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Soybean looper (SBL), Chrysodeixis includens (Walker) (Lepidoptera: Noctuidae:

Plusiinae), a major pest native to the Americas, poses considerable management

challenges. Sex pheromone trapping in IPM programs represents a tool to detect

initial infestations and promote timely management decisions. However,

commercial formulations of sex pheromone for SBL are non-specific, leading

to the cross-attraction of morphologically similar plusiines, such as cabbage

looper (CBL), Trichoplusia ni (Hübner), and gray looper moth (GLM), Rachiplusia

ou (Guenée). Current identification methods of plusiine adults are laborious,

expensive, and thus inefficient for rapid detection of pests like SBL. This study

explores the use of deep learning models and visualization techniques to explain

the learned features from forewing patterns as an identification tool for SBL and

differentiation from morphologically similar plusiines. A total of 3,788 unique

wing images were captured from specimens collected from field and laboratory

populations with validated species identification. Five deep learning models were

trained on lab-reared specimens with high-quality wing patterns and evaluated

for model generalization using field-collected specimens for three classification

tasks: classification of SBL and CBL; male and female SBL and CBL; and SBL, CBL,

and GLM. Our results demonstrate that deep learning models and the

visualization methods are effective tools for identifying plusiine pests, like SBL

and CBL, whose wing patterns are difficult to distinguish by the naked human

eye. This study introduces a novel application of existing deep learning models

and techniques for quickly identifying plusiine pests, with potential uses for pest

monitoring programs targeting economic plusiine pests beyond SBL.
KEYWORDS

soybean looper, convolutional neural network, computer vision, pest detection, image
classification, pheromone trapping
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1 Introduction

Soybean looper (SBL), Chrysodeixis includens (Walker)

(Lepidoptera: Noctuidae: Plusiinae), is a polyphagous economic

pest that is widely distributed across its native range of the Americas

(Mitchell et al., 1975; Eichlin and Cunningham, 1978). The larvae of

SBL feed on over 170 plants from 39 families, including crops such

as the common bean, sunflower, tomato, cotton, and peanut (Specht

et al., 2015). It is also a major soybean pest (Bortolotto et al., 2015;

Huseth et al., 2021; Debnath et al., 2024). In 2023, the total crop

losses and management costs of foliar insecticide applications for

managing SBL in soybean-producing U.S. states were valued at

nearly US$84.0 million, where southern states represented 97% of

the economic impact of this pest in soybean production (Musser

et al., 2024). Reports of insecticide resistance in SBL populations

represent an additional challenge for the management of this pest in

the U.S., leading to a growing concern for the continued economic

impact of SBL in cultivated systems, especially in soybean (Reisig,

2015; Catchot et al., 2016). Field sampling techniques, such as beat

sheet knockdown and sweep netting, are some of the standard

methods for infestation estimation of larval defoliators (Pedigo and

Rice, 2014), and according to Huseth et al. (2021), management

decisions for SBL have been primarily based on defoliation

estimation. However, the challenges related to SBL management

are due to the larval feeding behavior of initial instars, which is

mainly concentrated on the lower canopy of soybeans (Carter and

Gillett-Kaufman, 2018). The larval infestation detection is difficult

until the later 4–6 instars when 97% of economic damage occurs

(Reid and Greene, 1973; Boldt et al., 1975). Curative chemical

control is recognized as a challenge for this pest because of lower

susceptibility to insecticides in late instars, compromising the

efficacy of insecticide applications. In this way, detecting initial

infestations of SBL is critical for timing management decisions in

IPM programs.

Due to the limitations of larval and defoliation estimations as

tools for SBL monitoring, sex pheromone trapping is used to detect

adult moths and, consequently, egg and initial larval instars to

promote efficient adoption of management measures. In general,

traps baited with commercial formulations of sex pheromones have

been successfully applied for detection and population monitoring

of several pests with the advantages of being inexpensive, reliable,

and less labor-intensive (Witzgall et al., 2010). Using flight

phenology information combined with moth trapping of target

species, sex pheromone trapping represents a proactive IPM

approach by triggering timely field sampling and consequent

adoption of management decisions before economic damage

levels are reached by the pest (Pedigo and Buntin, 1994).

However, the commercial formulations of sex pheromone for SBL

and other pests of the Plusiinae subfamily are non-specific, resulting

in cross-attraction of morphologically similar species (Jones and

Duckworth, 2017; Shaw et al., 2021). An inventory performed by

Shaw et al. (2021) listed four plusiines cross-attracted in SBL

monitoring programs, including Ctenoplusia oxygramma (Geyer);

Trichoplusia ni (Hübner), cabbage looper (CBL); Rachiplusia ou

(Guenée), gray looper moth (GLM); and Argyrogramma verruca
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(Fabricius). Of the four plusiines, C. oxygramma was the primary

crossed-attracted species in SBL sex pheromone trapping. However,

moths of this species can be easily distinguished from the others

based on distinct forewing patterns using the naked eye (Lafontaine

and Poole, 1991). Most CBL, GLM, and A. verruca represented less

than one percent of the cross-attracted moths (Shaw et al., 2021).

However, these plusiines overlap in the flight phenology with SBL,

especially with CBL and GLM, which are also ranked as secondary

pests in soybean and peanut (Sutherland and Greene, 1984; Allen

et al., 2021; Huseth et al., 2021). Cross-attracted CBL and GLM in

trapping programs for SBL can compromise timely detection and

appropriate insecticide selection to control SBL, considering the

growing reports of insecticide resistance in SBL (Reisig, 2015;

Catchot et al., 2016).

Most plusiine moths are generic in appearance, with small gray

or brown-colored bodies and a characteristic metallic stigma on the

forewing with intra- and interspecific variation (Eichlin and

Cunningham, 1978). Using wing patterns for species

identification is challenging due to the subjectivity of interpreting

descriptions. Shaw et al. (2021) indicated that the native plusiines

from the U.S. cross-attracted to SBL commercial sex pheromone

lures are described with ambiguous terminology, abstract characters

that appear similar, and highly variable characters, based on

descriptions in Lafontaine and Poole (1991). For example, the

adults of CBL and GLM are ambiguously described as possessing

a “grizzled appearance” by Lafontaine and Poole (1991). The quality

of a given specimen and the lighting conditions also influence the

presence and integrity of the wing pattern characters required to

identify a moth. While alternative identification methods, primarily

male genitalia dissections (Eichlin and Cunningham, 1978; Shaw

et al., 2021) and DNA analyses (Zink et al., 2023; Gotardi et al.,

2024), have been developed to address these challenges, they are

costly and time-consuming for rapid management decision-making

and forecasting initial infestations of plusiines. Advances in species

identification in this group were recently proposed based on

geometric morphometric analysis (Smith-Pardo et al., 2025). The

wing shapes of the native SBL, invasive Chrysodeixis chalcites

(Esper), and potentially other plusiines were distinct using

geometric morphometrics for species identification of plusiine

pests. However, even though this method represents an

alternative for the detection of the invasive C. chalcites in survey

programs, it is still time-consuming and inappropriate as a pest

monitoring tool in IPM programs.

Recent advancements in computer vision and deep learning

methods offer novel capabilities to automate rapid insect

identification using images of external morphology (Wäldchen

and Mäder, 2018). Convolutional neural networks (CNNs) are

particularly powerful tools for image classification and object

detection tasks and have demonstrated success in wing-based

insect identification at the species level while producing

inferences in only a few milliseconds (Chang et al., 2017; Nolte

et al., 2024; Spiesman et al., 2024). Because CNNs are designed to

process structured grid-like data, they can effectively analyze

complex visual features from images, providing taxonomist-level

accuracy in distinguishing morphologically similar species (Valan
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et al., 2019). They have the potential to establish automated

identification systems that allow taxonomists to spend their time

on conceptually difficult problems beyond simple routine

identification (MacLeod et al., 2010; Valan et al., 2019). In this

study, we explore the application of CNNs to recognize and

distinguish magnified images of the wing patterns of

morphologically similar plusiine pests, focusing particularly on

identifying the economic pest SBL. Five image classification CNN

models, including ResNet50, ShuffleNetv2, MobileNetv3,

EfficientNetv2-B0, and YOLOv8s-cls, were trained and evaluated

on three different fine-grained image classification tasks (hereafter

referred to as classification experiments): the two-species

classification of SBL and CBL, the species-sex classification of

male and female SBL and CBL, and the three-species

classification of SBL, CBL, and GLM. Moreover, the t-SNE

algorithm (Maaten and Hinton, 2008) was utilized in this study

to visualize the class separability of a model, and the explainable AI

technique, GradCAM (Selvaraju et al., 2017), was employed to

understand how a model achieves the predictions and identify

potential biases. The goal of this study is to provide a foundation

for future automated plusiine identification and increase the

applicability of pheromone trapping for rapid SBL detection in

IPM programs.
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2 Materials and methods

2.1 Forewing image datasets

A total of 3,788 unique forewing images from 2,082 specimens

of SBL, CBL, and GLM were captured in this study. Both left and

right forewings of each specimen were used when possible. For

specimens where one wing was considerably damaged, only the

wing with higher quality was used in the dataset. As a result, not all

specimens contributed two forewing images to the datasets. The

specimens were derived from field collections and laboratory

colonies, and the wing images were divided into three datasets

based on specimen quality and source (Table 1; Figure 1).

The “lab” dataset comprised 1,026 CBL and 2,343 SBL wing

images. The specimens were sourced from Benzon Research Inc.

(Carlisle, PA, USA) and reared in the Entomology Lab at the West

Florida Research and Education Center (WFREC), University of

Florida, Jay, FL. The adult specimens were transferred to a -80°C

freezer within one to two days of emergence to preserve the integrity

of the wing scales.

The “field” dataset included 262 SBL and 112 GLM wing images

of field- and trap-collected specimens from traps baited with sex

pheromone lures of SBL in four commercial fields in Escambia and
TABLE 1 Number of unique forewing images of Chrysodeixis includens (SBL) and Trichoplusia ni (CBL) by sex in each dataset.

Dataset SBL CBL GLM

Male Female Male Female Male Female

Lab 1163 1180 474 552 0 0

Field 202 60 0 0 104 8

Noise 17 0 6 0 22 0
FIGURE 1

Forewing images of male (-M) and female (-F) Chrysodeixis includens (SBL), Trichoplusia ni (CBL), and Rachiplusia ou (GLM) from the lab dataset (A),
field dataset (B), and noise dataset (C), indicating the intraspecific variation in wing patterns and the influence of lighting conditions on wing pattern
appearances.
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Santa Rosa counties, FL, between 2017 and 2024 and specimens

collected from 15 bucket traps and three Trécé delta traps (Trécé

Inc Pherocon VI trap, Adair, OK). In addition, SBL and CBL moths

cross-attracted in 25 traps lured for the invasive C. chalcites and 25

traps lured with Autographa gamma (Linnaeus) in the USDA/

APHIS survey program were included. The traps were distanced at

least 100m apart along the edges of various crop fields. Soybean

looper larvae and pupae were collected from soybean fields using

drop cloth sampling and reared individually in the Entomology Lab,

WFREC/UF. All specimens recovered from the field and traps were

initially screened and identified as belonging to the Plusiinae

subfamily. Specimens of C. oxygramma, cross-attracted during the

trapping, were separated based on the distinct wing pattern using

the naked eye (Shaw et al., 2021). Molecular species identification of

the remaining plusiine specimens was performed at the Pest

Identification Technology Laboratory (PITL), USDA/APHIS, Fort

Collins, CO. First, real-time PCR using the methods described in

Zink et al. (2023) was carried out to separate SBL. Next, the

specimens that were not confirmed to be SBL by real-time PCR

underwent cytochrome c oxidase 1 (CO1) barcoding (Madden et al.,

2019) using primers LepF1 and Lep R1 (Hebert et al., 2004). Sanger

sequencing was performed at Azenta (Azenta US, Inc., South

Plainfield, New Jersey, USA) using an Applied Biosystems

3730XL DNA sequencer and at PITL using an Applied

Biosystems SegStudio Genetic Analyzer.

The “noise” dataset consisted of 17 SBL, 6 CBL, and 22 GLM

wing images from a collection of plusiines validated by male

genitalia dissection in the Entomology Lab, WFREC/UF.

Additionally, two specimens of CBL in the noise dataset were

collected from Trécé delta trapping in 2019 at the Entomology

Laboratory, WFREC/UF.

For all specimens in the lab and field datasets, the right, left, or

both forewings were removed, and the sex was recorded. The

forewings of each specimen were prepared on a microscope slide

with a clean piece of clear packing tape (Office Depot LLC, Boca

Raton, FL) to secure and flatten the wings. Unlike the specimens in

the lab and field datasets, the wings of the pinned specimens from

the noise dataset were not removed. The pinned specimens were

mounted on a piece of Styrofoam for stability. The resulting images
Frontiers in Agronomy 04
included additional “noisy” features, such as different background

colors, inconsistent lighting, blurriness (i.e., the whole wing not in

focus), and other insect parts (Figure 1C). The objective of the noise

dataset was to challenge the model by introducing irrelevant

information or obscuring features that could be important for the

model predictions. Each forewing was imaged individually using the

ZEISS Smartzoom 5 imaging system (Carl Zeiss Microscopy LLC,

White Plains, NY) in the Entomology Laboratory, WFREC/UF.

This system automatically and systemically applies a preset optimal

image condition for every image taken, allowing the standardization

and replication of subjects for imaging. Automatic image

adjustments included color saturation, noise filtering, sharpening,

brightness and contrast, and a Realtime High Dynamic Range

(HDR) filter. Preliminary trials indicated that a magnification of

54.4x was appropriate to obtain high-resolution patterns of the

wings while maintaining low data sizes for model training

(Figures 1, 2A). To prepare the images for the models, all images

were downsized to 640x640 pixels, and a white padding was

applied (Figure 2B).
2.2 Classification experiments

Three experiments were performed using different classes and

images from the lab, field, and noise datasets. The first experiment

compared the two-species classification of SBL and CBL (2 classes),

the second compared the species-sex classification of male and

female SBL and CBL (4 classes), and the third compared the three-

species classification of SBL, CBL, and GLM (3 classes). Images of

GLM wings from the field and noise datasets were used only for the

three-species classification experiment because of the low number

of GLM images (n=134) relative to SBL (n=2,622) and CBL

(n=1,032). This experiment was inherently imbalanced due to a

low number of GLM images, and augmentation methods were not

used to increase the number of images. For the three-species

classification experiment, the images in the lab dataset were used

for model training and validation, and the field and noise datasets

were used as testing sets for model generalization. In the two-

species and species-sex classification, all images in the lab dataset
FIGURE 2

Original forewing images taken with the Smartzoom 5 imaging system (A) and resized images used for the models (B).
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were mixed and then randomly divided into training, validation,

and testing subsets by a ratio of 7:2:1 for each class (Table 2). The

field and noise datasets were used as testing sets for model

generalization. In the three-species classification experiment, the

lab dataset was combined with GLM specimens from the field

dataset, mixed, and randomly divided into training, validation, and

testing subsets by a ratio of 7:2:1 for each class (Table 2). The noise

dataset was used to test the model performance and generalization.

The three classification experiments were performed using the

five models described below. For each experiment, the model with

the best performance from the testing subset of the lab dataset was

used to further evaluate model generalization.
2.3 Deep learning models

Five deep learning models designed for image classification

tasks were chosen for this study: ResNet50, MobileNetv3,

ShuffleNetv2, EfficientNetv2-B0, and YOLOv8s-cls. Each model

differs in architectural design, optimization techniques, and target

applications. ResNet (He et al., 2016), short for Residual Network, is

a deep learning-based classification model that uses residual blocks

with skip connections to address the problem of vanishing

gradients. ResNet50, a ResNet model with 50 layers, was selected

for this study. MobileNet (Howard et al., 2017) is a lightweight

CNN that was designed to reduce the size and complexity of the

neural network for real-time applications. MobileNetv3 (Howard

et al., 2019) was selected because it further refines the MobileNet

architecture using a combination of neural architecture search and

squeeze-and-excitation modules. ShuffleNet (Zhang et al., 2018) is

another lightweight CNN designed for devices with limited

computational resources that uses grouped convolutions and

channel shuffling techniques. ShuffleNetv2 (Ma et al., 2018) was

selected as it further simplifies and enhances the ShuffleNet
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architecture. EfficientNet (Tan and Le, 2019) is a CNN that

combines neural architecture search and compound scaling to

achieve high accuracy while maintaining efficiency. The baseline

model EfficientNetv2-B0 (Tan and Le, 2021) was selected for this

study. YOLOv8-cls (Jocher et al., 2023) is an architecture of the

YOLOv8 family specifically designed for image classification tasks.

The YOLOv8 framework is well-known for its balance between

speed and accuracy due to its modern advancements such as C2f

blocks, scalable architecture, and flexible deployments. The small

version of YOLOv8-cls, YOLOv8s-cls, was selected for this study.
2.4 Implementation details

All models were trained in the University of Florida

supercomputer, HiPerGator 3.0, a high-performance computing

cluster, Gainesville, FL. The node was equipped with 8 AMD EPYC

ROME CPU cores, one NVIDIA DGX A100 GPU node (80GB),

and 32 GB of memory. The operating system was Linux, with

software libraries including CUDA 11.7, PyTorch, and Python 3.10

with OpenCV 4.7.0 library. ResNet50, MobileNetv3, ShuffleNetv2,

and EfficientNetv2-B0 were implemented using the mmpretrain

package, and YOLOv8s-cls was implemented using the

Ultralytics package.

Transfer learning, a strategy that leverages the previously

learned knowledge gained from a pretrained model usually

trained on a larger dataset, was used to reduce the training time

and improve performance. The weights were pretrained on the

ImageNet dataset that contains 1000 classes and loaded before the

model training. Each model was then finetuned on the established

forewing datasets. All the models were trained for 100 epochs, and

the best model was selected if the weights performed the best on the

validation dataset during training. The input image resolution was

640x640 pixels. The optimizer used for ResNet50, MobileNetv3,
TABLE 2 Number of wing images from the lab dataset used for model training based on a random split by each species class of Chrysodeixis
includens (SBL), Trichiplusia ni (CBL), and Rachiplusia ou (GLM) and species-sex class of male (-M) and female (-F) specimens.

Class Training images Validation images Testing images Total images

Two-species classification

CBL 718 205 103 1026

SBL 1640 468 235 2343

Species-sex classification

CBLM 331 95 48 474

CBLF 386 110 56 552

SBLM 814 232 117 1163

SBLF 826 236 118 1180

Three-species classification

CBL 718 205 103 1026

GLM* 78 22 12 112

SBL 1640 468 235 2343
*Specimens of GLM from the field dataset were combined with SBL and CBL specimens from the lab dataset for training purposes.
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ShuffleNetv2 and EfficientNetv2-B0 was SGD (stochastic gradient

descent). The initial learning rate was 0.1, and the momentum was

0.9. For YOLOv8s-cls, the optimizer was automatically determined

as AdamW with a learning rate of 0.000714 and momentum of 0.9.
2.5 Evaluation metrics

F1 score and Top-1 accuracy were employed as the metrics to

evaluate the model performance of the three wing classification

experiments. F1 score is the harmonic mean of precision and recall.

Precision is determined by the ratio of true positive predictions to

the total number of positive predictions. Recall is the ratio of true

positive detections to the number of ground truth instances. Top-1

accuracy measures the ratio of correct predictions to all predictions.

The calculations of the metrics were shown in Equations 1-4.

F1 =
2� P � R
P + R

(1)

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

Top − 1  Accuracy =
1
No

N

i=1
1(ŷ i = yi)   (4)

t-SNE (Maaten and Hinton, 2008) was utilized to visualize the

feature space of each model. It is an algorithm that can visualize high

dimensional data in a lower dimensional space, which makes it easier

to interpret and understand the clusters formed by different classes.

Furthermore, Gradient-weighted Class Activation Mapping, or

GradCAM, (Selvaraju et al., 2017) was employed to visualize the

feature map as a heatmap. It highlights the important regions in an

input image that the model focuses on to make its classification

decisions. Additionally, it can help understandwhich parts of an image

are important, providing insights into model behavior. Interpretations

of GradCAM feature maps were described and correlated with model

performance results for each classification experiment.
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3 Results

3.1 Model performance on two-species
classification

In the two-species classification experiment, the evaluation

results of five models on the testing subset of the lab dataset

showed that all five models achieved high performance and the

ability to distinguish CBL and SBL. Four models had an F1 score

and Top-1 accuracy of 100.00% (Tables 3, 4). ResNet50 had two

incorrect predictions with an F1 score and Top-1 accuracy over

99.03% (Tables 3, 4; Supplementary Figure S1A). The t-SNE

visualization of the embedding space of each model showed two

distinct clusters of species, consistent with the model performances

(Figure 3). A few specimens overlapped in the clusters of the

ResNet50 and ShuffleNetv2 models (Figures 3A, C).

On the generalization datasets, three of the five models

maintained high performances. The F1 scores and Top-1

accuracy of YOLOv8s-cls, EfficientNetv2-B0, and ShuffleNetv2

were lower than the results of the testing subset of the lab dataset,

but the performance was still relatively high with values over

72.73% (Tables 3, 4). Among the five models, YOLOv8s-cls had

the highest Top-1 accuracy of 98.85%, and MobileNetv3 had the

lowest Top-1 accuracy of 53.82%. Only three field specimens of SBL

were incorrectly predicted as CBL by YOLOv8s-cls (Supplementary

Figure S2E), while the other models had higher numbers of

incorrect predictions (Supplementary Figure S2). The model

performances on the noise dataset were relatively similar to the

field dataset (Table 3; Supplementary Figure S3). The YOLOv8s-cls

and ShuffleNetv2 models demonstrated the highest Top-1 accuracy

of 95.65% and the highest F1 scores between the two

classes (Table 4).

Feature maps of images from the testing subset of the lab

dataset were visualized for each model using GradCAM. The

visualizations showed that the features used to make predictions

varied by the model type (Figure 4). ResNet50, EfficientNetv2-B0,

and MobileNetv3 tended to use more global features across the

wing and appeared to consider the unique wing stigma in the

discal area for its predictions. ShuffleNetv2 and YOLOv8s-cls used

precise local features near the wing base, tornus, costa, and outer
TABLE 3 Top-1 accuracies (%) of each model for each classification experiment and testing dataset.

Top-1 accuracy (%)

Model Two-species classification Species-sex classification Three-species classification

Lab Field Noise Lab Field Noise Lab Field Noise

ResNet50 99.57 87.78 69.57 92.04 45.42 56.52 100.00 63.74 53.33

MobileNetv3 100.00 53.82 52.17 90.86 23.66 60.87 100.00 61.45 55.56

ShuffleNetv2 100.00 93.51 95.65 92.33 47.71 60.87 99.71 93.51 73.33

EfficientNetv2-B0 100.00 96.18 86.96 92.63 42.75 82.61 100.00 93.51 82.22

YOLOv8s-cls 100.00 98.85 95.65 93.51 57.25 69.57 100.00 52.67 68.89
Bold values represent the highest value(s) of Top-1 accuracy for each dataset in each classification experiment.
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margin for its predictions. The feature maps of MobileNetv3

showed highlighted regions on the background of the image,

indicating that image artifacts may have also influenced

model predictions.

Because the YOLOv8s-cls model had the highest performance on

both generalization datasets, only the feature maps of this model were

interpreted and described. The feature maps of correct SBL

predictions from the lab dataset show a variety of highlighted
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regions of the wing that may be related to visual color patterns

(Figure 5A). The tornus, costa, and inner margin were almost always

used by the model. The distal edge of the wing base was also

important for model predictions, which may be related to the basal

line on the wings of SBL. Of lesser importance, the submarginal area

was also highlighted in most feature maps. The model focused on

features that appear to outline the wing shape, and we hypothesize

that the model may be using wing shape to make predictions;
TABLE 4 F1 scores (%) for each model and class and its respective dataset and classification experiment.

F1 Score (%)

Dataset Class ResNet50 MobileNetv3 ShuffleNetv2
Efficient
Netv2-B0

YOLO
v8s-cls

Two-species classification

Lab CBL 99.03 100.00 100.00 100.00 100.00

SBL 99.57 100.00 100.00 100.00 100.00

Field CBL N/A N/A N/A N/A N/A

SBL 93.50 69.98 96.65 98.05 99.42

Noise CBL 53.33 52.17 92.31 72.73 90.91

SBL 77.42 52.17 96.97 91.43 97.14

Species-sex classification

Lab CBLF 82.14 80.00 84.11 84.91 84.00

CBLM 79.17 72.73 83.17 83.17 85.19

SBLF 97.10 97.07 96.23 96.64 97.50

SBLM 96.94 96.97 96.10 96.14 97.39

Field CBLF N/A N/A N/A N/A N/A

CBLM N/A N/A N/A N/A N/A

SBLF 11.32 9.62 11.32 16.22 20.44

SBLM 63.84 40.86 65.75 60.95 70.83

Noise CBLF N/A N/A N/A N/A N/A

CBLM 57.14 55.56 52.63 66.67 50.00

SBLF N/A N/A N/A N/A N/A

SBLM 69.23 69.23 69.23 91.43 90.32

Three-species classification

Lab CBL 100.00 100.00 99.51 100.00 100.00

GLM 100.00 100.00 100.00 100.00 100.00

SBL 100.00 100.00 99.79 100.00 100.00

Field CBL N/A N/A N/A N/A N/A

GLM N/A N/A N/A N/A N/A

SBL 77.86 76.12 96.65 96.65 69.00

Noise CBL 50.00 66.67 28.57 50.00 80.00

GLM 67.69 68.75 80.00 84.00 75.86

SBL N/A N/A 71.43 87.50 45.45
N/A values indicate no images available for model prediction or lack of true positive predictions.
The bold text visually separates the table data and indicates which experiment the F1 Scores belong to, including two-species, species-sex, and three-species classification.
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however, this interpretation cannot be verified without using another

technique like geometric morphometrics analysis.

When examining the feature maps of correct CBL predictions

from YOLOv8s-cls, the model primarily relies on the wing base and

outer wing margins. The basal area of CBL wings has a less

pronounced basal line that may be used by the model for

distinguishing species (Figure 5B). Additionally, CBL wings have

a short, black basal dash that is not present in SBL wings. The

highlighted features along the outer wing margins may correspond

to a discontinuous band of white scales that follow the contour of

the margin, as shown in Figure 5.

Incorrect predictions of SBL and CBL by the YOLOv8s-cls

model showed highlighted features that were not typically used for

correct predictions, including the image background (Figure 5C).

All four incorrect predictions were lower quality specimens than the

specimens used for training the models. It is possible that the model

was unable to locate relevant features for an accurate prediction due

to the loss of features in the lower quality specimens.
3.2 Model performance on species-sex
classification

The species-sex classification experiment indicated that all five

models achieved a Top-1 accuracy of over 90% on the testing subset
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of the lab dataset when classifying both species and sex of CBL and

SBL. Like the two-species classification results, YOLOv8s-cls

achieved the highest Top-1 accuracy of 93.51%, and MobileNetv3

had the lowest Top-1 accuracy of 90.86% (Table 3). The F1 scores

showed that the species-sex classification performance on SBL is

higher than that of CBL (Table 4; Figure 6). This result was

consistent with the t-SNE visualization, where male and female

CBL clusters were overlapping and less distinct than that of SBL

(Figure 7). The confusion matrices also demonstrated that all five

models can still distinguish both species, regardless of the sex

prediction; there was only one incorrect species prediction by

EfficientNetv2-B0 (Figure 6D).

The model generalization results on the field and noise

datasets showed considerably lower performances than the

results of the testing subset of the lab dataset (Table 3). On the

field dataset, YOLOv8s-cls outperformed the other four models

with the highest Top-1 accuracy of 57.25%. The YOLOv8s-cls

model had high accuracy for species prediction with only three

incorrect predictions of field-collected SBL. However, it had a

much lower accuracy for predicting sex, as the F1 score for female

SBL was 20.44% and 70.83% for male SBL (Figure 8E). The other

four models struggled to distinguish both species and sex

(Figure 8). Model performance on the noise dataset was higher

than the field dataset but still lower than the results of the testing

subset of the lab dataset (Tables 3, 4). EfficientNetv2-B0 reached
FIGURE 3

t-SNE visualization of the learned representation from the testing subset of the lab dataset for the two-species classification experiment, where the
two classes correspond to Chrysodeixis includens (SBL) and Trichoplusia ni (CBL). (A-E) represent embeddings learned from deep learning models of
ResNet50, MobileNetv3, ShuffleNetv2, EfficientNetv2-B0 and YOLOv8s-cls, respectively.
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the highest Top-1 accuracy of 82.61% on the noise dataset, and

ResNet50 had the lowest Top-1 accuracy of 56.52%

(Supplementary Figure S4). On both generalization datasets,

YOLOv8s-cls was the only model that retained a high accuracy

in distinguishing species, despite the results of the concurrent

sex prediction.
Frontiers in Agronomy 09
Because the EfficientNetv2-B0 and YOLOv8s-cls models had

the highest performance results on the species-sex classification, the

GradCAM feature maps from all testing datasets were examined.

The feature maps of the EfficientNetv2-B0 model predictions from

the testing subset of the lab dataset generally showed a strong

influence of image artifacts for all predictions, particularly in male
FIGURE 4

GradCAM visualization of the feature map of four different forewings of Trichoplusia ni (CBL) and Chrysodeixis includens (SBL). Each column uses a
different wing image with the corresponding feature map of each model. The heatmaps highlight the most influential features in warmer colors, with
red indicating the highest influence.
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and female CBL predictions (Figure 9A). Correct SBL predictions

were associated with more highlighted regions of the wing and less

image artifacts. From the field dataset, correct predictions of male

and female SBL showed the use of multiple regions of the wing,
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particularly along the inner margin towards the tornus and the basal

and submarginal areas (Figure 9B). Misclassifications were almost

always associated with the use of image artifacts highlighted on the

feature maps, where 79.33% of the incorrect predictions on the field
FIGURE 5

GradCAM visualization of the feature maps of six different forewings from YOLOv8s-cls model predictions in the two-species classification
experiment, including correct predictions of Chrysodeixis includens (SBL) (A) and Trichoplusia ni (CBL) (B) from the lab dataset and incorrect
predictions of SBL as CBL from the field dataset (C). The corresponding original image and specimen information (species and sex) are provided
underneath each feature map. Sex was not considered in this analysis. The heatmaps highlight the most influential features in warmer colors, with
red indicating the highest influence.
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FIGURE 6

Confusion matrices of the testing subset of the lab dataset for the species-sex classification experiment, where the four classes correspond to male
(-M) and female (-F) Chrysodeixis includens (SBL) and Trichoplusia ni (CBL). (A-E) are classification results from deep learning models of ResNet50,
MobileNetv3, ShuffleNetv2, EfficientNetv2-B0 and YOLOv8s-cls, respectively.
FIGURE 7

t-SNE visualization of the learned representation from the testing subset of the lab dataset for the species-sex classification experiment, where the
four classes correspond to male (-M) and female (-F) Chrysodeixis includens (SBL) and Trichoplusia ni (CBL). (A-E) represent embeddings learned
from deep learning models of ResNet50, MobileNetv3, ShuffleNetv2, EfficientNetv2-B0 and YOLOv8s-cls, respectively.
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dataset were influenced by image artifacts. On the noise dataset, the

feature maps highlighted much of the wing area for making correct

predictions, but they also indicated the influence of image or insect

artifacts (Figure 9C). Incorrect predictions were also strongly

influenced by image artifacts.

On the lab dataset and both generalization datasets, YOLOv8s-

cls did not rely heavily on image artifacts, unlike EfficientNetv2-B0.

The YOLOv8s-cls model almost always relied on the tornus and

occasionally the wing stigma and discal area for correct predictions

of SBL and its respective sex (Figure 9). When the sex of SBL was

misclassified, the features that the model used were not visually

distinctive from the features used for the correct species-sex

predictions. There were 118 total images misclassified due to sex

misclassification of the two SBL classes (Figures 6E, 8E;

Supplementary Figure S4E), and 19.49% of the incorrect

predictions showed the influence of image artifacts in the feature

maps. Image artifacts appeared to have little to no effect on correct

SBL predictions for species-sex classification (i.e., the model did not

use image artifacts on correct predictions of male and female SBL)

(Figure 9D). The feature maps of the male CBL images from the

noise dataset show that the model used different features for its

predictions compared to the features used in SBL predictions and in

correct CBL-sex predictions. Correct male CBL predictions focused

on regions of the inner margin and costa (Figure 9), whereas

incorrect predictions used the tornus, apex, and image artifacts.
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3.3 Model performance on three-species
classification

In the three-species classification experiment, the results of the

testing subset of the lab dataset revealed a high accuracy for

distinguishing the three species, even with a smaller training

dataset for GLM. Specifically, the F1 score and Top-1 accuracy of

ResNet, MobileNetv3, EfficientNetv2-B0, and YOLOv8s-cls was

100.00%, and ShuffleNet had only one incorrect prediction with

an F1 score and Top-1 accuracy over 99.51% (Tables 3, 4;

Supplementary Figure S5). The t-SNE visualization of the

embedding space of each model showed three distinct clusters of

species (Figure 10), where the cluster of GLM was associated closer

to the clusters of CBL or SBL depending on the model.

The five models were further tested on the field and noise

datasets to evaluate model generalization. On the field dataset, the

results showed that ShuffleNetv2 and EfficientNetv2-B0 performed

the highest among all five models with an F1 score and Top-1

accuracy of 96.65% and 93.51%, respectively (Tables 3, 4). Most

models tended to predict SBL as GLM, especially YOLOv8s-cls

(Supplementary Figure S6). This result was correlated with the t-

SNE visualization that showed the relative clusters of each species

(Figure 10). The models with higher accuracy on the field dataset,

like ShuffleNetv2 (Figure 10C) and EfficientNetv2-B0 (Figure 10D),

had clusters of GLM that were distinct from SBL clusters and more
FIGURE 8

Confusion matrices of the field dataset for the species-sex classification experiment, where the four classes correspond to male (-M) and female (-F)
Chrysodeixis includens (SBL) and Trichoplusia ni (CBL). (A-E) are classification results from deep learning models of ResNet50, MobileNetv3,
ShuffleNetv2, EfficientNetv2-B0 and YOLOv8s-cls, respectively.
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closely associated with CBL. On the noise dataset, the model

performances generally decreased, and EfficientNetv2-B0

maintained the highest Top-1 accuracy of 82.22% and highest F1

scores on each class (Tables 3, 4; Supplementary Figure S7).

The GradCAM feature maps for image predictions by the

EfficientNetv2-B0 and YOLOv8s-cls models were examined
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because EfficientNetv2-B0 had the highest performance in the

three-species classification experiment and YOLOv8s-cls had the

highest performance in the two previous classification experiments.

For both models, the feature maps of all three testing datasets

revealed a high influence of image artifacts on most species

predictions (Figure 11). Feature maps from the EfficientNetv2-B0
FIGURE 9

GradCAM visualization of the feature maps of sixteen different forewings from EfficientNetv8-B0 (A-C) and YOLOv8s-cls (D-F) model predictions in
the species-sex classification experiment, including correct predictions of male (-M) and female (-F) Chrysodeixis includens (SBL-) and Trichoplusia
ni (CBL-) from the testing subset of the lab dataset (A, D), field dataset (B, E), and noise dataset (C, F). The corresponding original image and
specimen information (species and sex) are provided underneath each feature map. The heatmaps highlight the most influential features in warmer
colors, with red indicating the highest influence.
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model showed that predictions of SBL and GLM used indistinct

wing features and few image artifacts, while CBL predictions

primarily used only image artifacts (Figure 11A). Despite the high

accuracy of EfficientNetv2-B0 in the three-species classification

experiment, image artifacts contributed to both the correct and

incorrect model predictions. Similarly, the feature maps of the lab

and field dataset for the YOLOv8s-cls model displayed the influence

of image artifacts in the correct predictions of SBL and CBL. Wing

features were highlighted more in the noise dataset predictions

(Figure 11E) compared to the field dataset (Figure 11F). This result

was reflected in the accuracy results, as the YOLOv8s-cls model had

a higher Top-1 accuracy on the noise dataset relative to the field

dataset (Table 3).
4 Discussion

In this study, deep learning models demonstrated promising

performances on the classification of three economic plusiine pests,

SBL, CBL, and GLM, using fine-scale differences in wing pattern

morphology. Pest detection and identification have been at the

forefront of entomological applications of deep learning methods

(Høye et al., 2021; Li et al., 2021; Teixeira et al., 2023). Deep

learning-based CNNs have the capacity to recognize and

distinguish features in images, making them a promising tool for

classification tasks in pest identification and monitoring in IPM
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programs (Kasinathan et al., 2021; Korsch et al., 2021; Ullah et al.,

2022; Qin et al., 2024). In Lepidoptera specifically, the wings are

well-suited as features for deep learning tasks due to their large size

relative to the insect, ease of image acquisition as a two-dimensional

feature, and unique wing pattern morphology (Feng et al., 2016;

Chang et al., 2017). While deep learning applications are robust

tools for classifying the large diversity of Lepidoptera (Chang et al.,

2017; Böhlke et al., 2021; Xi et al., 2022), deep learning models are

also capable of separating visually similar objects, including cryptic

and morphologically similar species (Böhlke et al., 2021; Nolte et al.,

2024; Qin et al., 2024; Spiesman et al., 2024). This type of

classification task, known as fine-grained classification, has not

been well-explored on morphologically similar lepidopteran

adults for pest monitoring and survey programs, though it has

received attention for the study of pests on a broader scale (Li et al.,

2022; Zhang et al., 2022; Xu et al., 2024). This study introduces an

efficient identification method for SBL and CBL, two predominant

pests in agroecosystems across several regions in the Americas that

share similar wing patterns and close phenology of flight (Shaw

et al., 2021), overcoming plusiine identification challenges. Using

deep learning models and explainable AI techniques, our study

provides a foundation for future applications of automated pest

identification in IPM programs.

The two-species classification experiment found that the five

models distinguished SBL and CBL with extremely high accuracy

(>99%) on the lab dataset, and three models continued to perform
FIGURE 10

t-SNE visualization of the learned representation from the testing subset of the lab dataset for the three-species classification experiment, where the
three classes correspond to Chrysodeixis includens (SBL), Rachiplusia ou (GLM), and Trichoplusia ni (CBL). (A-E) represent embeddings learned from
the deep learning models of ResNet50, MobileNetv3, ShuffleNetv2, EfficientNetv2-B0 and YOLOv8s-cls, respectively.
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well and generalize to the field (>94% accuracy) and noise datasets

(>86% accuracy). Overall, the YOLOv8 model demonstrated the

highest performance and generalization ability across the three

datasets. The lightweight MobileNetv3 model had low accuracy
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results on the generalization datasets (<53%) and feature maps that

highlighted image artifacts, suggesting that this model was

overfitted to the lab dataset. The fewer parameters in

MobileNetv3 may have contributed to its lower performance
FIGURE 11

GradCAM visualization of the feature maps of sixteen different forewings from EfficientNetv8-B0 (A-C) and YOLOv8s-cls (D-F) model predictions in
the three-species classification experiment, including correct predictions of Chrysodeixis includens (SBL), Trichoplusia ni (CBL), and Rachiplusia ou
(GLM) from the testing subset of the lab dataset (A, D), field dataset (B, E), and noise dataset (C, F). The corresponding original image and specimen
information (species and sex) are provided underneath each feature map. Sex was not considered in this analysis. The heatmaps highlight the most
influential features in warmer colors, with red indicating the highest influence.
frontiersin.org

https://doi.org/10.3389/fagro.2025.1602164
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Torres et al. 10.3389/fagro.2025.1602164
relative to the other four models. The GradCAM visualizations of

the feature maps in this experiment were valuable in understanding

which features the model used to make its predictions. Interestingly,

the YOLOv8s-cls feature maps for both species did not often use the

discal area or wing stigma for classification. We hypothesized that

these regions were used in earlier prediction stages because

GradCAM only displays the last convolutional layer for final

classification decisions. The feature maps from correct CBL and

SBL predictions demonstrated the use of the basal area of the wing,

where the basal line tends to be more prominent and clearly defined

in SBL wings. A short black basal dash is also present in CBL but not

in SBL wings. In the submarginal area, CBL has a discontinuous

band of white scales that is not present in SBL. The features used for

SBL predictions may be related to an overall subtle difference in

wing pattern characteristics between SBL and CBL. Lafontaine and

Poole (1991) had ambiguously described CBL wings as having a

“grizzled appearance” caused by scattered black scales on a sandy-

gray colored pattern. This trait tends to be reduced in SBL due to the

general golden-brown color of SBL wings, particularly in the regions

that are highlighted by the SBL feature maps. Despite the feature

map interpretations described in this study, it is possible that the

model used other features that are not easily discernable by the

naked eye. The GradCAM visualizations and interpretations

contribute hypothesized explanations to the wing features

recognized by the model and offer useful context of CBL and SBL

wing pattern morphology as an identification aid to current

taxonomic descriptions.

The species-sex classification experiment showed that only the

YOLOv8s-cls model could simultaneously predict the species and

sex of SBL and CBL. Overall, classification performance on SBL was

slightly higher than CBL, likely due to the larger number of training

images for SBL. On the lab dataset, the five models maintained high

accuracy (>90%), but the performance decreased considerably on

the field and noise datasets. The loss of accuracy could be

attributable to the quality of specimens in the two generalization

datasets, indicating that species-sex classification relies on very fine

differences in wing pattern morphology. However, the GradCAM

feature maps of the EfficientNetv2-B0 model showed a high

influence of image artifacts associated with all predictions,

suggesting that EfficientNetv2-B0 and the other low-performing

models were overfit to the lab dataset. In the case of the YOLOv8s-

cls model, it had the highest accuracy results on the lab and field

datasets, and the feature maps indicated that the correct predictions

were derived from wing pattern features and not random image

artifacts. The accuracy results and verification of the feature maps

reveal that the YOLOv8s-cls model found species-specific sexual

dimorphic wing patterns in SBL and CBL. From the feature maps, it

is visually unclear which features were used to make this distinction.

There is no evidence or record of sexually dimorphic wing patterns

in CBL or SBL, though this has been described in Rachiplusia and a

few other plusiines (Kitching, 1987).

Other studies have explored the ability of deep learning and

machine learning models to distinguish insect species and sex

(Tuda and Luna-Maldonado, 2020; Kittichai et al., 2021; Genaev

et al., 2022). However, these studies were performed with whole
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insect specimens and species that exhibited dimorphism through

traits like ovipositor presence, body size, and body color. Silva et al.

(2025) described the potential of using deep learning models to

diagnose monomorphic species as sexually dimorphic. This

application of deep learning has not been applied in entomology

until recently, as in this study and Nawoya et al. (2025), where they

used deep learning models to separate the sex of monomorphic

black soldier fly larvae. The studies that have explored this ability of

deep learning models reported similar accuracies as this study that

are higher than 50% (Wang et al., 2019; Nawoya et al., 2025; Silva

et al., 2025). This finding of sexual dimorphism in SBL and CBL

wing patterns highlights the potential of deep learning techniques to

improve insect identification.

In the three-species classification experiment, adding GLM

provided insights into model performance on an imbalanced

training dataset. The models had high accuracy scores (>99%) on

the combined lab and field dataset and lower performance on the

generalization datasets (52-93%), similar to the results when

classifying SBL and CBL in the two-species classification

experiment. However, the feature maps of YOLOv8s-cls and

EfficientNetv2-B0 predictions displayed a high influence of image

artifacts on the species predictions. The EfficientNetv2-B0 model

demonstrated the ability to separate at least two species, GLM and

SBL, but not all predictions were based solely on wing features.

Overall, the model performances suggest that none of the models

learned to distinguish wing pattern features across all three species.

The imbalanced data, with a limited amount of training data for

GLM, likely contributed to model overfitting. These results indicate

that larger training datasets (>1,000 images) are necessary for the

fine-grained classification of plusiine wings when included in deep

learning studies. Increasing the number of training images for GLM

relative to the other classes could improve model performance and

generalization, as observed in the two-species classification

experiment. However, it is noteworthy that this species has a

relatively minor occurrence in cultivated systems of soybean and

other host plants.

In each classification experiment, the five models demonstrated

a high performance on the lab dataset used for training and testing,

and the performance decreased when model generalization was

evaluated on the field and noise datasets. The loss in accuracy on the

field and noise testing sets was expected because these datasets were

assembled to differ in specimen quality from the data for model

training. The models were not optimized for high performance

because the objective was to determine whether deep learning

models could distinguish the similar wing pattern morphology of

plusiines. The models were trained on specimens in ideal

conditions, where the wing and scales were not damaged,

obscured, or missing. The field dataset maintained the same

image standardization as the training data, but the wing quality

was more representative of specimens recovered from field

trapping. Field-collected specimens likely incurred discoloration

or damage to the wing or scales from the trapping process and the

storage, freezing, and drying process (Park et al., 2020; Kittichai

et al., 2021). Similarly, the age of the collected specimen can impact

the quality of the wing scales and the overall integrity of the wing.
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The noise dataset differs from the other two datasets because it has

images of pinned specimens. The same image magnification was

used, but the specimens were collected from the field and remained

intact (i.e., forewings were not removed). The three-dimensional

nature of the specimen and the presence of other insect parts

influenced the quality of the image and background colors,

creating additional challenges for model predictions. By the

progression of specimen and image quality using the three

datasets and verification with GradCAM visualizations, the

YOLOv8s-cls model was robust in generalizing to new images in

the two-species and species-sex classification experiments, and it

used wing characteristics to make predictions and not random

artifacts caused by the imaging process.

The models investigated in this study can potentially increase

the applicability of pheromone trapping for detecting infestations of

SBL and CBL. Pheromone traps for detecting plusiine pests, such as

SBL, are challenging because of the non-specificity of sex

pheromone formulations (Huseth et al., 2021; Debnath et al.,

2024). Still, pheromone traps have the benefit of detecting initial

pest infestations. This is particularly effective for SBL, as it is

challenging to manage once established due to its larval feeding

behavior and resistance to multiple insecticides (Catchot et al.,

2016; Reisig and Goldsworthy, 2024). The deep learning models in

this study offer an efficient alternative to current identification

methods because they can be used independently with ease and

produce reliable predictions in a matter of seconds, requiring only

an image of the forewing. For applying the models to pest detection

using sex pheromone lures, the context of the species included in

the model is an important consideration. This study focused on

SBL, CBL, and GLM primarily due to their high morphologic

similarity and phenology of occurrence in cultivated systems. In

addition, reports of cross-attraction of high abundance of C.

oxygramma moths represent a concern for management decisions

(Shaw et al., 2021). Although C. oxygramma is easily distinguished

by the forewing patterns, the current models cannot predict beyond

the defined classes. Future research for practical applications of the

models should consider including C. oxygramma, allowing the

model to differentiate between all commonly trapped plusiine

species in the U.S (Eichlin and Cunningham, 1978; Lafontaine

and Poole, 1991; Pogue, 2005; Shaw et al., 2021). In addition, due to

the quarantine risk of the invasive C. chalcites and the potential of

pheromone trapping to detect low-density populations (Witzgall

et al., 2010), studies should consider including this species in model

classification tasks to improve pest survey programs.

Although the models effectively distinguish SBL, CBL, and, to

some extent, GLM, the image acquisition process is highly

standardized. The process requires a specialized imaging system

and associated workflow for the standardization of images, which

limits the operation to one person capturing one image sample at a

time. The tradeoff between image standardization and model

accuracy is a well-known challenge in deep learning studies.

When applying models to different domains, such as images

taken with a smartphone, this challenge can be particularly

evident (Schneider et al., 2023). Here, the specialized imaging

process was important for evaluating the ability of the models to
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detect a difference in wing pattern morphology. However, the

performance of the models beyond this standardization is

unknown. Future studies should validate whether the models in

this study can generalize to images taken at different resolutions or

by other devices. Nolte et al. (2024) specifically explored the use of

multiple image-capture devices on mosquito wing classification and

found that their models struggled to accurately classify images taken

by devices that differed from the device used in the training data.

Image magnification and resolution should also be considered when

using multiple devices because a model trained on high-magnified

images can predict poorly on lesser-magnified images due to the

loss of features important to the model (Kittichai et al., 2021; Nolte

et al., 2024). In the case of the fine-grained wing morphology

classification task, it is unclear what level of magnification is

required for accurate classification. The present study is the first

to explore SBL and CBL identification based on wing patterns with

reliable accuracy at a high magnification. The challenges associated

with the image acquisition process by incorporating multiple

image-capturing devices and exploring different magnification

levels of the wing patterns represent one of the next steps to be

addressed to reduce standardization and increase the variability of

image quality under field conditions.
5 Conclusion

This study explored the use of five deep learning models on the

identification of economic pests SBL, CBL, and GLM based on their

morphologic forewing patterns. It is the first study validating wing

patterns as a diagnostic trait for pest identification in the Plusiinae

subfamily. In the two-species classification, three of the five models

demonstrated robust performances on the identification and

generalization of CBL and SBL wings. The results of the species-

sex classification revealed sexually dimorphic wing patterns of both

CBL and SBL. Based on the GradCAM visualizations, only the

YOLOv8s-cls model simultaneously classified the species and sex of

the plusiines using the wing pattern features. The sexual

dimorphism identified by the model is a novel discovery not only

for the species themselves but also for the potential of deep learning

techniques for other entomological applications. The three-species

classification that included GLM, SBL, and CBL showed similar

performance to the two-species classification. However, the

GradCAM feature maps indicated model overfitting that was

likely caused by the class imbalance, where there was a smaller

amount of training data for GLM. In the two-species and species-

sex classification experiments, the YOLOv8s-cls model consistently

achieved the highest performance by identifying distinguishable

wing features for classification and reaching the highest accuracy

scores compared to the other models. The deep learning models in

this study provide an efficient alternative to current identification

methods of moths from the Plusiinae subfamily, including genitalia

dissections, DNA analyses, and morphometrics. Moreover, this

study lays a foundation for future work in the automated

identification of plusiines, particularly SBL in IPM programs. The

findings of the study open the opportunity of using deep learning
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models to classify wing patterns in the group of Plusiinae, such as

for identifying the invasive C. chalcites for survey programs. This

study takes the first step to the widespread application of automated

trapping for pest monitoring and detection in IPM programs for

economic pests in the Plusiinae subfamily.
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