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Hermes Pérez Hernández,
National Institute of Forestry and Agricultural
Research (INIFAP), Mexico
Muazzez Gurgan,
Namik Kemal University, Türkiye

*CORRESPONDENCE

Xiaocheng Wei

weixiaocheng@caas.cn

†These authors have contributed equally to
this work

RECEIVED 13 April 2025

ACCEPTED 26 May 2025
PUBLISHED 01 July 2025

CITATION

Yu G, Wang Q, Zheng X, Yang B, Zhang C,
Zhang G and Wei X (2025) Effects of
human urine application on soil
physicochemical properties, microbial
communities, and enzymatic activities.
Front. Agron. 7:1610839.
doi: 10.3389/fagro.2025.1610839

COPYRIGHT

© 2025 Yu, Wang, Zheng, Yang, Zhang, Zhang
and Wei. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 01 July 2025

DOI 10.3389/fagro.2025.1610839
Effects of human urine
application on soil
physicochemical properties,
microbial communities,
and enzymatic activities
Guangquan Yu1†, Qian Wang1,2†, Xiangqun Zheng1,2, Bo Yang1,2,
Chunxue Zhang1,2, Guowei Zhang3 and Xiaocheng Wei1,2*

1Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China, 2Key
Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural
Affairs, Tianjin, China, 3The Fifth Design and Research Institute, Tianjin Municipal Engineering Design
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Human urine (HU) is rich in nutrients necessary for plant growth, and recycling

HU as fertilizer has multiple positive impacts, such as enhancing agricultural

sustainability, reducing wastewater pollution, and decreasing reliance on

chemical fertilizers, so it is of great significance to explore the effects of urine

agricultural utilization on soil environment. A pot experiment was conducted to

evaluate the impacts of varying HU application rates {0 [control (C)], 13, 26, 52,

and 104 mL kg−1} on soil physicochemical properties, microbial communities,

and enzymatic activities. The findings indicate that HU application enriched soil

nutrients and significantly increased soil electrical conductivity, with levels at 104

mL kg−1 reaching an increase of 840% over C. Compared to the C, HU enhanced

the activities of soil enzymes such as invertase, urease, and catalase by 7.30%–

58.75%, 0.93%–47.77%, and 1.56%–16.62%, respectively, but reduced alkaline

phosphatase activity by 6.40%–64.76%. Additionally, increasing HU application

was correlated with reductions in both operational taxonomic units and the

Shannon–Wiener diversity index. The relative abundance of soil bacteria such as

Pseudomonadota and Gemmatimonadota incrementally rose with higher HU

input, whereas that of Bacillota declined. Moreover, the composition of the top

20 bacterial genera, including Gaiella (1.49%), Bacillus (1.47%), and Blastococcus

(1.02%), was significantly altered by HU application. In conclusion, HU application

changes the soil ecological environment and, to some extent, modifies the

structure and diversity of soil bacterial communities and enzymatic function.

However, the absence of long-term field trials underlines the necessity for

comprehensive evaluations of HU’s impact on soil fertility and crop health, and

careful attention must be paid to potential environmental safety risks post-

HU application.
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1 Introduction

In recent years, the application of human urine (HU) as a

fertilizer in agriculture has been explored in various countries across

Northern Europe and Africa (Pandorf et al., 2019). HU is rich in

essential nutrients critical for plant growth, providing an alternative

or supplementary source to conventional chemical fertilizers in

crop production (Esrey et al., 2001). When stored at temperatures

above 20°C for a duration between 2 to 6 months, HU can be

utilized directly as a liquid fertilizer (Akpan-Idiok et al., 2012). Pot

experiments using HU as fertilizer for cultivating pepper (Capsicum

annum L.), ryegrass (Lolium perenne L.), and radish (Raphanus

sativus L.) in two different soil textures demonstrated that

consumption of these crops poses no health risk to consumers

(Migeri et al., 2023). Like chemical fertilizers, over 90% of nitrogen

in HU is present in the form of urea or ammonia salts, which are

beneficial for comprehensive crop development. Research has

demonstrated that applying HU as a liquid fertilizer can

significantly increase the yields of cucumber (Cucumis sativus L.),

cabbage (Brassica oleracea L. var. capitata L.), and amaranth

(Amaranthus tricolor L.) (Adeoluwa and Cofie, 2012).

Additionally, (Chrispim and Nolasco, 2012) observed

enhancements in leaf count, plant height, root length, and stem

fresh weight in celtuce due to HU application. Morgan (2003) also

reported on the efficacy of diluted HU (water:HU = 3:1) as a liquid

fertilizer in promoting exceptional yields of corn and various

vegetables in Zimbabwe. Tang et al. (Tang and Maggi, 2016) used

barley (Hordeum vulgare L.) and soybean (Glycine max L.) as

experimental crops in the West Wyalong and Moree regions of

Australia and found that the absorption of nutrients increased

almost linearly with the amount of HU application. It has been

found that HU application can affect the shift in root-associated

bacterial communities (Van Gerrewey et al., 2021) of lettuce

(Lactuca sativa L.) and influence soil community structure

(Johansen et al., 2023). Furthermore, previous studies have found

that HU can significantly acidify soil by promoting nitrification and

volatilization (Raza et al., 2021), and this acidification may alter the

soil microbial community (Karimi et al., 2018). According to

Rumeau et al (Rumeau et al., 2024), the relative abundance of

nitrification and denitrification groups is increased by HU

application. Nonetheless, concerns regarding soil salinization

from HU usage have emerged, which could potentially result in

crop damage, reduced yields, and other negative outcomes (Lienert

et al., 2007). Consequently, optimizing the agricultural benefits of

HU necessitates more thorough and detailed research into its

impacts on the soil’s ecological environment.

Soil enzymatic activity and bacterial community structure serve

as crucial biological indicators for assessing soil health and

monitoring environmental conditions (Luo et al., 2017; Li et al.,

2019). Enzymes andmicroorganisms are integral to the process of soil

biological remediation (Liu et al., 2020). Predominantly produced by

microbes, soil enzymes mirror microbial activity and are highly

sensitive, providing prompt and accurate reflections of minor

changes in soil characteristics such as nutrient content, pH, and

salinity (Torres et al., 2015; Yu et al., 2017; Lemanowicz et al., 2020).
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Consequently, soil enzyme activities are frequently employed as

significant indicators of soil properties (Wang et al., 2016). It has

been reported that urease facilitates the mineralization of soil organic

nitrogen, whereas invertase catalyzes the hydrolysis of sucrose into

monosaccharides, supplying energy sources for microbial activities

(Wu et al., 2020). Additionally, catalase and phosphatase play crucial

roles in the decomposition of exogenous organic compounds and the

mineralization of organic matter, respectively (Du et al., 2021). The

application of fertilizers during crop cultivation induces

physicochemical alterations in soil, impacting soil enzyme activities

and microbial community structures (Zhang et al., 2017). However,

research on the utilization of HU has primarily focused on its impacts

on crop quality and soil physicochemical properties (Kishor et al.,

2020; Hilton et al., 2021), with limited exploration into the influence

of HU on the interplay between soil enzymatic activities and

bacterial communities.

Literature analysis suggests that urine application could

potentially alter soil ecosystems, possibly in a dosage-linked

manner. Therefore, the objectives of this investigation were to

elucidate the impact of varying quantities of HU on soil enzyme

activities, the diversity and configuration of soil bacterial

communities, as well as the interrelations among these parameters.
2 Materials and methods

2.1 Experimental design

The initial soil sample was collected from the surface layer in

Ninghe, Tianjin, China (39°25′N, 117°29′E). This fluvo-aquic soil is
representative of the North China region. Its physicochemical

properties were characterized as follows: total nitrogen (TN) =

0.91 g kg−1, total phosphorus (TP) = 0.63 g kg−1, available

potassium (AK) = 0.34 g kg−1, available phosphorus (AP) = 41.89

mg kg−1, pH = 8.43, and electrical conductivity (EC) = 0.28 mS

cm−1. After being transported to the greenhouse at the Agro-

Environmental Protection Institute in Tianjin, the soil was mixed

and screened to eliminate large stones and other solid impurities.

HU was sourced from a urine-diverting toilet in the male restroom

at the Institute’s dormitory. The HU was collected, containerized,

and stored at 25°C for a duration of 3 months. Subsequent analysis

revealed its physicochemical properties as: TN = 3.62 g L−1, TP =

0.26 g L−1, TK = 1.18 g L−1, pH = 9.18, EC = 34 mS cm−1, and

chemical oxygen demand (COD) = 12.40 g L−1, sodium ions (Na+)

= 1.35 g L−1, chloride ions (Cl−) = 2.23 g L−1.

Pots of uniform size (23 cm in height and 20 cm in diameter)

were filled with 5 kg of the homogenized and sieved soil and

categorized into five treatment groups: C, T1, T2, T3, and T4.

Each group received a different volume of HU: 0, 65, 130, 260, and

520 mL for C, T1, T2, T3, and T4, respectively. The HU application

rates were primarily based on its nitrogen content, calculated by

referencing the nitrogen fertilizer usage for protected horticultural

crops as reported by Zhang et al (Zhang et al., 2018). Treatments

were replicated three times. Thorough mixing of the soil and HU

was achieved using a mechanical stirrer. To standardize soil
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moisture across treatments, additional water was added to bring the

combined volume of HU and tap water in each pot to 2 L. After a 2-

day equilibration period, five pakchoi seeds were sown into each

pot. Following germination, thinning was performed to retain only

three seedlings per pot. All pots were consistently irrigated to

maintain optimal soil moisture levels for plant growth.
2.2 Soil sample collection

After a 40-day growth period, pakchoi plants were harvested

(with biomass data presented in Supplementary Figure S1), and the

top 0- to 10-cm layer of soil was collected from each pot. Five soil

cores from each pot were combined into a single sample, whereas

plant debris and other contaminants were removed. These soil

samples were then temporarily stored in sterilized, sealable bags

within an incubator and promptly transported to the laboratory.

Each consolidated sample from the pots was subsequently divided

into three sub-samples. The first sub-sample was thoroughly mixed,

sifted through a 2-mm sieve, placed in a sterile 10-mL centrifuge

tube, and sent to Shanghai Majorbio Bio-Pharm Technology Co.,

Ltd., for microbial diversity analysis. The second sub-sample was

used to assess the soil’s physicochemical properties and enzymatic

activities after being ground and sieved. The third sub-sample was

utilized to determine the concentrations of soil ammonium

nitrogen (NH4
+-N) and nitrate nitrogen (NO3

−-N).
2.3 Experimental analysis

2.3.1 Measurement of soil and human urine
physicochemical characters

Soil pH, EC, SOM, TN, and TP were determined as described by

Bao (2008). NO3
−-N and NH4

+-N were tested using a flow analyzer

(AA3, SEAL Analytical, Germany). AP was determined by UV-

visible spectrophotometer (TU-1900 double-beam produced by

Beijing Pu-analysis General Instrument Co.). AK was determined

using a Jena ZEEnit 700P.

The PH and EC of HU were determined, respectively, by a PH

meter and a conductivity meter (Hach LC500, USA), and TN and

TP were tested using a flow analyzer (AA3, SEAL Analytical,

Germany). TK was treated by atomic absorption spectrometry.

COD was determined by the acidic potassium permanganate

titration method, and Na+ and Cl− were detected by ion

chromatography (Donex ICS-6000, China).

2.3.2 Detection of soil enzymatic activity
Soil enzymatic activity was determined using the kit provided by

Beijing Solarbio Science & Technology Co., Ltd. (Solarbio, China). Soil

enzyme activities were determined using the Solarbio Activity Assay

Kit (Spectrophotometer). The air-dried soil after the pot experiment

was screened using a 100-mesh sieve, and the activities of soil invertase

(INV), urease (URE), catalase (CAT), and alkaline phosphatase (AKP)

were determined at wavelengths of 510 nm, 540 nm, 660 nm, and 240

nm, respectively (Akhtar et al., 2018; Han et al., 2024).
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2.3.3 DNA extraction and sequencing
High-throughput sequencing analysis of soil samples was

conducted at the end of the experiment after crop harvesting. Soil

(0.5 g) DNA was extracted using the Fast DNA® Spin Kit for soil

(MP Biomedicals, Irvine, CA). DNA concentration and purity were

determined using a NanoDrop2000 (Thermo Fisher Scientific,

USA). The 338F/806R primers were used to amplify V3-V4 of

16S rRNA gene (Wang et al., 2018).

Amplicons of polymerase chain reaction (PCR) products were

purified with the QIAquick Gel Extraction Kit (Qiagen, Germany).

The PCRs were pooled and quantified using QuantiFluor™-ST

(Promega, USA). Paired-end reads (2 × 300 base pair) were

generated by MiSeq (PE300) platform Illumina at Majorbio Bio-

Pharm Technology Co., Ltd. (Shanghai, China). Low-quality

sequences were trimmed off using Cutadapt (Martin, 2011), and

quality-filtered using the QIIME pipeline (v1.9.1) (Caporaso et al.,

2010). UPARSE was employed to divide all sequences into OTUs

based on 97% similarity DNA sequences (Wang et al., 2017). OTUs

with fewer than two sequences were deleted, and their representative

sequences were classified into taxonomic lineages using the

Ribosomal Database Project classifier within the SILVA database

(v138.1) short-subunit reference database (Quast et al., 2013).
2.4 Statistical analysis

All data were conducted for verify normality and

homoscedasticity of variance using SPSS 21.0 Statistics software

(IBM Corporation, NY, USA) (Pu et al., 2022). For the data that

conformed to the normal distribution and homogeneity of variance

test, analysis of variance was conducted again to determine the

significant differences among the treatments (Huang et al., 2019).

The bar graphs were created using Origin 7.0. The “vegan” package

was used for calculating alpha diversity and richness of

microorganisms (Oksanen et al., 2017). The statistical method of

bacterial diversity index difference was tested by Kruskal–Wallis H.

The abundance differences between groups were analyzed using the R

(v. 3.3.1) for statistics and mapping. The significance difference

between groups was tested by ANCOM difference test (QIIME2)

(Nearing et al., 2022). Non-metric multidimensional scaling (NMDS)

was carried out using the Bray–Curtis dissimilarity distance to

analyze microbial community diversity. Analysis of similarities

(ANOSIM) was employed for the significance of separations

measured under different treatments (Huang et al., 2019). A model

of multivariate analysis of variance was constructed using distance-

based redundancy analysis (RDA) (Francioli et al., 2016). ANOSIM,

RDA, and Mantel tests were performed using R (v.4.0.3).
3 Results

3.1 Soil physicochemical properties

The application of HU to soil induced variations in several

parameters such as soil TN, TP, AP, AK, C/N, pH, and EC as shown
frontiersin.org
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in Table 1. The content of NH4
+-N remained statistically consistent

across all treatment groups. TN and TP levels were highest in the T4

treatment, showing increases of 46.59% and 20.90%, respectively,

compared to the C. AP and AK also experienced enhancements at

various rates with higher volumes of HU, reaching their maximum

in T4, which were 377% and 143% higher, respectively, than in C.

The C/N ratio decreased under all treatments with T3 exhibiting the

most significant reduction, 29.34% lower than C. Similarly, pH

values decreased, with T3 showing the most substantial drop from

8.47 in the C to 7.66. EC was greatest in T4, showing an increment

of 840%. Moreover, SOM levels slightly increased with greater

HU addition.
3.2 Changes in the soil enzymatic activity

As the volume of HU increased, the enzymatic activities of INV,

URE, and CAT initially rose and subsequently declined (Figure 1),

whereas AKP activity showed a consistent decrease. Increasing the

HU volume from 65 mL to 260 mL (T1 to T3) resulted in a linear

increase in INV activity, with increments of 7.30% in T1 and

peaking at 58.75% in T3, compared to the control (C, 0 mL).

However, further increasing the HU volume to 520 mL (T4) led to a

reduction in INV activity increment to 39.17% (Figure 1A,

Supplementary Figure S2A). Trends in URE activity paralleled

those observed for INV activity (Supplementary Figure S2B).

Relative to C, URE activities in T1, T2, and T4 increased by

7.10%, 17.66%, and 0.93%, respectively, with T3 exhibiting the

highest URE activity at 275.48 mg d−1 g−1, marking a 47.77%

increase (Figure 1A). CAT activity reached its maximum in T1

(50.81 mmol d−1 g−1), which was 16.62% higher than C, but

diminished in subsequent treatments (T1–T4) reaching its lowest

level in T4 at 37.89 mmol d−1 g−1 (Figure 1C). Moreover, AKP

activity exhibited a linear decline from C to T4 (Supplementary

Figure S2D), with decreases of 6.40%, 9.45%, 34.25%, and 64.76%

across T1 to T4, respectively, compared to C (Figure 1D).
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3.3 Changes in soil bacterial diversity

Venn diagrams are commonly utilized to delineate the shared and

unique operational taxonomic units (OTUs) across multiple samples.

In our study, subsequent to stringent quality filtering, we amassed

630,747 high-fidelity 16S rRNA gene sequences across 15 samples,

with individual samples contributing between 31,858 and 54,312

sequences. Post-chimera removal, non-redundant sequences were

clustered into OTUs (excluding singletons) based on a 97%

similarity criterion. From this process, a total of 4,356 OTUs were

identified. Cluster analysis revealed that the bacterial communities

were distributed among 33 phyla, 93 classes, and 827 genera.

Additionally, a core set of 2,039 OTUs was present across all

samples, whereas individual treatments T1, T2, T3, and T4

contained 3,498, 3,454, 3,219, and 2,902 OTUs, respectively (Figure 2).

Figure 3 illustrates that, in comparison to the C, the diversity in

other groups decreased variably with increasing HU levels. Both the

Shannon–Wiener diversity index and the Evenness index recorded

the lowest values in T4, at 6.0815 and 0.7973, respectively. These

represent decreases of 8.47% and 5.70% below the C values. The

richness index initially increased slightly before declining as the HU

addition was augmented. The peak increase in this index was

observed in T1, where it reached 3,356.51, marking a 0.74%

increase over the C value of 3331.68. A linear regression model was

used to explore the linear relationship between the effects of HU on

soil quality and bacterial diversity. It is mainly reflected that HU

content has a significant positive correlation with SOM (P<0.001) and

TN (P<0.05) content, and a significant negative correlation with C/N

(P<0.05) and Shannon (P<0.001) (Supplementary Figure S3).
3.4 Changes in the soil bacterial
community structures

The distributions of soil bacterial abundances reveal that, at the

phylum level (Figure 4A), the three predominant bacterial phyla
TABLE 1 Effect of different HU dosage on soil physicochemical properties.

Indicators C T1 T2 T3 T4

TN/g kg−1 0.88 ± 0.07b 0.91 ± 0.04b 1.05 ± 0.02ab 1.26 ± 0.03a 1.29 ± 0.04a

TP/g kg−1 0.67 ± 0.02b 0.68 ± 0.01b 0.71 ± 0.00ab 0.75 ± 0.01ab 0.81 ± 0.12a

AP/mg kg−1 30.08 ± 3.13d 37.67 ± 2.53d 60.33 ± 2.71c 75.64 ± 3.77b 143.61 ± 5.46a

AK/g kg−1 0.28 ± 0.01d 0.30 ± 0.02d 0.37 ± 0.04c 0.52 ± 0.03b 0.68 ± 0.04a

NH4
+-N/mg kg−1 1.19 ± 0.15a 1.25 ± 0.43a 1.29 ± 0.14a 1.38 ± 0.34a 1.41 ± 0.27a

NO3
−-N/mg kg−1 3.93 ± 0.31a 3.61 ± 0.45a 3.34 ± 0.51a 3.08 ± 0.70a 1.74 ± 0.67b

SOM/g kg−1 12.34 ± 0.13a 12.36 ± 0.73a 12.41 ± 0.13a 12.57 ± 0.93a 12.80 ± 0.81a

C/N 8.18 ± 0.58a 7.86 ± 0.54ab 6.53 ± 0.05bc 5.78 ± 0.31c 6.86 ± 1.57abc

pH 8.47 ± 0.10a 8.32 ± 0.21a 7.92 ± 0.08b 7.66 ± 0.04b 7.61 ± 0.31b

EC/ms cm−1 0.35 ± 0.07d 0.42 ± 0.03d 1.00 ± 0.23c 1.78 ± 0.41b 3.29 ± 0.36a
The data are expressed as mean value ± standard deviation (n = 3). Different lowercase letters in the same line indicate significant differences between different treatments (P < 0.05). TN, total
nitrogen; TP, total phosphorus; AP, available phosphorus; AK, available potassium; NH4

+-N, ammonium nitrogen; NO3
−-N, nitrate nitrogen; SOM, soil organic matter; C/N, total organic

carbon/total nitrogen; EC, electrical conductivity; C, no treatment; T1, 13 mL kg−1; T2, 26 mL kg−1; T3, 52 mL kg−1; T4, 104 mL kg−1.
frontiersin.org

https://doi.org/10.3389/fagro.2025.1610839
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Yu et al. 10.3389/fagro.2025.1610839
were Pseudomonadota (28.79%), Actinomycetota (24.42%), and

Chloroflexi (13.79%). These principal groups were accompanied

by lesser abundances of Gemmatimonadota (7.21%), Bacteroidota

(3.28%), Bacillota (2.98%), and Rokubacteriota (2.20%). In each

experimental group, Pseudomonadota abundances were

prominently dominant and exhibited an increase concurrent with

higher HU additions. Specifically, compared to the control group

(C), Pseudomonadota abundances rose by 9.81%, 5.43%, and

23.19% in T1, T2, and T3, respectively, with the most significant

surge observed in T4, showing a 40.19% increase over C.

Conversely, Actinomycetota displayed a decrease across all

treatment groups (T1–T4) correlating with increased HU

volumes, with declines of 6.82%, 9.72%, 20.30%, and 20.32% in

T1–T4, respectively, relative to C. Similarly, Chloroflexi abundance

trended downward, with T4 registering the lowest percentage of

10.50%, which is 30.37% lower than C. Acidobacteriota also showed

a decreasing pattern across the treatments, with T4 presenting the

minimal proportion of 5.69%, marking a substantial decrease of

64.24% in comparison to the C group. In contrast, with the

escalation of HU concentration, both Gemmatimonadota and

Bacteroidota phyla demonstrated increments in their richness.

Gemmatimonadota richness increased by 15.99%, 27.71%, and

26.64% in T1, T2, and T4, respectively, when compared to C,
Frontiers in Agronomy 05
with T3 experiencing a notable surge in richness (69.80% higher

than C). Likewise, Bacteroidota saw increments of 4.05%, 7.21%,

and 61.71% in T1, T2, and T3, respectively, with T4 showcasing the

most considerable augmentation in richness.

At the genus level, as shown in Figure 4B, predominant

bacteria with a relative abundance exceeding 1.0% included

unclassified Subgroup_6 members (7.52%), Arthrobacter (4.60%),

unclassified JG30-KF-CM45 members (3.41%), unclassified

Gemmatimonadaceae members (3.32%), and Sphingomonas

(3.20%). Relative to C, the abundance of Sphingomonas increased

between 1.10% and 47.25%, reaching a peak of 4.02% in the T3

treatment. Among the top 20 genera, such asGaiella (1.49%), Bacillus

(1.47%), and Blastococcus (1.02%), significant impacts were observed

due to HU treatment. With the administration of HU, both Gaiella

and Blastococcus showed marked declines. At the 520-mL application

rate in T4, the relative abundances of Gaiella and Blastococcus

decreased to 1.12% and 0.97%, representing reductions of 42.86%

and 15.65% compared to C, respectively. In contrast, Bacillus reached

a relative abundance of 3.37% in T4, which is 324% higher than that

observed in C. ANCOM difference test analysis shows that g:

Eoetvoesia, g:Truepera, g:Luteimonas, and g:norank_f:B1_7BS were

significantly different among groups (Figure 5), with W of 823, 821,

800, and 781, respectively (Supplementary Table S5).
FIGURE 1

Changes in soil enzyme activity after application of HU. (A) INV activity; (B) URE activity; (C) CAT activity; (D) AKP activity. The Lowercase letters
above the columns indicate significant differences between the different HU application treatments at P < 0.05, respectively. Abbreviations: NV =
Invertase; URE = Urease; CAT = Catalase; AKP = Alkaline Phosphatase; C = no treatment; T1 = 13 mL∙kg-1; T2 = 26 mL∙kg-1; T3 = 52 mL∙kg-1; T4 =
104 mL∙kg-1.
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3.5 Principal component analysis of the soil
bacterial communities

The b-diversity of the soil bacterial communities was assessed

using NMDS and ANOSIM. The NMDS analysis, visualized in

Figure 6, reveals variations in the composition of the soil bacterial

communities across different treatments (C, T1, T2, and T3) in

comparison to T4 based on the abundance of OTUs. Notably,

significant differences were observed in the structure of the bacterial

communities among C, T1, T2, T3, and T4 treatments (R = 0.6533,

P = 0.001), as illustrated by the clear separation and independence

of samples in the NMDS plot. The distributions observed within the

plot—a leftward skew in C, T1, and T2, versus a rightward skew in

T4-highlight the substantial impact of HU on the structure of soil

bacterial communities.
3.6 Correlation between soil enzymatic
activity, physicochemical properties, and
community structure

Table 2 presents the relationships between the relative abundances

of the top 10 most abundant bacterial phyla and the enzymatic

activities of four different soil enzymes. Gemmatimonadota were

found to be strongly and statistically significantly correlated with

INV and URE activities, whereas Pseudomonadota, Bacillota, and

Planctomycetota displayed a pronounced positive association with

AKP. Notably, Gemmatimonadota and Pseudomonadota exhibited
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marked negative correlations, in contrast to the positive correlations

for Bacillota and Planctomycetota. In addition, Actinomycetota were

negatively correlated with INV while showing a substantial positive

association with AKP. The Chloroflexi and Acidobacteriota groups

were strongly positively correlated with CAT and AKP activities.

Conversely, Bacteroidota showed a negative relationship with CAT

activity and were strongly inversely correlated with AKP. Lastly,

Rokubacteriota had significant strong negative correlations with

both CAT and AKP activities.

RDA of bacterial community structures correlated with soil

physicochemical properties, as depicted in Figure 7, revealed that

Axis1 and Axis2 explained 63.18% and 8.59% of the variation in soil

bacterial communities, respectively. Collectively, both axes

accounted for 71.77% of the overall variation. Mantel test

outcomes demonstrated that TN (R2 = 0.7524, P = 0.001), NH4
+-

N (R2 = 0.8027, P = 0.001), and SOM (R2 = 0.8069, P = 0.005) were

the primary physicochemical parameters significantly affecting the

bacterial community structure.
4 Discussion

4.1 Effect of HU on soil physicochemical
properties and enzymatic activity

The application of HU led to a decrease in soil pH, which can be

attributed to the nitrification of ammonium ions within the soil.

This process involves the conversion of ammonium salts into
FIGURE 2

Venn diagram of bacterial communities in four soils with different application of HU.Abbreviations: C = no treatment; T1 = 13 mL∙kg-1; T2 = 26
mL∙kg-1; T3 = 52 mL∙kg-1; T4 = 104 mL∙kg-1.
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nitrites, releasing two protons and subsequently lowering the soil

pH (Schönning, 2001). Despite varying volumes of HU being

employed, the soil’s NH4
+-N levels remained unchanged. This

stability is likely due to the nitrogen within the HU transitioning

from urea to ammonia, urine-N would be lost to NH3 evaporating

(Rumeau et al., 2023), and a similar phenomenon also exists in the

use of liquid ammonium fertilizers (Powlson and Dawson, 2022).

Another possible reason is the leaching after nitrification due to

high urinary N application; after NH4
+-N is converted to NO3

−

through nitrification, NO3
− may be carried with the water to the

deeper layers of the soil due to leaching (Ramıŕez-Sandoval et al.,

2022), which is consistent with the results of our study

(Supplementary Table S6). Conversely, an increase in soil EC was

observed with higher volumes of HU, attributed to the enhanced

presence of conductive ions such as chloride ions in the HU.
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Consequently, as the volume of HU applied escalated, so did the

concentration of ions, resulting in an increased soil EC (Kassa et al.,

2018). The addition of HU resulted in significant increases in soil

TN and TP, indicative of the high nitrogen and phosphorus content

of HU. Therefore, extensive application of HU as a fertilizer

substantially elevates the soil’s nitrogen and phosphorus levels

(Bonzi et al., 2011). SOM also saw a linearly increment with

increased HU applications (Supplementary Figure S3A),

potentially contributing to the rise in soil TN levels. Additionally,

soil AK content experienced increments at various degrees with the

escalation of HU volume, a phenomenon likely tied to HU’s high

potassium concentration. Thus, the application of greater volumes

of HU correspondingly increased the soil potassium level.

Moreover, soil NO3
−-N content demonstrated a gradual decline

with an increase in HU volume, as the lowered soil pH from HU
FIGURE 3

Effect of varying HU dosages on diversity of bacterial community. (A) Evenness index; (B) Richness index; (C) Shannon-Weiner diversity index. The
data are expressed as mean value ± standard deviation (n=3). * denotes p < 0.05, ** denotes p < 0.01 and *** denotes p < 0.001. Abbreviations: C =
no treatment; T1 = 13 mL∙kg-1; T2 = 26 mL∙kg-1; T3 = 52 mL∙kg-1; T4 = 104 mL∙kg-1.
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application likely expedited the denitrification rate of NO3
−-N

(Pradhan et al., 2009).

Soil enzymes are instrumental in the cycling of nitrogen,

carbon, and phosphorus in the soil and in activating the plant’s

defense mechanisms (Fan et al., 2024; Zhu et al., 2024; Yan et al.,

2025).(Tao et al., 2015) noted that the application of organic

fertilizers, as opposed to chemical ones, significantly enhanced

soil enzyme activities such as INV and URE. HU, as a nutrient-

rich organic fertilizer, has been shown to increase the activities of

soil INV and URE with increasing application volume (Krause and

Rotter, 2018). Consistently, our results demonstrate pronounced

enhancements in the activities of INV and URE, alongside

significant correlations with changes in AP, AK, SOM, C/N, and
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EC (Supplementary Table S1). Furthermore, SOM is considered a

critical substrate for enzyme synthesis and plays a vital role in

stimulating soil enzyme activity (Wei et al., 2015). Such dynamics

underscore the close association between soil nutrient status and

enzyme activities (Demisie et al., 2014). In the present study, the

application of HU corresponded with a linearly reduction in soil C/

N ratios (Supplementary Figure S3C), aligning with observations by

(Deng et al., 2020) Under certain circumstances, the soil C/N ratio

can serve as an indicator of SOM quality (Qin et al., 2023). A

significant negative correlation was observed between soil INV and

URE activities and the C/N ratio (p < 0.01) (Supplementary Table

S1), consistent with findings by Li et al (Li et al., 2017). We noted

that the C/N ratio decreased progressively at treatments T1, T2, and
FIGURE 4

Relative abundances of relative abundance on phylum level (a) and genus level (b) for different application of HU. The phyla and genera accounting
for less than 1% of the total composition in each library are represented by Others. Abbreviations: C = no treatment; T1 = 13 mL∙kg-1; T2 = 26
mL∙kg-1; T3 = 52 mL∙kg-1; T4 = 104 mL∙kg-1.
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T3 but surged dramatically at T4, which was associated with a

suppression of soil INV and URE activities (Table 1; Figures 1A, B),

this might be that adding too much urine reduces the abundance of

Gemmatimonadota, resulting in the inhibition of urease activity

(Table 2), which is consistent with the previous research results

(Cheng et al., 2020). Additionally, previous studies indicated a

positive correlation between Acidobacteriota and AKP activities,

and a negative correlation between CAT activities and Bacillota

(Ren et al., 2021). Soil AKP activity was found to be inhibited, likely

due to increased urine content which subsequently reduced the soil

pH. AKP is highly sensitive to soil acidity, and its activity is

diminished under low pH conditions. Overall, both the soil

physicochemical properties and microbial communities were

shown to significantly influence soil enzyme activities.

Moreover, the germination and seedling phases are particularly

susceptible during the course of plant development, with salinity

serving as a significant environmental constraint on growth, as

documented by (Tang et al., 2015) In our study, application rates of

HU at 52 mL kg−1 and 104 mL kg−1 (T3 and T4 treatments)

inhibited normal germination and growth of pakchoi

(Supplementary Figure S1). A contributing factor may be the

observed sharp increase in soil electrical conductivity to levels

between 1.78 and 3.29 mS cm−1, which represents an elevation of

78% to 229% compared to the T2 treatment. This heightened soil
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salinity can exert detrimental osmotic pressure, impeding plant

development (Acosta-Motos et al., 2017). Furthermore, the

inherent sodium and chloride content of HU may also play a

role; as application rates rise, the subsequent accumulation of

these ions could disrupt nutrient balance across cellular

membranes and ultimately prove toxic to the pakchoi plants

(Negrao et al., 2017). Consequently, meticulous regulation of HU

application rates is imperative in future agricultural practices to

circumvent its potential phytotoxic effects and safeguard

crop yields.
4.2 Effect of HU on the soil bacterial
diversity and community composition

The Shannon–Wiener diversity index (S index) serves as a

metric for assessing microbial diversity, where a greater value of

the S index signifies enhanced community diversity. In the present

study, elevated levels of HU application were correlated with a

consistent reduction in the S index during pakchoi cultivation,

suggesting that HU application attenuates soil bacterial diversity.

This attenuation may be attributable to the increase in soil

conductivity and salinity induced by HU, as soil microorganisms

are acutely sensitive to shifts in salinity within their habitat. Such
FIGURE 5

ANCOM Volcano map The points in the figure represent the species, the ordinate represents the W value, and the abscise represents the clr (center
log transform) value, which represents the degree of difference in sample abundance between groups. The higher the absolute value of the number,
the greater the difference in relative abundance.
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increases in salinity can impose osmotic stress upon soil microbes,

thereby diminishing microbial diversity (Chen et al., 2022).

Concurrently, the Evenness and Richness indices exhibited a

generally declining trend as shown in Figure 3, implying that

adding HU to the soil during the cultivation of pakchoi reduces

bacterial richness. Prior research indicates that soil microbial life is

considerably influenced by pH levels (Geisseler and Scow, 2014). In
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our investigation, the rise in soil EC and the drop in pH associated

with greater volumes of HU might be contributing factors to the

observed alterations in soil bacterial diversity and community

composition (Wu et al., 2020).

Analysis of community structure demonstrated that the

abundances of Actinomycetota, Chloroflexi, and Acidobacteriota

decreased to varying extents. Given that Acidobacteriota

predominantly adopt an oligotrophic lifestyle while HU is

nutrient-rich (Ding et al., 2018), it is suggested that HU application

could enhance soil fertility and suppress the growth of these

bacteria. Conversely, the relative abundances of Pseudomonadota,

Bacteroidota, and Gemmatimonadota were observed to increase

alongside rising HU volumes. This trend may be attributable to the

higher soil fertility requirements of these bacteria, which were met

through HU application, thus providing an optimal growth milieu

(Guo et al., 2018). Additionally, Chloroflexi have the capability to

convert nitrites into nitrates (Daims et al., 2015), whereas

Pseudomonadota, Bacteroidota, and Gemmatimonadota possess

denitrification capabilities (Ren, 2018). These observations suggest

that HU application skewed nitrogen cycling toward reduced

nitrification but enhanced denitrification, aligning with the

observed declines in NO3
−-N within soil physicochemical

attributes. Furthermore, genera such as Sphingomonas and Bacillus

were noted to elevate the abundance of genes linked to nitrogen

metabolism and potentially reduce ammonia nitrogen consumption

by influencing nitrogen transport (Sun et al., 2020; Yang et al., 2021).
FIGURE 6

NMDS analysis of soil bacterial communities. Abbreviations: C = no treatment; T1 = 13 mL∙kg-1; T2 = 26 mL∙kg-1; T3 = 52 mL∙kg-1; T4 = 104 mL∙kg-1.
TABLE 2 Pearson correlation between the top 10 bacteria in phylum
level abundance and soil enzyme activity.

Bacteria categories INV URE CAT AKP

Pseudomonadota 0.51 0.10 −0.58* −0.81***

Actinomycetota −0.60* −0.37 0.19 0.70**

Chloroflexiota −0.37 0.03 0.69** 0.75**

Acidobacteriota −0.38 0.11 0.70** 0.76**

Gemmatimonadota 0.82*** 0.80*** −0.03 −0.43

Bacteroidota 0.35 −0.02 −0.57* −0.75**

Bacillota 0.23 −0.30 −0.74** −0.81***

Rokubacteriota −0.10 0.30 0.73** 0.65**

Nitrospirota 0.20 0.71** 0.67** 0.45

Planctomycetota −0.62* -0.21 0.53* 0.81***
* represents P < 0.05, ** represents P < 0.01, and *** represents P < 0.001.
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Sphingomonas was also recognized for its capacity to degrade a broad

spectrum of harmful compounds (Gatheru et al., 2017). This might

be attributable to HU application elevating the soil’s ammonia-

nitrogen levels, subsequently increasing Sphingomonas and Bacillus

populations, a finding corroborated by (Wang et al., 2022) Moreover,

belonging to Actinomycetota, Gaiella was mentioned for its role in

soil nitrate assimilation and in facilitating the uptake of amino acids

and other nutrients by plants (Leite et al., 2021). These predominant

genera are posited as significant ecosystem contributors, notably in

soils treated with HU (Roy et al., 2022). Consequently, HU

application has a direct impact on soil physicochemical

characteristics and nutrient content, inducing environmental shifts

that influence soil bacterial communities.
4.3 Relationship between soil enzymatic
activity and bacterial communities

Soil enzymes, predominantly synthesized by microorganisms

with minor contributions from plants and other soil biota, have

been found to play pivotal roles in the nutrient cycling and

metabolism within soil ecosystems (Liu et al., 2022). The

production of enzymes, which often varies with shifts in

microbial community composition, can exert different influences
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on soil processes. (Baldrian et al., 2010; Qu et al., 2025) reported

that soil microorganisms—and, consequently, enzymatic activities

—are subject to regulation by a constellation of complex factors that

govern microbial community dynamics, with microbial biomass

and enzyme activity often showing significant correlation within the

upper tens of centimeters of the soil profile (Baldrian et al., 2010).

Correlation analyses revealed that the relative abundance of

Gemmatimonadota was strongly correlated with INV and URE

activities, whereas the relative abundances of Pseudomonadota,

Bacillota, and Planctomycetota were closely associated with AKP

activity. The former phyla exhibited notably strong negative

correlations, whereas the latter displayed significantly positive

correlations. These patterns may arise from the enhancement of

SOM due to HU amendments, which, in turn, increase bacterial

abundance and alter community structure (Jiao et al., 2013). The

findings underscore the varied and intricate interconnections

between soil enzymatic activities and bacterial communities,

underscoring the need for more comprehensive investigation into

the specific relationships between distinct bacterial phyla and

soil enzymes.

Excessive application of HU for irrigation could potentially lead

to soil salinization and eventually promote land erosion (Kassa

et al., 2018; Chapman, 1992). Concurrently, risks associated with

ammonia volatilization and pathogen contamination persist
FIGURE 7

Redundancy analysis (RDA) of soil bacterial as explained by soil physicochemical properties in soil. Abbreviations: TN = Total Nitrogen; TP = Total
Phosphorus; AP = Available Phosphorus; AK = Available Potassium; NH4+-N = Ammonium Nitrogen; NO3

--N = Nitrate Nitrogen; SOM= Soil Organic
Matter; C = no treatment; T1 = 13 mL∙kg-1; T2 = 26 mL∙kg-1; T3 = 52 mL∙kg-1; T4 = 104 mL∙kg-1.
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throughout the urine reuse process (Martin et al., 2022). To address

these concerns, it is recommended to either dilute urine or pre-treat

HU using appropriate chemical agents such as calcium hydroxide

and magnesium hydroxide to convert it into a stable and useful

solid form of fertilizer. These chemicals are readily available and

cost-effective. Additionally, the introduction of calcium and

magnesium can markedly diminish pathogen levels due to the

elevated pH values in HU (Kishor et al., 2020). Furthermore,

advanced oxidation processes including ozone treatment and

electrochemical oxidation have proven effective in sterilization

and in decomposing micropollutants such as pharmaceuticals,

antibiotics, and hormones in HU (Krishnan et al., 2021).
5 Conclusion

Based on the results of this study, we draw the following

conclusions: (1) HU can enhance soil nutrient contents by enriching

it with N, P, and K. There is a linear correlation between soil nutrient

content and the volume of HU applied. (2) HU increases the

enzymatic activities of INV, URE, and CAT, whereas it decreases the

activity of AKP. Soil enzymatic activities are closely linked to soil

physicochemical properties and the microbial community

composition. (3) The application of HU tends to increase the

abundance of Pseudomonadota and Gemmatimonadota but

decreases the populations of Actinomycetota, Chloroflexi, and

Acidobacteriota. In addition, HU increased the abundance of

Sphingomonas, but both Gaiella and Blastococcus decreased

significantly. HU significantly influences the diversity of soil bacterial

communities, which tends to decrease as HU volume increases.

In conclusion, HU serves as a viable alternative to conventional

chemical fertilizers by not only enhancing soil nutrient content but

also reducing environmental pollution attributable to chemical

fertilizers. However, the buffering capacity of soils against urine

varies, making application conditions and methods crucial.

Unscientific use of urine as fertilizer may lead to soil acidification

and salinization. Therefore, based on the current pot experiment,

long-term field trials are necessary to comprehensively and

accurately evaluate the value and risks of utilizing urine as a

fertilizer resource.
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