% forest cover (Dhyani

et al., 2016; Sahoo and Wani, 2019; Dhyani et al., 2021).

To ensure the success of agroforestry systems, it is essential to

evaluate the structural and developmental characteristics of tree

root systems, as they play a vital role in enhancing and optimizing

overall system productivity (Arunkumar and Chauhan, 2018). Root

architecture studies are crucial for selecting tree species that can

effectively survive, establish, and grow under challenging

agroclimatic and edaphic conditions, as they influences a plant’s

ability to access water and nutrients, thereby enhancing resilience

and sustainability in forestry and agroforestry systems (Ma et al.,

2024). In agroforestry, understanding root architecture helps reduce

competition with crops, improve soil health, and enhance carbon

sequestration, contributing to sustainable and climate-resilient land

use. Minimizing competition between trees and associated

agricultural components such as seasonal crops, semi-perennial

fruit trees, or fodder is critical for developing compatible

agroforestry models. In this regard, root system manipulation

becomes a key intervention to reduce competition for

belowground resources such as water and nutrients. Despite of

having a crucial role of root architecture in the growth and

productivity of a system, no enough studies have been conducted

on the topic so far therefore a systematic studies on structure of tree

roots urgently required to unveil important insights into
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belowground carbon sequestration and other ecosystem services.

Understanding root architecture dynamics can aid in the selection

of suitable tree species for designing productive and resilient

agroforestry systems. Such knowledge allows for the targeted

exploitation and manipulation of root traits to improve both tree

and crop yields, thereby contributing to optimized land use (Herder

et al., 2010; Kaushal et al., 2019).

The commercial success of fast-growing tree species such as

Populus and Eucalyptus in the states of Haryana and Punjab has

sparked growing interest among farmers, primarily due to their

short rotation periods and early economic returns (Chavan and

Dhillon, 2019). These species provide a sustainable alternative to

low-carbon land use systems, offering high yields of renewable

woody biomass along with multiple ecosystem benefits (Bredemeier

et al., 2015; Jinger et al., 2024). Tree species such as Neolamarckia

cadamba (kadam), Leucaena leucocephala (subabul), and Melia

dubia (malabar neem) have demonstrated strong potential for

commercial agroforestry in semi-arid regions (Chaturvedi et al.,

2016; Handa et al., 2019; Jinger et al., 2024). These species not only

meet the increasing demand for timber, pulpwood, fuelwood, and

fodder, but also contribute to environmental restoration by

conserving soil moisture, reducing erosion, restoring degraded

lands, and sequestering significant amounts of atmospheric

carbon dioxide—thereby improving overall farm income

(Hombegowda et al., 2020; Ahlawat et al., 2024; Jinger et al.,

2025). In addition, these multipurpose tree species can be

effectively integrated with a wide range of food crops, vegetables,

medicinal plants, fruit trees, and grasses, enhancing system diversity

and resilience (Karmini and Karyati, 2017; Karthikeyan et al., 2018;

Thakur et al., 2019). Planting such fast-growing tree species might

not necessarily support carbon tunnel vision, as long as broader

ecological and social impacts are also considered (Santiago and

Doughty, 2018). Competition in agroforestry can lead to both

positive and negative ecological consequences. While competition

for resources like light, water, and nutrients may reduce the

productivity of certain components, it can also drive niche

differentiation and improve overall system efficiency. Properly

managed competition can enhance biodiversity, promote soil

health, and support ecosystem resilience. However, if unmanaged,

it may lead to resource depletion and reduced yields of

understory crops.

Interestingly, the semi-arid regions, which account for

approximately 35–40% of India’s total geographical area, are

typically characterized by low and erratic rainfall, high

temperatures, and sparse vegetation cover (Kumar et al., 2021)

where, soils are often shallow, low in organic carbon, and nutrient-

deficient, making them highly susceptible to erosion and

degradation (Jinger et al., 2022). Subsequently, degraded and

wastelands are prevalent in these areas, where farmers largely rely

on rainfed agriculture (Ghosh et al., 2021). Improving soil health

and enhancing carbon sequestration in these vulnerable ecosystems

is, therefore, an urgent priority. Against this backdrop, we

hypothesize that the three fast-growing, multipurpose tree species

—kadam, subabul, and malabar neem could serve as viable

alternatives for restoring degraded lands by improving soil health
frontiersin.org
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and carbon sequestration potential. To test this hypothesis, the

present study was conducted with the following objectives: (a) to

assess the root system architecture and carbon sequestration

potential of these species, and (b) to identify the most promising

species for establishing climate-resilient agroforestry systems in the

semi-arid tropics of India.
Materials and methods

Study site

The study was conducted in an area of 1.4 ha at research farm of

ICAR-Central Agroforestry Research Institute (CAFRI), Jhansi,

Uttar Pradesh, India during three consecutive years (2016–17 to

2018-19). The study site is geographically located between 25°30’25°

32’N latitude and 78°32’78°34’ E longitudes, and it is situated 272 m

above mean sea level (Figure 1). The average annual rainfall of the
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region is around 867 mm with large temporal and spatial variability

while the mean maximum temperature ranges from 23.5°C in

January to 47.4°C in June, and mean minimum temperature

ranges from 4.1°C in December to 27.2°C in June (Dev et al.,

2020). The soil of the study site was a mixture of red and black soils

with poor fertility. The initial (before study) soil pH, organic carbon

(%), available N, P and K (kg ha-1) was 7.76, 0.48, 185.5, 8.46 and

172.3, respectively.
Experimental design and tree/crop
management

With three replications, the experiment was conducted using a

randomized block design (RBD) in 2016. The seedlings of kadam,

malabar neem and subabul were planted at a spacing of 5.0 m (row

to row) and 4.0 m (plant to plant) during August, 2016. Kadam and

subabul plants were raised from seeds of local plus trees, whereas of
FIGURE 1

Map of India with Bundelkhand region of Uttar Pradesh (Green) and study locations (Light Yellow).
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malabar neem plants were raised from stem cuttings from local plus

trees in the nursery and transplanted to the field after six months.

The Vigna mungo (kharif) and Triticum aestivum (rabi) cropping

system were intercropped with recommended practices during the

study that ran from 2017 to 2019. For proper establishment of tree

seedlings, approximately 50 liters of water were given every 15 days

during the first four months. Three lifesaving irrigations were given

annually during the summer season after establishment. In the

wheat crop, five irrigations were given during the rabi season. To

reduce crown competition, three species of trees were pruned by

50% every year (before sowing kharif and rabi crops).
Parameters studied

Root architecture parameters
In the winter season, when trees undergo dormancy, data on root

architecture of three tree species was collected for three consecutive

years (2017-2019). Considering a single plant as one replication, every

year, three healthy, uniform trees of each species were uprooted and

studied for root architecture, totaling nine trees per species. Selected

trees of each species were manually excavated (Figure 2) and the root

morphological structures of trees were exposed using hydraulic

sluicing. Hydraulic sluicing was carried out downwards from the

tree stump to ensure to expose sufficient depth of root system

(Czernin and Phillips, 2005; Phillips et al., 2014; Marden et al.,

2018). Root system parameters were measured by following

procedures given by Czernin and Phillips (2005) and Marden et al.

(2018). Before uprooting, aboveground growth parameters, such as

tree height, collar diameter, diameter at breast height (DBH), and

crown width, were measured using a Ravi Altimeter and a digital

Vernier calliper. The uprooted root system was re-aligned into

original positions and all the qualitative and quantitative

parameters were recorded. The qualitative parameters measured

were root symmetry, root distribution pattern, and general root

morphology as per the (Czernin and Phillips, 2005; Phillips et al.,

2014; Marden et al., 2018). Quantitative parameters included root

system spread and depth, length, number, diameter, angle, and

biomass of roots from different orders, as well as root:shoot ratio,

root spread, and crown spread as per the (Czernin and Phillips, 2005;

Phillips et al., 2014). The main root inMalabar neem was not distinct,

so the most prominent central root was chosen as the main/tap root

for recording various parameters in root architecture study.

Secondary roots were designated for roots that originated from the

main root/primary root (tap root), regardless of their size. Those that

came from secondary and tertiary roots were labeled as tertiary and

quaternary roots, respectively. Non-woody and white roots that come

from woody secondary, tertiary, and quaternary roots with a diameter

of less than 1 mm were deemed fine roots (Czernin and Phillips,

2005; Phillips et al., 2014). A digital Vernier caliper, measuring tape,

and scale were used to measure quantitative parameters such as

horizontal spread of roots, root system depth, mean root length, and

diameter. Further, the angle at which a secondary root emerges from
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a primary root was recorded to determine the branching angle or root

fork angle (Czernin and Phillips, 2005). The root system was

compared by calculating root and shoot biomass, crown, and root

spread among the three tree species. For above- and below-ground

dry biomass estimates, the samples were oven dried at 70 ± 2°C till

constant weight (Peng and Dang, 2003). Values of individual

parameters were averaged to obtain the mean values.

Carbon stock parameters
The carbon stock (aboveground and belowground) was estimated

by using the trees that were uprooted for root system architecture

studies. Aboveground portions were divided into stem, leaves, and

branches. The belowground portions were divided into tap/primary

root, secondary, tertiary, quaternary roots, and fine roots. The fresh

weight of all the tree components was taken separately in the field to

avoid any variation in weight. Three samples with known fresh

weights of all the tree components (species wise) were kept in an

oven for drying at 70 ± 2°C till constant weight and then their oven

dry weight was recorded. Carbon stock in the various parts of trees

(dry biomass × 0.5) as well as their potential to mitigate carbon-

dioxide (carbon stock × 3.67) was calculated (IPCC, 2006). All the

tree parts were added to calculate the total carbon storage in biomass,

which was then used to calculate carbon storage and carbon dioxide

mitigation for each species on a per hectare basis.
Statistical analysis

Statistical analysis was carried out using ANOVA and t-test to

determine the effects of year and species on above- and below-

ground parameters as per Gomez and Gomez (1984). Data were

analyzed using one factor analysis using IBM SPSS (v 25.0).

Quantitative data pertaining to quaternary root properties were

analyzed using a t-test (Gomez and Gomez, 1984). The mean values

were compared at a 5% level of significance (p <0.05).
Results and discussion

Tree growth parameters

Most tree growth parameters exhibited a significant difference

(p <0.05) in all the species. At three years of age, the tree species had

a height range of 5.04 to 9.92 m, while the crown spread ranged

from 3.88 to 4.51 m. Malabar neem showed the best growth

performance, followed by subabul and kadam (Figure 3). The

diameter at breast height (DBH) followed a similar trend. Kadam

and Malabar neem had larger collar diameters than subabul. The

studied species were growing at a faster rate than common tree

species in the region, such as Azadirachta indica, Tectona grandis,

Albizia procera, Dalbergia sissoo, Hardwickia binata, and others

(Dagar and Tomar, 2002; Loushambam et al., 2017). This indicates

their adaptability to the semi-arid environment of central India.
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Qualitative parameters of root system

All three tree species had well-developed root systems with

maximum root density found in the topsoil (0.30 m) and close to

the collar region (Table 1). The root system was almost symmetric

in terms of an even distribution of biomass around all axes and an

almost equal root spread in the NS and EW directions in these tree
Frontiers in Agronomy 05
species. Due to hard seed coat–induced dormancy and low

germination rates, M. dubia is commercially propagated through

stem cuttings, which offer higher success and uniformity

(Jayanandan, 2016). The roots of subabul were found to be less

dense or diffuse, while those of kadam were found to be medium

dense, and the roots of malabar neem were both compact and

massive. This difference in rooting pattern might be also attributed
FIGURE 2

Root architecture of Kadam (a), Subabul (b), and Malabar neem (c) at 3 years’ age.
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to the difference in origin of root development and hormonal

regulation during early growth stages (Albrecht et al., 2017).

Subabul and kadam showed a well-developed, easily recognizable

primary (tap) root system. The main root of malabar neem was not

distinct, since it was raised from cuttings. Instead, the root with the

most prominent central fibrous structure that became a main one

was labelled as the primary (tap) root. All three species showed

sturdy primary (tap) roots, with the maximum diameter at the

collar region and tapering towards the end. However, the primary

root grew partially vertically in the soil. Their development was

limited to vertical growth until 0.3 m, then horizontal growth until

0.50-2.0 m, and then downwards because of positive geotropism.

The secondary, tertiary, and quaternary root systems were present

in kadam and malabar neem, while there was no quaternary root

system present in subabul. Secondary roots in all these tree species

grew laterally towards the surface and then displayed positive

geotropism, which was also visible from wider angles of

secondary roots (Table 1). These secondary roots produced the

maximum number of fine roots. The root color of kadam and

subabul was paler yellow to yellowish brown, while malabar neem

was reddish brown with black streaks on its surface. The root

surface of subabul had a distinct feature: small round dots that

looked like superficial growth and were white. The tree species that

were evaluated all showed rapid growth and a moderately deep

vertical taproot growth in the soil. These tree species confirmed that

they had root systems that were almost symmetrical to ensure

anchorage, structural support, and stability (Coutts et al., 1999).

The root system’s symmetric growth indicates that they are

competing for below-ground resources (water, nutrients, etc.),

which makes it suitable for inclusion in agroforestry systems

(Rewald and Leuschner, 2009). Nonetheless, previous researchers
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have already documented a shallow root system in malabar neem

(Mulatya et al., 2002; Arunkumar and Chauhan, 2018). Contrary to

our observations under semi-arid climate, it has been reported that

the root system of subabul has a slightly deeper tap root system with

maximum root density at the topsoil under humid sub-tropical

climate of North-Western Himalaya (Dhyani et al., 1990).

The spread of secondary roots near the collar and topsoil, followed

by vertical growth through positive geotropism, enhances tree stability

by providing additional anchorage and structural support. Similar root

distribution patterns have been observed in species like Acacia

auriculiformis, Azadirachta indica, and Bombax ceiba (Das and

Chaturvedi, 2008). The concentration of roots in the topsoil

indicates potential competition with seasonal crops, which also have

shallow, fibrous roots. Therefore, selecting compatible intercrops in

agroforestry systems requires careful planning, along with practices

like lateral root wrenching and pruning to improve resource use and

reduce competition (Chaturvedi and Das, 2002; Das and Chaturvedi,

2008). Additionally, the centralization of root systems near the stem

enhances wind resistance and structural stability (Stokes, 2013).

The less dense or diffused roots systems in subabul and medium

dense root systems in kadam lend themselves to integration with

agricultural crops in an agroforestry system. The massive and

compact root system of malabar neem indicates its suitability for

wasteland restoration. This tree species’ extensive root network in

the surface soil may improve soil fertility and aggregation while also

preventing erosion and topsoil loss (Das and Chaturvedi, 2008;

Verma et al., 2014; Borden et al., 2016). For establishing malabar

neem-based agroforestry and silvipastural systems, spacing between

tree rows needs to be kept wider to avoid shading effects and

competition for underground resources on associated crops (Das

and Chaturvedi, 2008; Verma et al., 2014).
FIGURE 3

Increased pattern (yearly) in crown spread (m), height (m), collar diameter (cm) and DBH in three tree species.
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TABLE 1 Quantitative root traits of fast-growing tree species.

Tree Species AC LL MD LSD (p=0.05)/ AC LL MD LSD (p=0.05)/
lue

AC LL MD LSD (p=0.05)/
t-value

Third year

5 3.73 3.73 4.40 0.49

12 248.00 208.00 211.00 23.00

98 99.33 70.90 120.90 19.38

9 25.00 16.00 21.00 2.77

S 119.18 148.00 149.30 21.33

S 48.79 29.18 103.59 37.52

S 7.65 7.00 10.60 2.76

30 94.55 84.65 147.55 30.94

S 13.95 11.94 24.53 8.23

5) 4.20 − 6.20 (4.32)

7) 52.0 − 118.4 (9.29)

9) 7.75 − 12.80 (7.20)

6 20.00 32.26 32.50 NS

< 1 < 1 < 1 −

S
68°

(40°- 90°)
60°

(50°-90°)
56°

(75° − 90°)
NS

21
66 °

(30°- 90°)
38 °

(20° - 50°)
53°

(20° − 60°)
8.45

1)
34.15°

(30°- 60°)
− 25.85° (20° − 50°) (1.23)

6 0.18 0.25 0.21 0.02

3 0.92 1.00 0.89 NS

25–30 cm 25–30 cm 20−25 cm –

G
au

tam
e
t
al.

10
.3
3
8
9
/fag

ro
.2
0
2
5
.15

9
712

2

Fro
n
tie
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in

A
g
ro
n
o
m
y

fro
n
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rsin
.o
rg

0
7

Characters

t-value t-va

First year Second year

Root spread (m) 1.46 2.13 2.40 0.43 2.65 2.97 3.7 0

Tap root length (cm) 210.0 161.0 131.0 15.99 240.00 188.0 193.00 39

Tap root diameter (mm) 60.97 54.72 77.85 12.95 89.57 65.65 109.95 10

Secondary roots per tap
root (number)

23.00 14.00 14.00 2.34 24.25 15.00 18.00 3

Secondary root length (cm) 77.63 91.50 97.50 NS 110.00 93.65 104.35 N

Secondary root diameter (mm) 11.97 9.97 18.40 4.08 30.17 16.27 38.20 N

Tertiary roots per secondary
root (number)

3.50 3.41 6.30 1.47 7.60 6.48 6.88 N

Tertiary root length (cm) 39.26 60.79 41.88 13.28 90.90 78.57 85.80 21

Tertiary root diameter (mm) 0.91 2.38 2.98 0.67 16.69 4.03 17.40 N

Quaternary root/tertiary
root (number)

2.60 − 1.80 (1.98) 3.8 − 4.4 (0

Quaternary root length (cm) 21.60 − 25.50 (2.09) 44 − 56 (2

Quaternary root diameter (mm) ≤1 mm − ≤1 mm 3.17 − 3.92 (1

Fine root length (cm) 17.56 29.96 18.97 19.63 18.00 31.57 30.00 5

Fine root diameter (mm) < 1 < 1 < 1 − < 1 < 1 < 1

Root angle degree Secondary 61°
(40°- 90°)

52°
(50°-90°)

80°
(75° −90°)

13.07
63°

(40°- 90°)
64°

(50°-90°)
71°

(75° − 90°)
N

Tertiary 43°
(30°- 90°)

41.20°
(20° - 50°)

46°
(20° −50°)

NS
54°

(30°- 90°)
38°

(20° - 50°)
54°

(20° −60°)
10

Quaternary 37.14°
(30°-60°)

−
30.42°

(20°− 50°)
(1.42)

35°
(30°- 60°)

−
26.14°

(20°− 50°)
(2

Root: shoot 0.49 0.34 0.27 NS 0.32 0.15 0.13 0

Root spread: Crown spread 0.538 0.922 0.693 0.09 0.76 1.05 0.89 0

Tap root depth (cm) 15-25cm 20–25 cm 15–20 cm – 20-30cm 20–30 cm 20–25 cm

AC, A. cadamba; LL, L. leucocephala; MD, M. dubia; Values in parenthesis are t-calculated (t value tabulated is 2.08).
LSD, least significant difference.
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Quantitative root system parameters

In the 3rd year of the study (2019) when trees attained 3-year,

kadam (248 cm) had a longer primary (tap) root, followed by

malabar neem (211 cm) and subabul (208 cm) (Table 1). The

primary (tap) roots of all three tree species grew vertically only

within the first 0.30m of soil depth, then spread horizontally across

a distance of 0.50 to 20m from their source, and finally exhibited

positive geotropism. At the age of 3, malabar neem (4.40 m)

displayed the highest horizontal root spread, while subabul

(3.73m) and kadam (3.73 m) had a similar horizontal spread. In

the case of kadam and malabar neem, root spread was less than

canopy spread, but it was equal in the case of subabul (Table 1). The

number of secondary, tertiary and quaternary roots varied among

all tree species. Secondary root number varied from 16.0 (subabul)

to 25.0 (kadam); tertiary root from 7.0 (subabul) to 10.6 (malabar

neem); and quaternary roots from 0.0 in subabul to in 6.2 in

malabar neem. Quaternary root numbers were only observed in

malabar neem and kadam. Tree species had a difference in their

secondary root length (119.2 to 149.3 cm) and diameter (29.18 to

103.6 cm), with malabar neem being the longest and widest with

subabul and kadam following them (Table 1). Tertiary roots also

varied in length (84.7-147.5 cm) and diameter (11.9-24.5 cm),

following similar trends with malabar neem producing the longest

and widest roots, followed by kadam and subabul. The longest and

widest quaternary roots were also produced by malabar neem,

followed by kadam. Quaternary roots were not present in subabul

until three years old. Fine roots (<1.0 mm) in all three tree species

had a range of lengths between 20 cm and 32 cm and mostly

originated from secondary roots. They were evenly distributed

throughout the root zone area. The increment of root diameter

was greater than that of root length with age in all three tree species.

In the studied species, an 18.1-61.1% increase in length and a 30-

63% increase in diameter was observed in three-year-old tap roots

over one-year-old tap roots. The diameter of secondary roots

exhibited multifold increase i.e. 11.97-48.79 mm, 9.97 to

29.18 mm and 18.40 to 103.59 mm, for kadam, subabul and

malabar neem, respectively.(Table 1). The corresponding increase

in mean root length was 39-252%, while the diameter increased by

multiple times (4 to 16). It is axiomatic that the species with deep

main roots and more spreading lateral roots take up nutrient and

water more efficiently from deeper layers and over a wider area and

provide firm anchorage to the tree in soil, thereby making the tree

wind firm. Das and Chaturvedi (2008) that Azadirachta indica and

Wendlandia exserta with deep main roots and Moderate lateral root

length, can be more efficiently grown in dry conditions. Sinacore

et al. (2017) recorded maximum and mean horizontal rooting

distance for six species (Anacardium excelsum, Cedrela odorata,

Dalbergia retusa, Pachira quinata, Tabebuia rosea, Terminalia

amazonia) scaled to basal diameter. They found that T. amazonia

had mean root distances significantly greater than A. excelsum, C.

odorata, and P. quinata. They also compared maximum and mean

rooting depth by basal diameter among species and found no

significant differences among species for either maximum or

mean depth of roots. Compared to subabul and kadam, malabar
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neem has a larger root spread, which makes it more stable and less

vulnerable to wind blow (Coutts et al., 1999; Eamus et al., 2002;

Barton and Montagu, 2006). The rapid growth and maximum stem

diameter are the reason for the large and thick primary, secondary,

tertiary, and quaternary roots in malabar neem (Eamus et al., 2002;

Barton andMontagu, 2006). Malabar neem compact and dense root

system may have encouraged an increase in the uptake of nutrients

and water. Due to this, it has more diverse types (e.g. Primary/

secondary/tertiary, etc.) of roots and a greater potential for

producing aboveground biomass. We recorded a concentrated

and uniform distribution of fine roots in the root zone, regardless

of the tree species. Yanai et al., 2006 and Macinnis-Ng et al., 2010

also reported that tree fine roots spread uniformly in the root zone.

We observed variable root spread corresponding to canopy or

crown spread in the three tree species. This indicates that these

species are still growing and accumulating aboveground biomass

(Das and Chaturvedi, 2008).
Root angles

The three species had varying angles for secondary, tertiary, and

quaternary roots. The three-year study revealed a significant

(P>0.05) and relatively higher secondary root angle in all three

species compared to tertiary and quaternary roots (Table 1). This

could have resulted in a greater spread of secondary roots than

tertiary and quaternary roots. When compared, the angle of

secondary roots in the topsoil was more inclined than those in

the deep subsoil. Secondary and tertiary roots showed angles that

ranged from 20° to 90°, and there were significant differences

among the three species. Quaternary roots also showed wide

variation in angles that ranged from 20° to 60°, and were

observed only in two tree species, namely malabar neem and

kadam. Subabul tree species lacked any quaternary roots

(Table 1). Root angles vary due to the tendency of primary,

secondary, and further branches of roots to show positive

geotropism, diageotropism, and ageotropism, respectively (Fitter,

1987). In the present study, the secondary roots were almost grown

horizontally, compared to tertiary and quaternary roots. The topsoil

had roots with greater angles than the subsoil. More horizontal

spread of roots was indicated by wide root angles, while narrow

angles were associated with more vertical growth. Similar features

have been reported in many forest tree species, such as Acacia

nilotica, Acacia lenticularis, Cassia fistula, Dalbergia sissoo,

Eucalyptus tereticornis, etc., grown in India (Toky and Bisht,

1992; Chaturvedi and Das, 2002). The wider root angles and

greater root spread in malabar neem compared to other two tree

species indicate that roots were spreading laterally instead of

vertically. Narrow root angles of trees are desirable characteristics

for an agroforestry system. However, the combination of wider and

narrow root angles is crucial in binding soil particles, reducing soil

erosion, and enhancing water conservation (Verma et al., 2014;

Borden et al., 2016). When agricultural crops need to be integrated

as intercrops with the studied tree species, root pruning will be

necessary due to wider root angles in the topsoil.
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Root:shoot ratio

The root:shoot (RS) ratio is crucial for understanding plant

growth strategies, resource allocation, and environmental

adaptability, particularly under stress conditions. Studies on

species like Eucalyptus and Azadirachta indica show how R:S

ratios help assess growth and stress tolerance (Gupta and Gupta,

2015; Panda and Bandyopadhyay, 2012). Low RS ratio (Table 1) was

recorded in all the three tree species. The RS ratios of tree species

varied significantly (P>0.05) between two and three years of age and

subabul had the highest ratio, followed by malabar neem and

kadam. Earlier, our reported RS ratio was comparable to the

range (0.19–0.22) reported by Chaturvedi and Das (2002) for

multipurpose agroforestry tree species such as Acacia lenticularis,

Acacia procera, Dalbergia sissoo, and Sesbania grandiflora.

However, our reported values were less than other MPTs (0.33-

0.59), such as Acacia nilotica, Pithecellobium dulce, Senna fistula

and Syzygium cumini (Chaturvedi and Das, 2002). In the early

growth phase (first and second years), we saw a low RS ratio, which

is an indication of momentum in the development stage. This

signifies the accumulation of more biomass above ground due to the

extensive development of the tree canopy (Chaturvedi and

Das, 2002).
Root biomass

The root biomass varied significantly (P>0.05) between 0.27

and 18.06 kg per tree during their growth periods (first to third

years). Malabar neem produced the maximum followed by subabul

and the least by kadam (Table 2). Maximum biomass was allocated

to primary/tap roots rather than higher order roots in all species

during all three years of growth. An exception was observed in

kadam at 3-years-old: secondary roots had a higher biomass than

primary/tap roots (Table 2). The order of biomass allocation for

three tree species at three years old was as:
Fron
Kadam: Secondary root > Primary root > Tertiary root >

Quaternary root > Fine root.
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Subabul: Primary root > Secondary root > Tertiary root >

Fine root.

Malabar neem: Primary root > Secondary root > Quaternary

root > Tertiary root > Fine root.
The overall root biomass varied significantly in all the species like

0.27 to 4.16 kg tree-1 in A. cadamba; 0.48 to 6.76 kg tree-1 in L.

leucocephala and 0.90 to 18.06 kg tree-1 inM. dubia from first to third

year. Numerous researchers have observed a variation in biomass

accumulation among tree species and types of roots (Das and

Chaturvedi, 2008; Chauhan et al., 2009; 2019; Sinacore et al., 2017).

In the present study, greater accumulation of primary (tap) root

biomass was observed in kadam and malabar neem, followed by the

secondary roots, tertiary and quaternary roots. Similar pattern of

biomass accumulation was observed in Acacia auriculiformis,

Anacardium excelsum, Azadirachta indica, Pachira quinata and

Wendlandia exserta (Das and Chaturvedi, 2008; Sinacore et al.,

2017). The accumulation of primary (tap) root biomass was more

significant in kadam and malabar neem, while secondary, tertiary, and

quaternary roots were the next. Comparable biomass accumulation

patterns were reported by Das and Chaturvedi (2008) and Sinacore

et al. (2017) in Acacia auriculiformis, Anacardium excelsum,

Azadirachta indica, Pachira quinata and Wendlandia exserta. Stokes

(2013) reported similar findings, with secondary roots accumulating

more biomass than primary roots. Secondary roots grow horizontally

to a certain distance before showing positive geotropism, providing

stability to the tree anchorage. Fast-growing tree species have huge

aboveground biomass, which makes the tertiary and quaternary roots

act as a guy rope to stabilize the tree (Stokes, 2013).
Biomass carbon stock and its partitioning

The biomass carbon stock varied among the tree species during

three years of study (Table 3). Compared to the other two species,

malabar neem accumulated the significantly (P>0.05) higher biomass

carbon during the entire three-year growth period. At the age of

3 years, malabar neem accumulated approximately 3 to 3.9 times

more biomass carbon than subabul and kadam (Table 3; Figure 4).
TABLE 2 Root dry biomass (kg tree-1) allocation among various root orders in three tree species.

Species

Characters

AC LL MD LSD
(p=0.05)/
t-value

AC LL MD LSD
(p=0.05)/
t-value

AC LL MD LSD
(p=0.05)/
t-value

First year Second year Third year

Tap/Primary root 0.18 0.32 0.42 0.09 1.42 1.58 3.76 0.49 1.44 3.72 7.84 0.74

Secondary roots 0.08 0.14 0.38 0.09 0.99 0.66 3.62 0.22 1.62 2.04 6.84 0.94

Tertiary roots 0.012 0.02 0.05 NS 0.54 0.86 1.14 0.33 0.92 0.68 2.02 0.37

Quaternary roots 0.004 – 0.007 (7.65) 0.23 - 0.80 (14.09) 0.06 - 0.86 (28.19)

Fine roots 0.002 0.01 0.05 0.02 0.08 0.24 0.38 0.15 0.06 0.32 0.5 0.15

Total 0.27 0.48 0.90 0.22 3.24 3.34 9.7 0.46 4.16 6.76 18.06 0.48
AC, A. cadamba; LL, L. leucocephala; MD, M. dubia; Values in parenthesis are t-calculated (t value tabulated is 2.08). LSD, least significant difference.
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TABLE 3 Biomass carbon stock (kg C tree-1, Mg C ha-1 & Mg CO2 e) partitioning among various tree parts in three species.

Species AC LL MD LSD AC LL MD LSD
(p=0.05)/
t-value

AC LL MD LSD
(p=0.05)/
t-value

Third year

1.1 2.42 2.91 7.14 0.4

1.8 5.18 7.65 25.08 0.66

1.7 3.55 3.28 10.03 0.54

2.1 11.15 13.84 42.25 1.564

2.1 5.575 6.92 21.125 1.564

2.1 20.460 25.396 77.529 1.564

0.8 0.72 1.86 3.92 0.16

0.9 0.81 1.02 3.42 0.16

NS 0.46 0.34 1.01 0.09

(6.27) 0.03 – 0.43 (26.88)

0.04 0.03 0.16 0.25 0.084

0.22 2.05 3.38 9.03 1.23

0.22 1.025 1.69 4.515 1.23

0.22 3.762 6.202 16.570 1.23

2.32 13.23 17.22 51.28 0.73

2.32 6.6 8.61 25.64 0.73

2.32 24.222 31.598 94.098 0.73
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Characters

(p=0.05)/
t-value

First year Second year

Leaves 0.11 0.15 0.31 0.02 1.07 1.85 5.40

Stem 0.23 0.59 1.03 0.08 3.01 7.00 23.46

Branches 0.03 0.07 0.44 0.017 1.13 2.40 8.28

Above ground
(Kg C tree-1)

0.37 0.81 1.78 0.064 5.21 11.25 37.15

Above ground
(Mg C ha-1)

0.185 0.405 0.89 0.064 2.605 5.625 18.57

Above ground
(Mg CO2 e)

0.679 1.486 3.266 0.064 9.560 20.644 68.152

Tap root 0.09 0.16 0.21 0.012 0.71 0.79 1.88

Secondary root 0.04 0.07 0.19 0.005 0.49 0.33 1.81

Tertiary roots 0.006 0.012 0.024 0.0001 0.27 0.43 0.57

Quaternary root 0.002 – 0.0035 (12.72) 0.112 – 0.400

Fine root 0.001 0.007 0.02 0.001 0.04 0.12 0.19

Below ground
(Kg C tree-1)

0.14 0.25 0.45 0.008 1.62 1.67 4.85

Below ground
(Mg C ha-1)

0.069 0.1245 0.22375 0.008 0.811 0.835 2.425

Below ground
(Mg CO2 e)

0.255 0.457 0.821 0.008 2.976 3.064 8.900

Total
(Kg C tree-1)

0.51 1.06 2.23 0.071 6.84 12.92 41.91

Total
(Mg C ha-1)

0.2545 0.53 1.115 0.071 3.415 6.46 21

Total
(Mg CO2 e)

0.934 1.945 4.092 0.071 12.533 23.708 77.07

AC, A. cadamba; LL, L. leucocephala; MD, M. dubia; Values in parenthesis are t-calculated (t value tabulated is 2.08); NS, non significant.
LSD, least significant difference.
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Malabar neem’s above ground biomass carbon stock increased by 23.73

times over the course of one to three years. When the total biomass

carbon stock accumulation was compared from the 1st year to the 3rd

year, the maximum average increase in the biomass carbon stock was

observed in the case of malabar neem (0.37 to 8.55 Mg C ha-¹ yr-¹),

followed by subabul (0.177 to 2.87Mg C ha-¹ yr-¹) and kadam (0.085 to

2.20 Mg C ha-¹ yr-¹). Biomass carbon partitioning (Table 3; Figure 4)

showed that the aboveground part contributed 80.4 to 84.3%, while the

below-ground part had only 15.7 to 19.6% contribution in all three

species (Figure 5). The order of distribution of biomass carbon stocks

among various parts in three tree species was identified as:
Fron
Kadam: Stem > Branches > Leaves >Secondary roots > Primary

roots > Tertiary roots > Quaternary roots > Fine roots.

Subabul: Stem > Branches> Leaves >Primary roots > Secondary

roots > Tertiary roots > Fine roots.

Malabar neem: Stem > Branches > Leaves >Primary roots >

Secondary roots > Quaternary roots >Tertiary roots >

Fine roots.
At a density of 500 trees per hectare, three species had carbon

sequestration potential ranging from2.20 to 8.55MgCha-1 yr-1. As they

get older, it is expected that the carbon sequestration potential of

these studied species will increase further. Kaul et al. (2010) recorded

carbon sequestration potential of short-duration poplar species at

8 Mg C ha-1 yr-1, which is comparable to malabar neem. Our

reported values were also comparable to the reported ranges of 3.44 to

9.54 Mg C ha-1 yr-1 for species like Terminalia arjuna, Acacia catechu,

Dalbergia sissoo andMelia azedarach (Chauhan et al., 2019).

Carbon sequestration potential of studied species was higher

than the other tree species of the region like Acacia catechu,

Eucalyptus tereticornis, Dalbergia sissoo, Azadirachta indica,

Hardwickia binata, Albizia lebbeck etc (Chauhan et al., 2019;
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Kumar et al., 2021). According to our findings, these rapidly

growing tree species, particularly malabar neem, possess a

significant capacity to mitigate climate change by storing a

significant amount of carbon in their biomass. The contribution

of the root to the shoot varies depending on the tree species, its root

system, and ecological conditions. Eslamdoust and Sohrabi (2018)

reported that in Populus deltoides, an industrially important fast-

growing tree, more than 80% biomass and carbon stock is in above

ground part of the tree. Further, compared to our reported ranges of

15 to 19%, Jha (2017) reported a 25 to 40% contribution of roots to

total carbon stock in hybrid poplar in sub-humid climate of

Mediterranean France. Of all the parts, the stem had the most

carbon stored followed by branches, leaves, tap root, secondary

root, tertiary root, quaternary root, and fine roots. The variation in

order of carbon content observed during the study in various parts

of the tree species has also been found in P. crassifolia and P.

sylvestris (Shangguan et al., 2025). Similar pattern was also observed

in Eucalyptus urophylla and E. grandis plantations, with the stem

accounting for the maximum carbon storage (Du et al., 2015).
Carbon dioxide equivalent (CO2e)
mitigation potential

Under the stand density of 500 trees ha-1, malabar neem

sequestered a maximum of 94.09 Mg C ha-1 CO2e, followed by

subabul (31.64 Mg C ha-1 CO2e) and kadam (24.29 Mg C ha-1

CO2e) upon reaching three years of age in semi-arid conditions

(Figure 6). Implementation of carbon finance mechanism as a

projection to this CO2 e sequestration can fetch extra monetary

gain of USD 314.53 (≈23158.8 Indian rupees) in malabar

neem, 105.68 (≈7787.56 Indian rupees) in subabul and 81.03

(≈5971.10 Indian rupees) in kadam on per hectare basis at the age of
FIGURE 4

Partitioning of biomass carbon stock (Mg C ha-1) among various plant parts in three fast growing tree species.
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three years (market value of one CO2e = 3.34 USD (Asia),

Forest Trends’ Ecosystem Marketplace report, 2021). The current

prices of carbon offsets are low and vary across different continents

from 2.96 USD in Europe to 32.93 USD in Oceania (Forest Trends’

Ecosystem Marketplace, 2021). But a rise in carbon credit prices to
Frontiers in Agronomy 12
USD 20–50 t-1 CO2e is expected by 2030, as more investment is

required in projects that sequester high amounts of atmospheric

carbon-dioxide to mitigate climate change in the long-run

(ScienceDaily, 2021). Thus, these species can ensure additional

monetary gains to people on a sustainable basis.
FIGURE 5

Above and below ground biomass carbon stock (Mg C ha-1) during the study periods (2017-2019).
FIGURE 6

Carbon dioxide equivalent (CO2 e) mitigation potential (Mg C ha-1) of three tree species.
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Conclusion

This study demonstrates that tree root architecture plays a crucial

role in determining carbon sequestration potential under semi-arid

conditions. Among the species evaluated, M. dubia emerged as the

most promising candidate due to its compact, dense root system and

superior lateral spread, which not only facilitates higher carbon

accumulation but also improves soil structure and moisture

retention. The study also emphasizes the importance of targeted

root management—particularly lateral root pruning after the initial

two years—to optimize tree-crop interactions in agroforestry systems.

Although root architecture studies typically rely on destructive

methods such as root excavation—which are labor-intensive, time-

consuming, and costly—the insights they provide are invaluable for

developing climate-resilient, resource-efficient agroforestry models

tailored to degraded and water-limited landscapes. From a scientific

and futuristic perspective, integrating high-performing species likeM.

dubia into land-use strategies aligns with global efforts to combat

climate change through nature-based solutions. Further research

should explore long-term carbon dynamics, root-soil-microbe

interactions, and genomic traits linked to root development and

carbon storage efficiency. Additionally, deploying remote sensing and

AI-based root phenotyping tools could enhance large-scale

assessment and management. Policy frameworks must now pivot

toward incentivizing such species in carbon farming, land restoration,

and bioeconomy initiatives, positioning agroforestry as a cornerstone

of sustainable development and carbon neutrality in semi-arid and

marginal environments.
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