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Introduction: Rising rice demand has intensified pressure on irrigation water

resources in China. Improving rainfall water use is an important way to reduce the

pressure on irrigation water and avoid wasting water. Cumulative precipitation

forecasts are expected to better match rice water needs with rainfall. Their

accuracy and effectiveness for rice irrigation scheduling have not been evaluated.

Methods: In this study, cumulative precipitation forecasts with 3, 5, and 7 days of

lead time were defined to improve the use of precipitation forecast. On this basis,

these cumulative precipitation forecasts and the daily precipitation forecasts

have been applied for irrigation forecast using rules at a China-wide scale. The

quality of cumulative precipitation forecast and daily precipitation forecast were

compared, and their effects on irrigation compared with conventional flood

irrigation evaluated.

Results: The results showed that the precipitation forecasts from public weather

forecasts had a clear seasonal and spatial pattern in the different rice cropping

regions. They had better performance in inland gently sloping regions than in

highland or coastal regions. Percentage correct (PC), defined as the proportion of

forecast precipitation grades, correctly predicted compared to measured rainfall

data, which ranged from 0.413 to 0.758. Precipitation amount correct rate (PAC),

defined as the ratio of correctly predicted precipitation amount to observed

amount, was higher for cumulative forecasts than that for the daily forecasts. All

forecasts granted a higher precipitation utilization efficiency (PUE) of the paddy

field when compared against conventional irrigation, with the 7-day cumulative

precipitation forecast reaching an average PUE of 0.603. Generally, the volume of

the water used for irrigation and the drainage one was reduced when employing

the cumulative precipitation forecast and the number of irrigation and drainage

actions. These reduction effects intensified with longer cumulative forecast

horizons. The best performance was obtained for the 7-day cumulative

precipitation forecasts, which allowed reducing the irrigation water by 20.81%

and the number of irrigation actions by 25.80%. Irrigation scheduling based on

cumulative precipitation forecasts had a small effect on yield, approximately 0.01%.
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Discussion: The improved irrigation efficiency observed with cumulative

precipitation forecasts, especially the 7-days forecast, suggests that integrating

cumulative precipitation predictions into irrigation decisions can significantly

reduce water use without compromising rice yield.
KEYWORDS

paddy field, irrigation scheduling, precipitation forecast, water saving, cumulative
precipitation forecast
1 Introduction

Rice is one of the most important grains and has grown over a

vast area in China (Song et al., 2017; Halder et al., 2020; Hu et al.,

2021; Wei et al., 2022). Its cultivation process consumes a huge

amount of water, which mainly comes from irrigation and rainfall

(Tuong et al., 2005; Humphreys et al., 2006; Bouman et al., 2007;

Reavis et al., 2024). Although rice is mostly grown in areas with

abundant rainfall, the water available for agricultural irrigation has

been declining in recent years, as industrial, urban, and ecological

water demand has been increasing, and the pressure on water use

has been increasing (Xiong et al., 2010; Sutcliffe et al., 2021). To

ensure food security, water conservation is needed in rice

production in China (Yao et al., 2012). Improving the

management of rice irrigation during cultivation and increasing

the utilization of precipitation can reduce water stress in agriculture.

Rainfall is one of the main sources of water in paddy fields in

China, apart from irrigation supplements (Chen et al., 2021; Zhao

et al., 2023). Investigating temporal and spatial variation patterns in

precipitation forecast accuracy could theoretically enhance the

transferability of irrigation management methods. Maximizing

rainfall utilization significantly aids in conserving irrigation water.

Irrigation forecasts that consider future rainfall can enhance water

management for farmland and reduce rainwater wastage (Linker

and Sylaios, 2016; Corbari et al., 2019; Zimit et al., 2023; Zhao et al.,

2023). Despite advancements in precipitation forecasting skills, they

still have a lot of uncertainties, and their application in paddy field

irrigation management remains limited (Kirthiga et al., 2024; Hsu

and Lin, 2024). It is critical to analyze the accuracy of precipitation

forecasts and make them more compatible with irrigation

management. When using rainfall forecasts for irrigation

management, it is important to consider not only the accuracy of

short-term forecasts but also the spatial and temporal variation

patterns to better understand and utilize the forecasts (Evans et al.,

2020; Chen et al., 2024).

Critical limitations persist in effectively operationalizing rainfall

forecasts, particularly in view of their inherent spatiotemporal

uncertainties, into irrigation decision frameworks. Studies on

improving water use efficiency in irrigation management

primarily focus on optimizing irrigation methods (Kisi et al.,

2021; Gao et al., 2024), reducing unnecessary water loss
02
(Mohammadi et al., 2019; Paria et al., 2025; Gebru et al., 2025),

and refining rainfall forecasts (Kirthiga et al., 2024; Collins et al.,

2024). Some studies also explore the potential of using short-term

weather forecasts to enhance irrigation water-saving efficiency. For

example, Ravazzani et al. (2017) combined numerical rainfall

forecast with a hydrological simulation model to predict soil

moisture content and crop water demand in northern Italy. Chen

et al. (2021) applied machine learning algorithms to reduce the

uncertainty of rainfall forecasts in irrigation decision-making.

Much of this research focuses on integrating weather forecast

with various tools; there is limited attention given to improving

the utilization of rainfall forecasts. Rainfall forecast is more

challenging than predicting other weather variables such as

temperature and wind speed (Scheuerer and Hamill, 2015; Calvo-

Olivera et al., 2024). Therefore, it is important to enhance our

understanding of rainfall forecast and explore better ways to

leverage it. Optimizing irrigation management by integrating its

variation patterns and formulating more scientifically reasonable

irrigation plans can effectively improve rainfall utilization efficiency

and save irrigation water (Kharrou et al., 2011; Saccon, 2018).

The potential risks of cumulative rainfall forecasts for irrigation

are not yet fully understood (Cai et al., 2011; Hsu and Lin, 2024;

Collins et al., 2024). Public weather forecasts in China, which have

the advantages of easy access, simplicity of use, and wide coverage,

have already been applied in water-saving irrigation. They provided

significant utility to Chinese irrigation managers and farmers (Cao

et al., 2019; Liu et al., 2020; Fan et al., 2021). The rainfall forecast

accuracy of some scattered stations of public weather forecast in

China has been analyzed (Cao et al., 2019; Chen et al., 2023). The

analysis of spatial differences focuses on numerical weather forecast

(Xu et al., 2018; Liu et al., 2021). There is no systematic study on the

accuracy of public precipitation forecast in entire China and an

analysis on its spatio-temporal variations. In addition, previous

studies have mostly focused on the use of daily precipitation

forecast for irrigation scheduling (Ajaz et al., 2024; Chen et al.,

2023). Daily precipitation forecast is possible to forecast a

continuous rainfall of 2 or more days into multiple rainfall (Li

et al., 2020). For irrigation advice, the accuracy of cumulated

precipitation forecasts should be analyzed considering multiple

days, to be consistent with sustained multi-day rainfall and the

irrigation water management in China.
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This paper analyzed the performance of precipitation forecast of

public weather forecast with 7 days lead time and its spatio-

temporal variations within rice growth period in China.

Cumulative precipitation forecasts are used to predict the total

amount of rainfall for a complete rainfall event. Three time scales

were considered: 3, 5, and 7 days. The accuracy of precipitation

forecasts was evaluated by comparing them with observed rainfall

data. Based on this, a simple decision rule-based method for rice

irrigation scheduling using precipitation forecast information was

developed. The impact of various cumulative precipitation forecasts

on irrigation scheduling has been evaluated by using conventional

flood irrigation as comparison. The objectives of this work are (1) to

evaluate the quality and spatio-temporal variations of short-term

precipitation forecasts in Chinese public weather forecast against

ground observed rainfall data, (2) to explore the skill of cumulative

precipitation forecasts and compare them with the quality of the

daily forecasts, and (3) to analyze whether cumulative precipitation

forecasts can be better utilized in irrigation to meet the need for

optimizing irrigation scheduling.
2 Materials and methods

2.1 Study area

China has widely distributed rice cropping areas. Mei et al.

(1988) divided rice areas into six rice cropping regions according to
Frontiers in Agronomy 03
the ecological environment, socio-economic conditions, and

characteristics of rice cultivation in China. These are South China

double rice cropping region (RI), Central China double and single

rice cropping region (RII), Southwestern plateau region of single

and double rice cropping (RIII), North China single rice cropping

region (RIV), Northeast China early maturing and single rice

cropping region (RV), and Northwest China single rice cropping

region in dry areas (RVI). A total of 156 meteorological stations in

six rice cropping regions with different rice types were selected for

analysis (Figure 1; Supplementary Table A1).
2.2 Datasets

2.2.1 Weather forecast data and observed
meteorological data

Data of 156 meteorological stations covering the whole of China

from 2012 to 2020 were collected. The daily observed

meteorological data were obtained from the China Meteorological

Data Service Center (https://data.cma.cn), including daily average

air temperature, maximum air temperature, minimum air

temperature, average relative humidity, average wind speed,

precipitation and sunshine duration. According to the daily

observed precipitation, the daily precipitation grade is categorized

into seven levels: no rain (NR), light rain (LR), moderate rain (MR),

heavy rain (HR), storm (ST), heavy storm (HS), and severe storm

(SS) (Table 1).
FIGURE 1

Map of rice cropping regions and meteorological stations in China.
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Weather forecast data for the same period were obtained from

China Weather (http://www.weather.com.cn). Daily weather

forecast data contain daily minimum air temperature, maximum

air temperature, precipitation, and weather type information with 7

days lead time. With reference to the China Meteorological

Administration (CMA) standards (CMA, 2012), the forecast

precipitation was set to the median value of the precipitation

range corresponding to each weather type. Although some

weather types share the same precipitation range, they are still

considered as different types due to different statistical properties

(Table 1). The formula for determining the forecasted precipitation

(Pf) is given as Equation 1:

PfW =
1
go

g

j=1
Pfj (1)
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where j denotes the simple weather type included in the

composite weather type W, and g is the number of simple weather

forecast types included in the composite weather type W.

2.2.2 Rice irrigation management and crop
phenology

The conventional irrigation for paddy rice in most areas of

China is flood irrigation (Mao, 2002; Dong et al., 2020). The water

control criteria are slightly different, but not much different in each

region. The criteria for water level in each rice growth stage of

conventional flood irrigation are shown in Table 2 (Guo, 2005).

Conventional flood irrigation management for paddy rice is

governed by specific criteria related to field water levels, which

include the minimum water level (hmin), the maximum water level

(hmax), and the maximum allowable water level after rainfall (Hp).

Irrigation is triggered when the water level in the field falls below the

minimum threshold (hmin), and water is applied until the upper

threshold (hmax) is reached. Additionally, drainage is initiated

whenever the water level exceeds Hp to prevent waterlogging and

protect the crop.

In this study, the analyses have been carried out on a large scale,

considering the entire Chinese territory, and detailed information

crop growth stage, sowing, and harvesting periods are not available.

Thus, the growth stages division and the crop coefficients (Kc) used

in this paper were obtained as the average of the representative

stations in each rice cropping region (Chen et al., 2023). The rice

growth stage is usually divided into seven stages, including the

stages of returning green (RG), early tillering (ET), late tillering

(LT), jointing–booting (JB), heading flowering (HF), milk-ripe

(MI), and yellow-ripe (YR). The rice growth stages division and

Kc values are reported in Table 3. Rice needs to be sun-dried at the

end of tillering stage to control ineffective tillering. Paddy fields are

sun-dried for the last 5 days at the end of tillering stage and fall-

dried at the YR stage. Each rice cropping region has different types

of rice. Rice was classified into 11 possible combinations of regions

and rice types in Table 3.
TABLE 2 Criteria of water level in paddy field for each rice type.

Rice type Criteria (mm) RG ET LT JB HF MI YR

Early rice

hmin 5 20 20

Dry

30 10 10

dryhmax 30 50 50 60 30 30

Hp 50 70 80 90 80 60

Middle rice

hmin 10 20 30

Dry

30 10 10

dryhmax 30 50 60 60 30 20

Hp 50 70 90 120 100 60

Late rice

hmin 20 10 10

Dry

20 10 10

dryhmax 40 30 30 50 30 20

Hp 70 70 80 90 50 60
hmin, hmax, and Hp in the table was the lower limit before irrigation, the upper limit after irrigation, and the upper limit of water storage after rain, respectively.
TABLE 1 Weather types and their corresponding precipitation grade,
precipitation ranges, and Pf values.

Weather
type

Precipitation
grade

Precipitation
range (mm)

Pf

(mm)

Sunny NR <0.1 0

Haze NR <0.1 0

Cloudy NR <0.1 0

Overcast NR <0.1 0

Light rain LR 0.1–9.9 5

Showers LR 0.1–9.9 5

Thundershower MR 10.0–24.9 17.5

Moderate rain MR 10.0–24.9 17.5

Heavy rain HR 25.0–49.9 37.5

Storm ST 50.0–99.9 75

Heavy storm HS 100.0–249.9 175

Severe storm SS ≥250 250
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2.3 Evaluation of precipitation forecasts

2.3.1 Statistical indexes
The quality of precipitation grade forecast was evaluated by

using Percentage Correct (PC), Threat Score (TS), Missing Alarm
Frontiers in Agronomy 05
Rate (MAR), and False Alarm Rate (FAR), which were calculated by

Equations 1–5 (Donaldson et al., 1975; Wilks, 2006):

PC =o
1

k

Ak

Ak + Bk + Ck + Dk
(2)
TABLE 3 Growth stage duration and recommended Kc of paddy field water level for each rice cropping region.

Rice cropping region and
rice type

Growth
period

RG ET LT JB HF MI YR

Region I
early rice
(RI-E)

Start date 03/21 03/29 04/23 04/30 05/05 05/22 06/03 06/29

End date 03/28 04/22 04/29 05/04 05/21 06/02 06/28 07/10

Kc 1.01 1.13 1.1 1.15 1.27 1.22 0.95

Region I
late rice
(RI-L)

Start date 07/21 08/01 08/26 09/06 09/11 09/27 10/07 11/01

End date 07/31 08/25 09/05 09/10 09/26 10/06 10/30 11/10

Kc 0.94 1.23 1.21 1.37 1.63 1.57 1.12

Region II
early rice
(R-E)

Start date 04/25 05/02 05/16 05/26 05/31 06/16 06/25 07/05

End date 05/01 05/15 05/25 05/30 06/15 06/24 07/04 07/14

Kc 1.01 1.13 1.1 1.15 1.27 1.22 0.95

Region II
middle rice
(RII-M)

Start date 06/15 06/25 07/10 07/19 07/24 08/17 09/02 09/17

End date 06/24 07/09 07/18 07/23 08/16 09/01 09/16 10/04

Kc 0.92 1.15 1.17 1.2 1.25 1.15 1.12

Region II
late rice
(RII-L)

Start date 22/07 07/29 08/12 08/21 08/26 09/16 09/25 10/09

End date 28/07 08/11 08/20 08/25 09/15 09/24 10/08 10/22

Kc 0.94 1.23 1.21 1.37 1.63 1.57 1.12

Region III
early rice
(RIII-E)

Start date 04/25 05/02 05/16 05/26 05/31 06/16 06/25 07/05

End date 05/01 05/15 05/25 05/30 06/15 06/24 07/04 07/14

Kc 1.05 1.20 1.20 1.20 1.30 1.20 0.95

Region III
middle rice
(RIII-M)

Start date 05/11 05/23 06/18 06/23 06/28 07/30 08/12 08/30

End date 05/22 06/17 06/22 06/27 07/29 08/11 08/29 09/12

Kc 1.07 1.22 1.22 1.27 1.35 1.31 1.26

Region III
late rice
(RIII-L)

Start date 22/07 07/29 08/12 08/21 08/26 09/16 09/25 10/09

End date 28/07 08/11 08/20 08/25 09/15 09/24 10/08 10/22

Kc 0.94 1.23 1.21 1.37 1.63 1.57 1.12

Region IV
middle rice
(RIV-M)

Start date 06/15 06/26 07/17 07/31 08/05 08/19 09/06 10/02

End date 06/25 07/16 07/30 08/04 08/18 09/05 10/01 10/20

Kc 0.97 1.06 0.95 1.49 1.3 1 0.9

Region V
middle rice
(RV-M)

Start date 05/24 06/01 06/21 06/30 07/05 07/26 08/06 09/01

End date 05/31 06/20 06/29 07/04 07/25 08/05 08/31 09/21

Kc 0.38 0.88 0.68 1.45 1.22 1.06 0.45

Region VI
middle rice
(RVI-M)

Start date 05/27 06/02 06/25 06/30 07/05 08/05 08/17 09/16

End date 06/01 06/24 06/29 07/04 08/04 08/16 09/15 10/05

Kc 1.07 1.1 1.22 1.27 1.42 1.33 1.07
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TSk =
Ak

Ak + Bk + Ck
(3)

MARk =
Bk

Ak + Bk
(4)

FARk =
Ck

Ak + Ck
(5)

where Ak is the number of days in which both prediction and

observation fall within the specified k range, Bk is the number of

days in which observations fall within k but forecasts do not, Ck is

the number of days in which forecasts fall within k but observations

do not, and Dk is the number of days in which both forecast and

observation are outside the k range.

A linear regression model was developed to analyze the trends

of PC in China, with time (t) as the independent variable and PC as

the dependent variable. The regression equation is as Equation 6:

PC = PCslope · t + b (6)

where PCslope represents the slope of the equation, indicating the

linear trend of the time series; t refers to the year; and b is the

regression constant. The series exhibits a positive trend when PCslope

is >0, and it exhibits a negative trend when PCslope is <0. The

magnitude of the trend increases with the absolute value of PCslope.

The evaluation of precipitation grade forecasts does not fully

reflect the accuracy of cumulative precipitation forecasts.

Calculating the ratio of correctly forecasted precipitation to

observed precipitation can be used to analyze the accuracy of

cumulative precipitation forecasts. Forecast precipitation amount

correct rate was calculated according to the following Equation 7:

PAC =
min (P, Pf )

P
(7)

where PAC, which the forecast precipitation amount correct

rate during rice growth period, is defined as the ratio of correctly

predicted precipitation amount to observed amount; P is the

amount of observed precipitation during rice growth period, mm;

and Pf is the amount of forecast precipitation during rice growth

period, mm.

Pearson correlation coefficient indicates the degree of

correlation between two sets of data (Sun and Qin, 2016). It was

used to analyze the relationship between PAC and irrigation

variables. The formula is as Equation 8 (Kang et al., 2017):

rxy =
o
N

i=1
xi − �Xð Þ � yi − �Yð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o
N

i=1
xi − �Xð Þ2 �o

N

i=1
yi − �Yð Þ2

s (8)

where rxy is the correlation coefficient between x and y, while xi
is the ETo value in i year, and y is the meteorological variable value

in i year. �X and �Y are the average values of x and y; N is the number

of samples. X and Y are positively related when r>0. X and Y have a

negative correlation when r<0. The greater the absolute value of the

number, the greater the strength of the correlation between the two
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variables. SPSS software was used for statistical analysis. The

significance of correlation coefficient was tested by t-test and p-

value <0.05 was considered statistically significant (Hu et al., 2021).

2.3.2 ROC curve
The timeliness of precipitation forecasts is examined by

analyzing the precipitation forecasts with 7 days lead time

through the receiver operating characteristic (ROC) curve. The

performances will be analyzed in a confusion matrix. ROC is an

effective method for rating binary classification based on

performance, allowing to discriminate the information data

(Aburas et al., 2017). Public weather forecasts for each

precipitation grade are also a binary classification process; thus,

ROC can be applied to rainfall forecast quality testing. The true

positive rate (TPR) and the false positive rate (FPR) are calculated as

Equations 9, 10 (Fawcett, 2006).

TPRk =
Ak

(Ak + Bk)
(9)

FPRk =
Ck

(Ck + Dk)
(10)

ROC graph is a two-dimensional graph in which TPR is plotted

on the Y-axis and FPR is plotted on the X-axis. The ROC curve is

fitted according to these points. When ROC is located above the

diagonal line, it indicates that the TPR is greater than FPR. In this

case, the area under the curve (AUC) is >0.5, indicating positive

forecast significance.

2.3.3 Precipitation utilization efficiency
Based on the historical meteorological data and rice irrigation

rules, the water management process of paddy fields under

conventional flood irrigation was modeled. This model

incorporated irrigation decisions informed by precipitation

forecasts to estimate the drainage water from paddy fields. The

precipitation utilization efficiency for paddy field was calculated

according to the following Equation 11:

PUE =
P − D
P

(11)

where PUE is the precipitation utilization efficiency of the paddy

field, and D is the amount of drainage during rice growth

period, mm.
2.4 Construction of precipitation
predictions with various time scales

Due to the chaotic nature of the atmosphere, daily precipitation

forecast skills become worse as the lead time increases (Liu et al.,

2023). This does not suggest that the valuable information

decreases. For rice, minor exposure to drought and flooding has

less impact on its yield (Cao et al., 2019; Anupoju and

Kambhammettu, 2020; Malumpong et al., 2021). Irrigation

determination can depend on multi-day precipitation forecast.
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Two types of precipitation forecast are proposed: one is the daily

precipitation forecast with different lead times, and the other one is

the cumulative precipitation forecast over varying time scales. The

skill of cumulative precipitation forecast has been compared to the

quality of 1-day forecast. This has allowed understanding whether

cumulative precipitation forecasts can be better utilized in irrigation

to meet the need to optimize irrigation management.

Daily precipitation forecasts are precipitation forecasts with day

1 to day 7 lead time and represent each day’s independent

forecasted precipitation. Cumulative precipitation forecasts are

precipitation forecasts from 1 to m days and represent the total

amount of forecast precipitation for the corresponding time scale.

Cumulative precipitation forecasts have been set for three time

horizons: 3, 5, and 7 days.
2.5 Irrigation scheduling

2.5.1 Water balance equation of paddy field
Irrigation scheduling is determined using the water balance

method. The water balance equation for paddy fields is expressed

as Equation 12:

Hi = Hi−1 − ETc,i + Ii + P0,i − Si − Dri (12)

where Hi represents the water level or the soil water storage in

the crop root zone of a paddy field at the end of day i, mm/day; Hi–1

represents the water level or the soil water storage in the crop root

zone of a paddy field at the end of day i–1, mm/day; ETci is the

actual crop evapotranspiration on day i, mm/day; Ii is the irrigation

amount on day i, mm/day; P0i is the precipitation on day i, mm/day;

Si is the deep percolation on day i, mm/day; and Dri is the drainage

on day i, mm/day.

ETc is estimated following the methodology developed by the

Food and Agriculture Organization (FAO) of the United Nations,

reported in the FAO-56 (Allen et al., 1998), Equation 13:

ETc = Kc · Ks · ETo (13)

where Kc is single crop coefficient from Table 3, Ks is water

stress coefficient, and ETo is reference evapotranspiration, mm/day.

The formula for calculating Ks suggested by FAO-56 is Equation

14:

Ks =
         1               0 ≤ Dw ≤ RAW

TAW−Dw
TAW−RAW     Dw > RAW

(
(14)

where Dw is the depletion of water content in the rhizosphere

(i.e., water deficit relative to field holding capacity), mm; TAW is the

total effective water in the rhizosphere, mm; RAW is the effective

water readily taken up by the crop from the rhizosphere, mm; and

Ks = 1, when there is no soil water stress.

The Penman–Monteith method recommended by FAO is the

most widely used ETo calculation method. This study uses it to

calculate ETo, and the formula is as Equation 15 (Allen et al., 1998):
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ETo =
0:408D(Rn − G) + g 900

T+273 U2(es − ea)

D + g (1 + 0:34U2)
(15)

where ETo represents the daily reference evapotranspiration, mm

day−1; Rn represents the net radiation at the crop surface (MJ m−2

d−1); G represents the soil heat flux (MJ m−2 d−1); g represents the
psychometric constant (kPa °C−1); T represents the average air

temperature (°C); U2 represents the mean wind speed at 2 m above

the ground surface (m s−1); es represents the saturation vapor

pressure (kPa); ea represents the actual vapor pressure (kPa); and D
represents the slope of the saturation vapor pressure curve (kPa °C−1).

2.5.2 Determination of irrigation and drainage
In the conventional irrigation scheduling, whether irrigation or

drainage action is taken depends only on Hi–1. When Hi–1 for paddy

field reaches hmin, an irrigation event occurs, and the water level is

replenished to hmax. In addition, drainage events take place whenever

Hi−1 is beyond Hp. Otherwise, no action is taken. The amounts of

irrigation and drainage water are generally calculated by Equation 16:

Ii = hmax − Hi−1  (Hi−1 < hmin)

Dri = Hp − Hi−1 (Hi−1 > Hp)
(16)

To isolate the effect of precipitation forecasts on irrigation and

drainage management, only the precipitation inputs to the water

balance equation are forecast values, while other variables are

measured values. ETc, calculated from observed weather data

according to the method described in Section 2.5.1, was the input

for evapotranspiration. The rules for determination of irrigation

and drainage are given as follows:

1. The irrigation and drainage amounts based on daily

precipitation forecast are calculated by Equation 17:

Hf ,i = Hi−1 + Pf ,i − ETc,i − Si

Ii = hmax − Hi−1            ð Hi−1 < hmin  Hf ,i < hminÞ
Dri = Hp − Hi−1          ð Hi−1 > Hp  Hf ,i > HpÞ

(17)

where Hf,i is the forecasted water level on day i based on daily

forecast precipitation, mm; Pf,i is forecast precipitation on day i.

Irrigation or drainage action does not occur when the above

conditions are not met.

2. The irrigation and drainage amounts based on cumulative

precipitation forecast are calculated by Equation 18:

Hf ,i+m−1 = Hi−1 + Pf ,m − ETc,m − Sm

Ii = hmax − Hi−1            ð Hi−1 < hmin  Hf ,i+m−1 < hminÞ
Dri = Hp − Hi−1           ð Hi−1 > Hp  Hf ,i+m−1 > HpÞ

(18)

whereHf,i+m−1 is the forecasted water level on the end of day i+m

−1 based on cumulative forecast precipitation, mm; Pf,m is cumulative

precipitation forecast for the next m days, mm; ETc,m is cumulative

evapotranspiration for the next m days, mm; and Sm is cumulative

deep percolation for the next m days, mm. Irrigation or drainage

action does not occur when the above conditions are not met.
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The irrigation scheduling based on the actual observed

precipitation as input was used as a control group to evaluate the

effect of different precipitation forecast inputs on irrigation volumes

and timing.
2.6 Crop water production function

In irrigation optimization, crop water production functions

(CWPFs) are commonly used to relate yield reductions at specific

periods of crop growth to water deficit (Zhang and Oweis, 2007; Wu

et al., 2022). The Jensen model (Jensen, 1968) was used in this study

to quantify the effect of the proposed determination of irrigation

and drainage on crop yield based on precipitation forecasts. The

model is expressed as Equation 19:

Ya

Ym
=
Yn
i=1

ETa,i

ETm,i

� �li
(19)

where Ya represents the crop yield under water stress

conditions, Ym represents the crop yield under non-stressed

conditions, ETa,i represents the actual crop evapotranspiration

during growth stage i under water stress conditions, ETm,i
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represents the actual crop evapotranspiration during growth stage

i under non-stressed conditions, li is water stress sensitivity index

for growth stage I, and n refers to the total number of growth stages.

In this study, the li values for the three rice types are sourced from

Luo (2003) as shown in Table 4.
3 Results

3.1 Spatio-temporal variation in daily
precipitation forecast accuracy

The accuracy of daily precipitation forecasts from public

weather forecasts with 7 days lead time was analyzed for the six

rice cropping regions. Figure 2 shows multi-year average PC in the

six rice cropping regions. The PC gradually decreased as the lead

time increased, in all rice cropping region. Early and late rice had

the highest PC in RII. The highest PC was obtained in RVI for

middle rice, and it could reach 0.758 for day 2 lead time. The day 7

precipitation forecast for RI-E has the lowest PC value, at 0.413.

Average PC in RVI was the highest at 0.727. RIII had the lowest

average PC, followed by RI with 0.498 and 0.519.

From 2012 to 2020, the precipitation forecast with day 1 lead

time has shown the best performance in terms of PC trends, with an

upward trend in most rice cropping regions (Figure 3). The rainfall

forecasts with other lead times performed on average and even

showed a downward trend. Trust in rainfall forecasts still tends to

be more in favor of trusting day 1 forecasts.

TS, FAR, and MAR results for each region are shown in

Figures 4–6, respectively. TS of every forecast precipitation grade

for each rice cropping region shows a decreasing trend with the lead
TABLE 4 The water stress sensitivity index at each growth stage over
rice growth period for early rice, middle rice, and late rice.

Rice type TL JB HF MI

Early rice 0.1130 0.3999 0.6968 0.2393

Middle rice 0.1818 0.4524 0.6393 0.1213

Late rice 0.2219 0.4919 0.2339 0.0675
FIGURE 2

The multi-year average PC of daily precipitation forecast with 7 days lead time for each rice type at each rice cropping region.
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time increases (Figure 4). This indicates that as the lead time

increases, the quality of precipitation forecasts becomes worse

and less credible. The range of TS of forecasts without rain was

0.28–0.76, while the range of TS of forecasts with rain was 0.10–0.44.

The performance of the forecast without rain was much better than

that with rain. The lowest TS was found in MR, followed by HR.

When forecast with rains, LR has the highest TS, followed by HS

and ST. This indicates that among the rainfall forecasts, the smaller

and larger precipitation can be forecasted more accurately, while the

intermediate precipitation showed higher forecast errors. Among all

the rice cropping regions, RVI-M had the highest average TS of 0.35

and the best forecast quality. RI-E had the lowest average TS of 0.25

and the worst average forecast quality. RIII had the worst

performance in the NR forecast. In conclusion, precipitation

forecast accuracy was the highest for middle rice, second highest

for late rice, and the worst accuracy was obtained for early rice.

There was an overall increasing trend in FAR and MAR for

every precipitation grade forecast for each rice cropping region as

the lead time increased (Figures 5, 6). MAR and FAR ranged from

0.15 to 0.60 and 0.12 to 0.40 for the no-rainfall forecasts and 0.40 to

0.83 and 0.48 to 0.84 for the with-rainfall forecasts, respectively.

MAR and FAR for the no-rainfall forecasts were much smaller than

those for the with-rainfall forecasts at all grades. The comparison

between FAR and MAR shows that the no-rain forecasts are more

likely to missing rather than false alarms. Precipitation forecasts are

more likely to false alarms rather than missing alarms. MR has the

largest FAR among all the rice cropping regions and rice types and

is the most prone to false alarms, while HR has the largest MAR

among all the rice cropping regions and rice types and is the most

prone to false alarms. The FAR and MAR of LR, ST, and HS are

relatively smaller. The LR is more prone to false alarms, while ST is

more prone to false alarms. That is more obvious when the forecast
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lead time is longer. Among all the rice cropping regions, it is also

RVI-M that has the lowest average MAR and FAR of 0.54 and 0.53

and has the best prediction quality. RI-E has the highest average

MAR and FAR of 0.62 and 0.61, so the average forecast quality is

the worst.

In summary, there are large spatial variations in forecast

accuracy between different rice cropping regions. The factors

affecting the occurrence and development of rainfall are

numerous and complex, and the process and effects of storm

clouds are difficult to be precisely quantified. Precipitation grade

forecast in RVI performs the best. Most area in RVI belongs to the

arid and semi-arid regions of China. The average annual

precipitation is <400 mm or even 100 mm (Feng et al., 2024).

The arid regions have less continuous precipitation and higher

accuracy of precipitation grade forecast. The performance of RI and

RIII is the worst. RI is a coastal area, where the quality of

precipitation forecasts is poorer, probably due to the influence of

sea weather such as typhoons (Liu et al., 2023; Gao et al., 2023), and

RIII is a highland area, where precipitation forecasts are poorer due

to the influence of complex terrain (Guo et al., 2021). Other rice

cropping regions are mainly inland that have relatively good

forecast quality.
3.2 Accuracy analysis of cumulative
precipitation forecasts with different time
scales

ROC curves for the cumulative precipitation forecasts with

three time scales and daily precipitation forecasts with 7 days lead

time for different regions and rice types are shown in Figure 7.

These ROC curves for the daily and cumulative precipitation
FIGURE 3

The trend of multi-year PC of daily precipitation forecast with 7 days lead time for each rice type at each rice cropping region.
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forecasts are obtained by fitting the points in ROC space for each

site in each year. The cumulative precipitation forecast combines

the forecasted precipitation on the next m days, which leads to the

accumulation of forecast errors. From Figure 7, ROC curves are

above the diagonal lines. The AUC values are >0.5, indicating that

the TPRs are greater than the FPRs. All the forecasts have a positive
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predictive value. With the increase in the lead time, the curve moves

closer to the diagonal line and the AUC tends to decrease. The AUC

value of the cumulative precipitation forecast does not decrease

significantly compared with that of the daily forecast.

For early rice, the ROC curves for daily precipitation forecast for

day 1 lead time are at the upper left in RI and RIII. In RII, the ROC
FIGURE 4

The multi-year average TS of daily precipitation forecast with 7 days lead time for each rice type in each rice cropping region. (a) RI–E, (b) RII–E,
(c) RIII–E, (d) RI–L, (e) RII–L, (f) RIII–L, (g) RII–M, (h) RIII–M, (i) RIV–M, (j) RV–M, (k) RVI–M.
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curve for day 2 lead time forecast was slightly higher than that for

day 1. The ROC curves for 3- and 7-day cumulative precipitation

forecasts were slightly higher than daily precipitation forecasts for

day 3 and day 7 lead time in RI, but lower than daily precipitation

forecasts for day 3 and day 6 lead time in RII and RIII. ROC curves

for 5-day cumulative precipitation forecasts were higher than daily
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precipitation forecasts for day 4 lead time in RI, but lower than daily

precipitation forecasts for day 4 and day 5 lead times in RII and

RIII, respectively.

For late rice, the ROC curves for daily forecasts for day 1 lead

time are at the upper left. The best performance of daily forecasts is

at day 1. The ROC curve for 3-day cumulative precipitation forecast
FIGURE 5

TThe multi-year average FAR of daily precipitation forecast with 7 days lead time for each rice type in each rice cropping region. (a) RI–E, (b) RII–E,
(c) RIII–E, (d) RI–L, (e) RII–L, (f) RIII–L, (g) RII–M, (h) RIII–M, (i) RIV–M, (j) RV–M, (k) RVI–M.
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is second only to day 2 in RI, and smaller than day 3 in RII and RIII.

The ROC curve for the 5-day cumulative precipitation forecast is

also the best in RI, second only to day 3. It is smaller than day 4 and

day 6 in RII and RIII, respectively. The ROC curves for 7-day

cumulative precipitation forecasts were all between the ROC curves

for day 6 and day 7.
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For middle rice, the ROC curve for the forecast lead time of day

1 is at the upper left in RIII, while the rest of the region is best on

day 2. The ROC curves of the 3-day cumulative precipitation

forecasts are smaller than those of day 3. The ROC curves of the

5-day cumulative precipitation forecasts are in between the ROC

curves of day 4 and day 5 except for a little less than that of day 5 in
FIGURE 6

The multi-year average MAR of daily precipitation forecast with 7 days lead time for each rice type in each rice cropping region. (a) RI–E, (b) RII–E,
(c) RIII–E, (d) RI–L, (e) RII–L, (f) RIII–L, (g) RII–M, (h) RIII–M, (i) RIV–M, (j) RV–M, (k) RVI–M.
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RIII. ROC curves for the 7-day cumulative precipitation forecast are

higher than these for day 6 in RIV and RV, while the rest of the

regions are between the ROC curves of day 6 and day 7.

Overall, the ROC curves for day 1 or day 2 are significantly higher

than the others, indicating that the AUC values for day 1 or day 2 are

higher and the accuracy of the precipitation forecasts is higher. Day 7

has the lowest ROC curve, and the accuracy of the forecasts for day 7 is
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lower. The AUC value of the 3-day cumulative precipitation forecast is

slightly lower than that of the daily precipitation forecast with day 3

lead time. The AUC value for the 5-day cumulative precipitation

forecast is slightly smaller than the daily precipitation forecast with

day 4 lead time but larger than the daily precipitation forecast with day

5 lead time. The cumulative precipitation forecastAUC value for 7 days

is slightly smaller than the daily precipitation forecast with day 6 lead
FIGURE 7

ROC curves for daily and cumulative precipitation forecasts in each region with each rice type. (a) RI–E, (b) RII–E, (c) RIII–E, (d) RI–L, (e) RII–L,
(f) RIII–L, (g) RII–M, (h) RIII–M, (i) RIV–M, (j) RV–M, (k) RVI–M.
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time but larger than the daily precipitation forecast with day 7

lead time.

The AUC of ROC curves for m-day cumulative precipitation

forecasts are mostly larger than those for day m daily precipitation

forecasts. This indicates that the cumulative errors of the

precipitation grade forecast relative to the daily precipitation

forecasts do not lead to a significant degradation of the

precipitation rating performance. ROC curves are always above

the diagonal line, and the AUC values are all >0.5, which indicates

that the TPRs are greater than the FPRs, and they still have positive

forecast value. The cumulative precipitation forecasts can provide

better support when cumulative precipitation is used. The ROC

curve for cumulative precipitation forecasts does not show more

advantages because it ignores a part of the precipitation included in

the forecast when the observed and forecast precipitation levels

are different.

The PACs for the different precipitation forecasts in each rice

cropping region are shown in Figure 8. The PAC of the cumulative

precipitation forecasts is significantly improved compared to the 1-

day daily precipitation forecasts. The average PAC of 1-day

precipitation forecasts and 3-, 5-, and 7-day cumulative

precipitation forecasts are 46.36%, 62.80%, 65.03%, and 66.59%,

respectively. The 3-, 5-, and 7-day cumulative precipitation

forecasts are, on average, 16.43%, 18.66%, and 20.22% more

accurate than the 1-day forecasts. In most of the regions, the

longer is the cumulative forecast days, the higher is the

proportion of precipitation accurately predicted. The 7-day

cumulative precipitation forecast of RIII-L has the highest

accuracy of 77.84%. The 7-day cumulative precipitation forecast

of RIV-M has the highest improvement over the 1-day forecast,
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with an improvement of 21.53%. Although RIII does not forecast

precipitation grades very well, its PAC is higher than that of

other regions.

The results show that the PAC increased with the expansion of

time scales. This suggests that public weather forecasts may be more

accurate for cumulative precipitation than for daily precipitation.

The longer the cumulative time, the higher the tolerance to

precipitation forecast errors and the higher the accuracy of

precipitation amount forecasts. Meteorological conditions change

rapidly, and daily precipitation forecasts are susceptible to sudden

weather events and may be less accurate. Cumulative precipitation

forecasts include rainfall over multiple days or even longer time

periods, which might be useful for medium- and long-term

planning and decision-making and are more suitable for farmland

irrigation. Due to the persistence of rainfall, a single rainfall event

may span over two or even more days and the generally shorter time

error of rainfall forecasts (Meynecke et al., 2006; Fraga et al., 2019).

The cumulative precipitation forecast, which groups rainfall over

multiple days instead of providing daily totals, is more forgiving of

rain events that spread across several days and allows for better

handling of timing errors in rainfall predictions. It is better than

daily precipitation forecast for precipitation amount.
3.3 Effect of cumulative precipitation
forecast on rice irrigation scheduling

Figure 9 shows the PUE of each irrigation scheduling without

the rainfall forecast and with different precipitation forecasts for

each rice cropping region. The 1-precipitation forecasts and 3-, 5-,
FIGURE 8

PAC for daily and cumulative precipitation forecasts in each region with each rice type.
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and 7-day cumulative precipitation forecasts led to an increase in

PUE in comparison to the conventional irrigation scheduling

without precipitation forecast. The average PUE obtained for the

four forecasts is equal to 0.577, 0.590, 0.598, and 0.603, respectively.

They were improved by 3.16%, 5.50%, 6.97%, and 7.79%,

respectively. The irrigation scheduling based on the cumulative

precipitation forecast allowed improving the efficiency utilization

when compared to the daily precipitation forecast, with the 7-day
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cumulative precipitation forecast being the most effective and the 5-

day cumulative precipitation forecast the second most performing.

By making the full use of forecast information, the precipitation

allows filling the gaps of the future knowledge of rice water demand

and therefore effectively reduces the amount of irrigation. The

observed precipitation was also fully utilized to potentially

guarantee the store of rainwater for the future and to reduce the

amount of drainage. PUE of RIII-L was the largest, with an average
FIGURE 9

Average PUE for each irrigation scheduling with none forecast or precipitation forecasts with different lead times in each rice cropping region.
FIGURE 10

Effect of irrigation scheduling with different precipitation forecasts on (a) irrigation water, (b) drainage water, (c) number of irrigation action and (d)
number of drainage action in each rice cropping region.
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value of 0.712, followed by RIII-M and RVI-M. PUE of RI-E was the

smallest, with an average value of only 0.450. This is in line with the

results from Section 3.2, where the greater the PAC, the larger

the PUE.

Figure 10 shows the effect of using daily precipitation forecasts

and cumulative precipitation forecasts on irrigation scheduling. All

the irrigation scheduling based on precipitation forecasts have the

effect of reducing irrigation and drainage water compared with the

conventional irrigation scheduling. The reduction rates of irrigation

under 1-day daily precipitation forecasts and cumulative

precipitation forecasts of 3, 5, and 7 days were 3.33%, 6.25%,

8.06%, and 9.68%, respectively. The rates of decrease in the

drainage were 3.56%, 6.95%, 9.44% and 10.50%. Consideration of

future precipitation can effectively reduce the amount of water for

irrigation and drainage. The longer the cumulative time of

precipitation forecast, the more obvious the water saving effect.

Most of all rice types of RI to RIV had the highest reduction in

irrigation water and the best water saving effect for the 7-day

cumulative precipitation forecast. RV-M had the highest

reduction in irrigation for 5-day cumulative forecast. RVI-M

had a similar effect for 5 and 7 days, both of which were very

good. The irrigation saving rate based on 1-day precipitation

forecasts varied little, mostly approximately 2.22%–4.67%, except

for RVI-M, which was the smallest at 0.55%. As the cumulative

number of days of precipitation forecast increased, the irrigation

reduction gradually increased. The highest irrigation reduction rate

and best water saving was achieved using 7-day cumulative

precipitation forecasts. No matter which rainfall forecast was

used for irrigation scheduling, R-E had the best effect and

the highest water saving rate, with 20.81% irrigation reduction

with 7-day cumulative precipitation forecasts. RVI-M had the

worst performance.

The effect of using a cumulative precipitation forecast on

drainage reduction was basically the same for each rice type in
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each region, with the maximum value approximately 12% for each

rice type in each region. RII-E, RIII-L, and RVI-M had the highest

drainage reduction in using 5-day cumulative precipitation forecast,

while all other rice types had the highest drainage reduction with 7-

day cumulative rainfall forecast. The highest reduction in drainage

was observed in all the other rice. The 5-day cumulative

precipitation forecast was the most effective forecast in reducing

drainage for RIII-L, where it was able to reduce drainage by 12.79%.

The smallest reduction was observed for RVI-M.

Each of the irrigation scheduling based on precipitation

forecasts had the effect of reducing the number of irrigation and

drainage actions during the rice growth period. The use of the

cumulative precipitation forecast was more significant for reducing

the number of drainage actions, more than reducing the volume of

water. For RIV-M, it was able to reduce up to 29.71% with 7-day

cumulative precipitation forecasts. The highest percentage

reduction in the number of irrigation actions was observed in RI-

E, which was reduced by 25.80% with 7-day cumulative

precipitation forecasts. For most of the regions and rice type, the

longer the cumulative days, the more the reduction in the number

of irrigation and drainage actions. RVI-M had the weakest effect in

reducing the number of both irrigation and drainage actions. Multi-

day cumulative precipitation forecasts could be effective for

improving the match between rainfall and irrigation demand.

Irrigation scheduling informed by cumulative precipitation

forecasts exerted a negligible effect on crop yield, with all yield

differences remaining below 0.01% (Figure 11). The use of 7-day

cumulative precipitation forecast would have the greatest impact on

yield. It was greatest in RVI, reducing yield by 0.006%. A timely

correction of the irrigation management process is possible because

the irrigation can be performed daily, with no restrictions on the

number or frequency of irrigation actions.

Errors in cumulative precipitation forecasts do not greatly affect

crop yield, but they do reduce the flexibility to minimize the number
FIGURE 11

Effect of irrigation scheduling with different precipitation forecasts on rice yield in each rice cropping region.
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of irrigation and drainage operations. The cumulative precipitation

forecast, because of greater uncertainty, leads to a greater number of

days in which the moisture condition of the paddy field exceeds the

optimal upper and lower limits and also has a greater impact on

yield relative to the daily precipitation forecast.

The correlation coefficients between PAC and irrigation

variables (Table 5) show that PAC is negatively correlated with

irrigation variables in most of the cases. The higher the PAC of

precipitation forecast, the lesser the irrigation water volume,

drainage water volume, number of irrigation action, and drainage

action. These findings suggest that improved forecast can enhance

water-saving outcomes in irrigation management.
4 Discussion

This study investigated the spatio-temporal variations in the

accuracy of public precipitation forecasts and the effect of public

precipitation forecasts on paddy field irrigation in China. The

validity of cumulative precipitation forecasts and their impact on

rice irrigation scheduling were discussed.

Although earlier studies have explored the accuracy of public

weather forecasts in China at some stations, they have not clarified

their regional differences and temporal variations (Yang et al., 2016;

Liu et al., 2020; Chen et al., 2021). This study fills this specific gap.

Between 2012 and 2020, precipitation forecasts accuracy remained

relatively stable, exhibiting minimal variation over the period. The

quality of forecasts deteriorates as the lead time increases. There are

some regional differences in the accuracy of precipitation grade

forecasts, which is poorer in highlands and coastal areas.

Previous studies have mostly focused on evaluating the forecast

accuracy of precipitation grades forecasts (Cao et al., 2019; Chen

et al., 2023), while ignoring the accuracy of precipitation amount

forecasts. The results of this work demonstrate that a poor forecast
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of precipitation grade may also result in an accurate forecast of

precipitation amount. Figure 8 shows that cumulative precipitation

forecasts are better than daily forecasts for precipitation.

Cumulative precipitation forecasts offer greater tolerance for

timing discrepancies. The discrepancy could be reduced if the

precipitation grade is converted to a forecast of precipitation

amount. Part of the reason is that when the precipitation grade

forecast is incorrect, such as predicting moderate rain as heavy rain,

the forecasted precipitation still includes a portion of the actual

precipitation. When a rainfall forecast has only a short timing error,

such as 1 day difference, cumulative precipitation forecasts may still

consider it an accurate prediction.

Precipitation amount forecast is the key to directly affect the

amount and timing of irrigation. Cao et al. (2019) proposed a new

method for irrigation decision-making focused on the total rainfall in

consecutive 3 days. Pirone et al. (2023) used both temporal and

spatial information to propose a fast and convenient approach to

short-term precipitation prediction based on machine learning. Liu

et al. (2023) evaluated the daily precipitation forecasts with lead times

ranging from 1 to 30 days and the cumulative precipitation forecasts

over 1–30 days in nine major river basins in China. Changes in

precipitation forecasts capability at different time scales reveal the

potential value of cumulative precipitation forecasts. It makes better

use of future precipitation and reduces the amount of irrigation and

drainage water and the number of irrigation and drainage actions,

resulting in better rainfall utilization. For example, the 7-day

cumulative precipitation forecast reduces the amount of irrigation

water by 20.81%, the amount of drainage water by 11.65%, the

number of irrigation actions by 25.8%, and the number of drainage

actions by 23.35% in RI-E.

The errors in the precipitation forecasts are impacting the

irrigation strategies (Zimit et al., 2023; Bista et al., 2024). In

addition to improving precipitation forecasts (Senocak et al.,

2023), better irrigation decisions may be possible by considering
TABLE 5 Correlation coefficients between PAC and irrigation variables.

Rice cropping region and
rice type

Irrigation
water volume

Drainage
water volume

Number of
irrigation action

Number of
drainage action

RI-E −0.179** 0.075 −0.188** 0.153**

RI-L −0.077 −0.147** −0.052 −0.107**

RII-E −0.118** 0.019 −0.127** 0.004

RII-M −0.092** −0.032 −0.099** −0.064**

RII-L −0.055* 0.004 −0.065** −0.023

RIII-E 0.335** −0.450** 0.325** −0.371**

RIII-M 0.223** −0.383** 0.140** −0.225**

RIII-L −0.075 −0.157** −0.043 −0.031

RIV-M −0.373** −0.131** −0.262** −0.024

RV-M −0.290** −0.157** −0.062 −0.223**

RVI-M −0.406** −0.268** −0.288** −0.204**
*p<0.05; **p<0.01.
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their error variability characteristics or combining them with crop

growth (Schepen et al., 2024). Differences in the water saving

efficiency of different rice types in the same rice cropping region

can be attributed to the greater uncertainty in the distribution of

rainfall during the rice growth period (Cao et al., 2019). The

performance of cumulative precipitation forecasts also varies

across regions, which can be attributed to the effect of spatial

differences in the quality of precipitation forecasts. Combining

weather forecasts with crop growth models has become a valuable

method for irrigation decision to improve crop irrigation water use

in agriculture (Kirthiga et al., 2024). How to develop flexible

irrigation strategies based on spatial differences in public

precipitation forecasts and combined with crop growth models is

the next research objective.
5 Conclusions

This study analyzes the spatio-temporal variations in the

accuracy of precipitation forecasts from public weather forecasts

in China, comparing the predictive effects of daily precipitation

forecasts and cumulative precipitation forecasts with different rice

types over six rice cropping regions, and exploring the effects of

daily precipitation forecasts and cumulative precipitation forecasts

on paddy field irrigation. The results provide a clearer

understanding of the spatio-temporal variations of precipitation

forecasts in public weather forecasts in China and the relationship

between them and paddy field irrigation, which supports the

improvement of the efficiency of irrigation management. The

main findings are as follows.

The accuracy of the daily precipitation forecast decreases with

the increase in the forecast’s lead time. Day 1 precipitation forecast

had the highest PC of 0.754 at RVI. Only the day 1 forecast PC

showed a generally increasing trend in most regions over the years.

The overall forecasts are best for NR, better for LR and HS, and

better for ST. MR is most likely to be false alarmed, and HR is most

likely to be missing alarmed. RVI is best for daily precipitation

grade forecast, and RI and RIII are the worst.

Cumulative precipitation forecasts do not show any decrease in

the forecast of precipitation grades relative to the daily forecasts.

ROC curves were kept at a good level. The cumulative precipitation

forecasts of 3, 5, and 7 days have improved the PAC of precipitation

forecasts by 16.43%, 18.66%, and 20.22%, respectively, regarding the

precipitation forecasts of 1 day. The PAC of 7-day cumulative

precipitation forecasts in RIII-L is the largest, reaching 0.778. It

provides qualified precipitation information when using multi-day

cumulative precipitation forecast.

Cumulative precipitation forecasts had a positive effect on

irrigation scheduling in all rice cropping regions. As the

cumulative days of precipitation forecast increases, the PUE of

irrigation scheduling becomes greater. The average values of PUE of

daily precipitation forecasts with 1 day lead time and cumulative

precipitation forecasts with 3, 5, and 7 days lead time are 0.58, 0.59,

0.60, and 0.60, respectively. It is also significantly helpful in
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reducing irrigation water, drainage water, the number of

irrigation, and drainage actions. The amount of irrigation and

number of irrigation actions were reduced the most in RI-E. The

7-day cumulative precipitation forecast reduced the irrigation water

by 20.81% and the number of irrigations by 25.80%. The reduction

in drainage water and number of drainage actions was similar in

each region, with the 7-day cumulative precipitation forecast

reducing the drainage by 10.50% and the number of drainage

actions by 23.07% on average. There was no significant impact

on yield.
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