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Conservation agriculture (CA) practices have been widely promoted and

recognized for their potential to enhance soil sustainability by improving soil

properties. The purpose of the 2-year field experiment was to investigate the

effect of diversified CA -based cropping systems on nutrient availability and soil

characteristics. The study was conducted using a randomized complete block

design (RCBD) with four replications at each site. Six cropping system (CS)

scenarios were tested: S1—rice–wheat–mungbean (R-W-SM) under

conventional tillage (CT) without residue retention (R0); S2—R-W-SM under CA

with residue retention (R+); S3—maize–wheat–mungbean (M-W-SM) under CT

(R0); S4—M-W-SM under permanent bed (PB) with R+; S5—soybean–wheat-

mungbean (S-W-SM) under CT (R0); and S6—S-W-SM under PB with R +.

Though each annual cropping cycle spanned 1 year, the inclusion of mungbean

(summer mungbean) in the same year allowed the assessment of a three-crop

rotation within each year. After two cropping years (effectively covering two

complete crop rotation cycles), the results indicated that S6 significantly

improved the soil properties: bulk density decreased by 4.4% and infiltration rate

increased by 45.6% comparedwith S1. Soil organic carbon andmacro- andmicro-

nutrient availability were notably higher under CA-based systems (S2, S4, and S6).

The highest microbial biomass, enzymatic activity, and basal soil respiration (BSR)

were recorded in S6. In both years, dehydrogenase activity (DHA) and BSR

increased by 58.5%–64.6% under S6 compared with 40.7%–41.4% in S1. Micro-

nutrients like Zn, Fe, Mn, and Cu were improved by 10%, 39%, 8%, and 63%,

respectively, in S6 over S1. These findings suggest that CA-based soybean–wheat

–mungbean systems (S6) can substantially enhance soil health and nutrient

dynamics in a short-term rotation and may guide future sustainable agriculture.
KEYWORDS

cropping system, residue retention, soil organic carbon, basal soil respiration,
summer mungbean
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1 Introduction

The continuous expansion of the rice–wheat (RW) cropping

system in South Asia has raised concerns over the sustainability of

intensive grain production. This results from the overuse of natural

resources linked to certain farmingmethods (Tulu et al., 2023). As the

world’s population steadily increases, there is a growing urgency to

enhance agricultural production to meet the rising need for

sustenance and agricultural commodities (Gudi et al., 2022; Singh

et al., 2022). However, conventional agricultural practices have

frequently engendered adverse consequences for soil health and

environmental sustainability (Doran and Zeiss, 2000). Using

sustainable intensification techniques in crop production, as a

fundamental principle of conservation agriculture, offers promising

solutions to address several challenges. These challenges include

climatic anomalies, fluctuations in prices, ensuring a balanced food

supply, preventing natural resource degradation, and reducing

dependency on agro-chemicals (Bakala et al., 2020). Sandy loam

soils dominate large areas in South west Asia and other regions across

the globe. However, these soils face several production limitations,

including high bulk density, low hydraulic conductivity, reduced

water retention capacity, low soil organic carbon (SOC), and

diminished biological activity (Kumari et al., 2018; Osunbitan et al.,

2005; Singh et al., 2011). In intensified irrigated RW cropping

systems, the low SOC content leads to unsustainable productivity

and deteriorating soil health (Yadav M. et al., 2022). Factors driving

the shift from rice–wheat rotations to maize/soybean or maize

rotations include the adaptability of maize/soybean crops, increased

maize demand in the livestock and fishery sectors, limited rice export

opportunities, and higher yield potential of maize fodder (Congreves

et al., 2015). The RW cropping system can negatively impact soil

health through nutrient depletion, erosion, declining organic matter,

and soil compaction (Bhatt et al., 2016). These interconnected issues

pose serious threats to both ecosystem health and long-term

agricultural sustainability (Bhuiyan et al., 2023). Incorporation of

mungbean as a leguminous crop in the RW cropping system can

mitigate these issues by enhancing soil fertility as well as soil health,

reducing erosion, improving organic matter content, and alleviating

compaction (Hazra et al., 2020a). This practice diversifies with maize/

soybean cropping system and promotes sustainable nutrient cycling,

leading to improved soil sustainability (Sharma et al., 2014).

Conservation agriculture (CA) has been implemented on a

global scale, covering more than 125 million hectares of land

(Kumar and Saini, 2022). This farming approach that focuses on

minimizing soil disturbance through reduced or zero tillage (ZT),

diversification of crops, and leftover of at least 30% crop residue on

the soil surface (Dey et al., 2016; Ladha et al., 2004). ZT is a popular

strategy among wheat farmers, as it allows for early planting,

reduces production costs, and increases yield-attributing

parameters, thus improving the overall sustainability,

productivity, and profitability of the farmers (Singh et al., 2014).

The development of the machine for zero-tilled wheat sowing

named as “Happy Seeder “ has enabled farmers in South west

Asia to retain the residue of crop and transition toward full CA-

based systems (Sapkota et al., 2015). In addition to addressing water
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and labor shortages, the maize–wheat – mungbean and soybean–

wheat –mungbean cropping systems are emerging as an alternative

to conventional RW cropping systems due to the lower water and

labor requirements of maize and soybean (Beare et al., 1994;

Halvorson et al., 2002). A research study demonstrated that

conservation tillage with crop management (CACM) produced

the most favorable results, achieving the greatest economic yield

for soybean production compared with other agricultural

approaches including conventional tillage with chemical

management (CTCM), conservation agriculture with organic

management (CAOM), and conventional tillage with organic

management (CTOM) (Meena et al., 2022a, b).

Numerous studies over the past decade have examined the

importance of different tillage practices, residue management, and

cropping sequences on various aspects of agricultural productivity,

such as nutrient and water use efficiency, soil physical properties,

greenhouse gas emissions, economic profitability, climate

adaptation, and overall sustainability (Karlen et al., 2013; Sharma

et al., 2022; Sharma and Singh, 2023). Research has indicated that

CA practices can yield favorable results on soil health and also

increase (50%–56%) the soil organic matter (Jat et al., 2021; Sharma

et al., 2021), improve the soil structure through the preservation of

soil aggregates (Srinivasarao et al., 2013), reduce the oxidation of

organic matter, increase the soil enzymatic activity (Pankaj et al.,

2023; Saikia et al., 2019; Sharma et al., 2022, 2025), and improve the

soil micro-nutrient status (Sharma and Dhaliwal, 2021) compared

with CT. Crop yields in agricultural systems are significantly

influenced by several key factors, including tillage practices,

nutrient management strategies, sowing density and timing, pest

control measures, and the incorporation of leguminous crops into

crop rotations (Meena et al., 2023a; Meena et. al., 2023b). Zero-till

direct- seeded rice (DSR) and maize substitution offer water, energy,

and labor savings compared with manual transplanting as well as

improve soil health (Jat et al., 2018; Choudhary et al., 2018).

Additionally, integrating mungbean into rice–wheat systems

improves the soil carbon and nitrogen content, contributing to

overall soil quality enhancement (Singh et al., 2015).

Although several studies, including meta-analyses, have

evaluated the individual effects of tillage intensity, legume

inclusion, and residue retention on soil biological activities, there

remains limited information on their combined and interactive

effects under diversified conservation agriculture (CA)-based

cropping systems. Reduced tillage intensity, coupled with legume

integration and residue management, may differentially influence

soil physical and chemical properties as well as modulate soil

microbial diversity and activity in response to changes in

substrate availability.

We hypothesized that reduced tillage intensity, the inclusion of

leguminous crops, and management of crop residues would

collectively enhance nutrient availability and stimulate soil

microbial activity. Furthermore, we proposed that prolonged

implementation of these conservation agriculture practices could

lead to shifts in the balance of soil ecological enzyme activities,

ultimately influencing microbial processes and nutrient cycling

under sustainable intensification systems. In addition, the study
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assessed the biochemical contributions of accumulated soil organic

carbon by quantifying key soil enzyme activities under contrasting

tillage and residue management regimes.

2 Materials and methods

2.1 Experiment site and weather conditions

The present study was conducted at Agronomy Research Farm,

Punjab Agricultural University (PAU), Ludhiana, India. The farm is

located 247m abovemean sea level (MSL) at coordinates 30° 54′N and

75° 48′ E. The location experiences semi-arid, sub-tropical climates and

is classified under India’s Trans-Gangetic agroclimatic zone weather

conditions. The maximum temperatures were 42.1°C and 40.0°C

during 2019–2020 and 2020–2021. The mean relative humidity

during the cropping season ranged from 30.50% to 86.92% and

34.00% to 85.14% during the crop season of 2019–2020– and 2020–

2021, respectively. During summer season, a maximum temperature

that ranged 32.9°C–42.1°C and a minimum temperature that ranged

11.1°C –27.6°C were recorded in the summer season of 2020, whereas

during 2021 it was 23.4°C–39.4°C and 15.8°C– 26.6°C, respectively.

Total rainfall received during the crop season was 72.4 mm and 126.8

mm during 2020 and 2021, respectively. The experimental soil was

sandy loam in texture (76.5% sand, 16.3% silt, and 7.2% clay) and low

in nitrogen (181.9 kg ha-1) and soil organic carbon (0.37%), medium in

accessible potassium (208.6 kg ha-1) and phosphorus (21.2 kg ha-1), and

neutral in reactions (pH 7.31).
2.2 Experimental treatment details

The field trials were established in a randomized complete block

design (RCBD) with four replications of each of the six cropping

system treatments, which varied in tillage intensity, cropping

system, and residue management. Each experimental plot

measured 18 m × 10.5 m (Table 1). The study was conducted

over two cropping years from 2019–2020 to 2020–2021.
2.3 Crop residue management

Crop residues of rice, maize, soybean, wheat, and mungbean were

managed differently based on the treatments listed in Table 2. In

treatments R-W-SM (R0)- S1, M-W-SM (R0)- S3, and S-W-SM (R0)-

S5, the crop residues were removed, while in R-W-SM (R+)- S2, M-W-

SM (R+)- S4, and S-W-SM (R+)- S6 the residues were retained.

Harvesting operations for all crops in the experimental plots were

conducted using a combine harvester integrated with the advanced

Super SMS (straw management system) (Figure 2). This innovative

technology incorporates a chopper and spreader, working in tandem to

finely chop the straw and ensure its uniform distribution over a wider

area, effectively acting as mulch. Harvesting was carried out at varying

clearances from the ground level: 30–40 cm for rice, 10–15 cm for

wheat, 125 cm for maize, 15–20 cm for soybean, and 20–25 cm for

mungbean in treatments S2, S4, and S6. As per treatments, the crop

residue load was calculated and mentioned in Table 2.
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2.4 Crop management practices

S1: Intensive tillage for rice–wheat–mung rotation with high NPK

rates (105–125 N kg/ha), broadcast application, continuous flooding

for rice, and flood irrigation for other crops. S2: Rice under intensive

tillage, wheat with Happy Seeder, mung zero-tillage on residues.

Reduced NPK (84–100 N kg/ha) with Green Seeker precision

management and irrigation at -20 to -40 kPa matric potential. S3:

Conventional tillage for maize–wheat–moong rotation with

comprehensive NPK fertilization (125 N kg/ha for maize/wheat),

broadcast application, and furrow/flood irrigation at -40 to -50 kPa.

S4: Permanent bed system with residue retention for all crops. Reduced

wheat seeding (75 kg/ha), lower NPK rates (100N kg/ha), Green Seeker

precision management, and furrow irrigation throughout, S5:

Conventional tillage for soybean–wheat–moong rotation. Soybean at

62.5 kg/ha with reduced nitrogen (31.25 kg/ha) due to N-fixation,

standard wheat fertilization, and mixed furrow/flood irrigation. S6:

Permanent beds with full residue retention across soybean–wheat–

mungbean rotation. Reduced wheat seeding (75 kg/ha), precision

nitrogen management via Green Seeker, and consistent furrow

irrigation for optimal water use efficiency (Table 3).
2.5 Soil analysis

Baseline soil samples were drawn from two soil depths of 0 to 7.5

and 7.5 to 15 cm using an auger of 5 cm in diameter prior to the

initiation of the experiments. The soil bulk density was calculated as per

standard protocol suggested by Chopra and Kanwar (1991). A double
TABLE 1 Details of the experiment under different cropping systems.

Scenario Cropping system

Residue
management
(Kharif/Rabi/
Zaid)

R-W-SM(R0)-S1
Conventional PTR, conventional
tilled wheat (CT), mungbean

Residue removed

R-W-SM(R+)-S2
Partially CA PTR, Happy Seeder
wheat, ZT mungbean

20%–25% of wheat,
100% of rice and
mungbean residue

M-W-SM(R0)-S3
Conventional fresh bed maize
(FB), conventional tilled wheat
(CT), mungbean

Residue removed

M-W-SM(R+)-S4
Fully CA permanent bed maize
(PB), permanent bed wheat (PB),
permanent bed mungbean (PB)

20%–25% of wheat,
50%–60% of maize,
and 100% mungbean
residue

S-W-SM(R0)-S5
Conventional fresh bed soybean
(FB), conventional tilled wheat
(CT), mungbean

Residue removed

S-W-SM(R+)-S6
Fully CA permanent bed soybean
(PB), permanent bed wheat (PB),
permanent bed mungbean (PB)

20%–25% of wheat,
100% of soybean, and
100% mungbean
residue
PTR, puddled transplanted rice; CA, conservation agriculture; R, rice; M, maize; S, soybean;
W, wheat; SM, mungbean; S1, scenario 1; S2, scenario 2; S3, scenario 3; S4, scenario 4; S5,
scenario 5; S6, scenario 6.
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ring infiltrometer was used to measure the infiltration rate (Bouwer,

1986), which determines the rate at which water level recedes or the

rate at which water is withdrawn from a supply source to maintain a

constant head of water on the soil surface. The soil analysis for available

NPK followed the standard method described in Jackson (1967)

(Table 4). The determination of Fe, Mn, Zn, and Cu was carried out

with DTPA (pH 7.3) extractant using an atomic absorption

spectrophotometer (AAS Varian AAS-FS 240 model) (Arora, 2018).

2.5.1 Soil biological properties
Total microbial count was counted on nutrient agar media

using serial dilution technique plate technique (Arora, 2018). The

alkaline phosphatase activity (APA) of soil was assessed using a

standard method (Arora, 2018) and expressed as micrograms of p-

nitrophenol formed per gram of oven- dried soil. Dehydrogenase

activity (DHA) was estimated with the rate of triphenyl formazon

(TPF) formation from triphenyl tetrazolium chloride (TTC)

following the method of Arora (2018).

The basal soil respiration was estimated of the potential microbial

activity which is determined by calculating the linear rate of respiration

after a 7- day incubation period. The results were expressed as µg CO2-

C per gram of soil per day. The detailed procedure involved taking a

plastic bottle and adding 20 g of soil sample along with 5 mL of water.

In a separate vial, 10 ml mL of standard NaOH solution was placed and

suspended inside the capped plastic bottle. The bottle was then

incubated for 7 days at a temperature of 30°C. After the incubation

period, the vials containing NaOH solution were removed and titrated

with 0.5 mL of HCl using an indicator called phenolphthalein.

BRS(mgg −1ð Þsoil24hr(−1)) = ðmlHCl blankð Þ�mlHCl sampleð Þ � 22
� strengthofNaOH=Wt : ofsoilsample� 7 daysofincubationð ÞÞ � 100

2.6 Statistical analysis

The data from both experimental years were analyzed using

two-way analysis of variance (ANOVA) in Statistical Analysis

Software v9.4 (SAS Institute Inc. SAS/STAT® 9.4., 2013).

Treatment effects on soil properties were evaluated through biplot
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and loading plot analyses using principal component analysis

(PCA) with OriginPro software. A Pearson correlation matrix was

constructed to assess the relationships between the measured soil

variables. Tukey’s HSD test was used to compare the treatment

means at 5% level of significance.
3 Results

3.1 Bulk density and infiltration rate

Bulk density (BD) was not significantly influenced by CA

scenarios at 0–7.5 and 7.5–15 cm depth (Figure 1). In general, the

BD of the upper 0–7.5 cm layer was lesser compared with the lower

layer of soil (7.5–15 cm).

Puddled transplanted rice (PTR) recorded a higher BD compared

with conservation wheat andmaize. Scenarios S2, S4, and S6 recorded a

lower BD by 2.22%, 3.70%, and 4.44%, respectively, in the 0–7. 5-cm

soil layer and 0.70%, 1.41%, and 4.25% in the lower layer at 7.5–15-cm

soil depth, respectively, compared with S1 (1.35 and 1.41 g cm-3).

The infiltration rate was significantly higher by 45.68% under S6 over

the S1 treatment. Moreover, residue retention significantly influenced

the infiltration rate over no residue applied under the respective

crop establishment techniques. The highest infiltration rate was

noted under S6 (3.38 cm h-1) followed by S4 and S2 (3.00 and

2.64 cm h-1), whereas the lowest infiltration rate was noted under

S1 and S3 (2.32 and 2.45 cm h-1, respectively).
3.2 Soil pH, electrical conductivity, and soil
organic carbon

The CA-based practices did not significantly influence soil pH

and electrical conductivity at 0–7.5 and 7.5–15 cm of soil depth

(Table 5). The maximum soil organic carbon (SOC) was recorded

under S6 (0.50% to 0.52%), followed by S4 and S2 (0.49% to 0.51%

and 0.48% to 0.50%, respectively), whereas minimum organic

carbon was recorded under S1 (0.38% to 0.40%) at 0–7. 5-cm
TABLE 2 Total residue load (t ha-1) of the different experimental units during both seasons.

Scenario

Residue retained (t ha-1)

2019–2020 2020–2021

Rice Wheat Maize Soybean Mungbean System Rice Wheat Maize Soybean Mungbean System

R-W-SM(R0)- S1 – – – – – – – – – – – –

R-W-SM(R+)- S2 9.8 1.58 – – 2.8 13.91 10.0 1.62 – – 3.0 14.62

M-W-SM(R0)- S3 – – – – – – – – – – – –

M-W-SM(R+)- S4 – 1.64 4.9 – 2.9 9.44 – 1.68 5.0 – 3.1 9.78

S-W-SM(R0)- S5 – – – – – – – – – – – –

S-W-SM(R+)- S6 – 1.68 – 4.0 3.03 8.68 – 1.74 – 4.20 3.3 9.24
front
S1, conventional PTR, conventional tilled wheat (CT), mungbean; S2, partially CA PTR, Happy Seeder wheat, ZT mungbean; S3, conventional fresh bed maize (FB), conventional tilled wheat
(CT), mungbean; S4, fully CA permanent bed maize (PB), permanent bed wheat (PB), permanent bed mungbean (PB); S5, conventional fresh bed soybean (FB), conventional tilled wheat (CT),
mungbean; S6, fully CA permanent bed soybean (PB), permanent bed wheat (PB), permanent bed mungbean (PB).
iersin.org
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TABLE 3 Crop management practices for different crop rotations sown in different scenarios.

Scenarios detail/
S5 S6

t bed
ith the help
n previous
dues
ith the help
n previous
dues
ing with the
on previous

dues

Soybean— two passes of
harrow, one passes of tiller
followed by (fb) planking

Wheat— two passes of harrow
and two passes of rotavator fb

planking
Mungbean— two passes of
harrow and two passes of

rotavator fb planking and then
sowing with the help of

conventional till

Permanent bed
Soybean— sowing with the

help of bed planter on previous
crops residues

Wheat— sowing with the help
of bed planter on previous

crops residues
Mungbean— sowing with the
help of bed planter on previous

crops residues

20
75
—30

Soybean- 62.5
Wheat— 100
Mungbean—30

Soybean— 62.5 wheat— 75
Mungbean—30

n the top of
ines on bed
lines on bed

Soybean: two lines on the top
of bed, wheat: line sowing flat

(22.5 cm)
Mungbean— line sowing flat

(22.5 cm)

Soybean: two lines on the top
of bed, wheat: two lines on bed,
mungbean— two lines on bed

:60:30
:62.5:30
12.5:40:0

Soybean—31.25:80:0
Wheat—125:62.5:30
Mungbean—12.5:40:0

Soybean—31.25:80:0
Wheat—100:62.5:30
Mungbean—12.5:40:0

ting
anagement
Seeker

Farmer fertilizer practices
Broadcasting

80% RDF+ N management
with Green Seeker

on -50 kPa,
ungbean—40 PAU, recommended practice

Soybean — irrigation -50 kPa,
wheat —40 kPa,

mungbean— irrigation at - 40-
kPa matric potential

row
rrow
furrow

Soybean: furrow
Wheat: flood

Mungbean: flood

Soybean: furrow
Wheat: furrow

Mungbean: furrow

K
u
m
ar

e
t
al.

10
.3
3
8
9
/fag

ro
.2
0
2
5
.16

12
79

2

Fro
n
tie

rs
in

A
g
ro
n
o
m
y

fro
n
tie

rsin
.o
rg

0
5

Management
Practices

S1 S2 S3 S4

Field preparation

Rice —two passes of harrow,
one passes of rotavator, two
passes of puddle harrow
followed by (fb) planking

Wheat— two passes of harrow
and two passes of rotavator fb

planking
Mungbean— two passes of
harrow and two passes of

rotavator fb planking and then
sowing with the help of

conventional till

Rice— two passes of harrow,
one passes of rotavator, two
passes of puddle harrow
followed by (fb) planking

Wheat— Happy Seeder wheat
sowing on previous crops

residues
Mungbean — sowing with the
help of zero till on previous

crop residues

Maize— two passes of
harrow, one passes of tiller
followed by (fb) planking
Wheat— two passes of

harrow and two passes of
rotavator fb planking

Mungbean— two passes of
harrow and two passes of
rotavator fb planking and
then sowing with the help

of conventional till

Permanen
Maize — sowing w
of bed planter o

crops resi
Wheat—sowing w
of bed planter o

crops resi
Mungbean— sow
help of bed planter

crops resi

Seed rate
(kg ha-1)

Rice— 20
Wheat— 100
Mungbean—30

Rice— 20
Wheat— 100
Mungbean—30

Maize— 20
Wheat— 100
Mungbean—30

Maize—
Wheat—

Mungbean

Crop geometry
Rice: random geometry,

Wheat: line sowing (22.5 cm)
Mungbean—22.5 cm

Rice: random geometry
Wheat: 22.5 cm

Mungbean: 22.5 cm

Maize: one line on the top
of bed, wheat: line sowing

flat (22.5 cm)
Mungbean— line sowing

flat 22.5 cm

Maize: one line o
bed, wheat: two l
Mungbean— two

Fertilizer (N/P2O5/K2O kg ha-1)
Rice—105:0:30;

Wheat— 125:62.5:30
Mungbean—12.5:40:0

Rice—84:0:30
Wheat—100:62.5:30
Mungbean— 12.5:40:0

Maize—125:60:30
Wheat— 125:62.5:30
Mungbean—12.5:40:0

Maize—100
Wheat—100
Mungbean—

Method of fertilizer (urea)
application

Broadcasting
Drilling 80% RDF+ N

management with Green Seeker
Broadcasting

Broadcas
80% RDF+ N m

with Green

Irrigation management

Rice— continuous flooding of 5
to 6 cm in depth for 30–40
days after transplanting

fb irrigation applied at alternate
wetting and drying

Wheat— 5 to 6 irrigations as
per requirement

Mungbean— 3–5 irrigations as
per requirement

Rice— Soil was kept wet till
germination fb irrigation at -20

kPa matric potential
Wheat— irrigation at -40 kPa

matric potential
Mungbean—Irrigation at - 40-

kPa matric potential

PAU, recommended
practice

Maize — irrigati
wheat —40 kPa M

kPa

Method of Irrigation Flood Flood
Maize: furrow
Wheat: flood

Mungbean: flood

Maize: fur
Wheat: fu

Mungbean:
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depth in both years. The top layer was found to have the highest

SOC value (0–7.5 cm); following that, as soil depth increased, the

SOC content dropped significantly across all scenarios (Table 5).

After completion of the experiment, SOC was significantly higher

by 31.5%, 28.9%, and 26.3% under S6, S4, and S2 compared with S1

(0.38%) at the upper most layers (0–7.5 cm) in the first year.

Similarly, SOC was significantly higher by 30.0%, 27.5%, and 25.0%

at 0–7. 5-cm depth under S6, S4, and S2 than S1 in the second year,

but SOC remained unchanged at a – lower depth (7.5–15 cm)

compared with S1.
3.3 Available soil nitrogen, phosphorus,
and potassium

The data depicted in Table 6 show that enhanced CA-based

management techniques have a big impact on soil nutrient

availability, specifically primary nutrients. Throughout the

cropping cycles, conservation agriculture (CA) practices resulted

in higher levels of available primary nutrients in the soil. The higher

available N, P, and K was recorded under S6 (259.9, 30.50, and

230.1 kg ha-1), followed by S4 (250.2, 28.4, and 221.4), whereas

minimum available N, P, and K was recorded under S1 (199.8,

23.30, and 215.4 kg ha-1) at 0–7. 5-cm depth. S6 and S4 resulted in a

higher availability of N, P, and K in comparison with the rest of the

scenarios. After 2 years of the study, the farmer’s practice (S1, S3,

and S5) resulted into statistically less available N (199.8 kg ha-1),

available P (23.30 kg ha-1), and available K (215.4 kg ha-1) content

in S1 at 0–7. 5-cm depth in comparison with the rest of the

scenarios (Table 6). The available N, P, and K were statistically

higher by 30.0%, 30.9%, and 6.82% under S6 over the S1 treatment.

Moreover, residue retention statistically affected the available

primary nutrient over no residue applied under the respective

crop establishment techniques.
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3.4 DTPA soil micro-nutrients

The data shown in Table 7 reveal that improved management

practices had a significant effect on the micro- nutrient content in

the soil. Zn, Fe, Mn, and Cu with ranges of 1.90–2.10, 9.30–12.96,

8.40–9.10, and 0.43–0.70 mg/kg, respectively. The results show that

S6 had the highest content of Zn, Fe, Mn, and Cu compared with

the other treatments. S6 recorded the highest values of 2.10 mg kg-1

for Zn, 12.96 mg kg-1 for Fe, 9.10 mg kg-1 for Mn, and 0.70 mg kg-1

for Cu. This indicates that residue retention in S6 resulted in a

higher micro-nutrient availability in the soil. Similarly, S4 also

showed relatively higher micro-nutrient levels compared with S1,

S2, S3, and S5. These results suggest that residue retention in the

cropping systems contributes to improved soil micro-nutrient

levels, particularly in the case of S6 and SS4.
3.5 Soil microbial properties

3.5.1 Soil enzymes
The data presented in Table 8 reveal that improved management

practices had a significant effect on DHA, alkaline phosphatase enzyme

(APA), total microbial population count, and BSR in soil.

The DHA content ranged from 1.23 to 2.14 mg TPF g−1 soil h−1;

highest DHA was noted in S6 which was statistically higher with S4

and remained at par with S2. Compared to S1, DHA was 58.8%

greater in S6 and 31.2% higher in S4. The APA values ranged

between 73.1 and 112.7 mg p-NP g-1 h-1. The maximum APA was

recorded under S6 (105.3 and 112.7 mg p-NP g-1 h-1), followed by S4

(102.8-107.5 mg p-NP g-1 h-1) and S2 (99.4-104.3 mg p-NP g-1 h-1),

whereas minimum APA was recorded under S1 and S3 (73.1 and

74.9 mg p-NP g-1 h-1). The order of DHA and APA activity followed

the pattern S6 > S4 > S2, with the lowest levels observed in S1.
FIGURE 1

Effect of conservation agriculture-based cropping systems on the bulk density and infiltration rate of soil after 2 years. Similar letters with in a column
indicate a non-significant difference at 0.05 level of probability using Tukey’s HSD test. S1, conventional PTR, conventional tilled wheat (CT), mungbean;
S2, partially CA PTR, Happy Seeder wheat, ZT mungbean; S3, conventional fresh bed maize (FB), conventional tilled wheat (CT), mungbean; S4, fully CA
permanent bed maize (PB), permanent bed wheat (PB), permanent bed mungbean (PB); S5,conventional fresh bed soybean (FB), conventional tilled
wheat (CT), mungbean; S6, fully CA permanent bed soybean (PB), permanent bed wheat (PB), permanent bed mungbean (PB).
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3.5.2 Total microbial count
The total microbial population, including bacteria, fungi, and

actinomycetes, varied across the different scenarios (Table 8). The

higher total microbial populations were recorded in R-W-SM (R0)-

S6 (4.00 to 4.15 × 105 CFU/g soil), followed by S4 and S2 (3.00 to

3.06 × 105 CFU/g soil and 2.80 to 2.97 × 105 CFU/g soil), whereas

the lowest total microbial populations were recorded under S1 (1.20

to 1.25 × 105 CFU/g soil) in both years. During the first and second

year, the total microbial population counts in S6 were 233.3% and

232% higher than those in Sc1, respectively. The increased

microbial population may be attributed to the consistent food

source provided by residue incorporation. The microbial count

trend is likely similar in scenarios, subsequently resulting in the

order S6 > S4 > S2 and >S1 (Table 8).
3.6 Basal soil respiration

The basal soil respiration varied from 16.2 to 23.2 mg g-1 soil 24 h-1.
The maximum soil respiration was recorded under S6 (22.8 and

23.2 mg g-1 soil 24 h-1), followed by S4 and S2 (18.6 –19.1 mg g-1 soil
TABLE 4 Initial soil characteristics of the experimental site.

Particulars

Value

Method employed0.0–
7.5
cm

7.5–
15
cm

Mechanical composition

Sand (%) 76.5 79.6

International pipette method
(Piper, 2019)

Silt (%) 16.3 14.3

Clay (%) 7.2 6.1

Soil texture
Sandy
loam

Sandy
loam

Physical properties

Bulk density (g cm-3) 1.42 1.48
Core sampling (Chopra and

Kanwar, 1991)

Infiltration rate (cm h-1) 2.31 2.31
Double ring infiltrometer
method (Bouwer, 1986)

Chemical properties

pH (1:2 soil/water) 7.31 7.38
Glass electrode pH meter
method (Richards, 1954)

Electrical conductivity
(dS m-1) (1:2 soil/water)

0.21 0.24
Conductivity bridge method

(Richards, 1954)

Organic carbon (%) 0.37 0.35
Wet digestion method

(Walkley and Black, 1934)

Available N (kg ha-1) 181.9 167.2
Alkaline permanganate

method (Subbiah and Asija,
1956)

Available P (kg ha-1) 21.2 15.3 Olsen’s method (Olsen, 1954)

Available K (kg ha-1) 208.6 194.3
Flame photometric method

(Jackson, 1967)
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24 h-1), whereas minimum soil respiration was recorded under S1 and

S3 (16.8 and 17.0 mg g-1 soil 24 h-1). The sequence of soil respiration of

the different scenarios was S6 > S4 > S2, and the lowest was recorded in

S1 (16.2 and 16.4 mg g-1 soil 24 h-1) and the highest was in S6 (Table 8).
3.7 Pearson’s correlation analysis and
principal component analysis

Pearson’s correlation analysis was employed to assess the

influence of CA-based cropping system on the properties of soil

in reference with post-harvest soil fertility (Figure 3). A highly

significant and positive relationship (R2 = 0.79) was found between

soil pH and EC, whereas the EC of soil showed a high correlation

with DTPA Cu (R2 = 0.64). Highly significant and maximum values

of R2 were found for APA and DTPA Mn (0.99). Additionally,

DTPA Zn, Fe, and Cu micro-nutrients were found to be more

correlated with DHA activity in the soil.
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The principal component analysis (PCA) reduced the six

experimental treatments into two independent components

(eigenvalues > 1), which together accounted for 92.8% of the total

variation among the variables. The first principal component (PC1)

explained 80.0% of the variation, with the highest significant

contribution from DTPA-extractable Zn. The second principal

component (PC2) accounted for 12.8% of the variation and had

the greatest loadings for soil pH. A third component (PC3),

contributing 3.43% of the variation, showed significant negative

loadings for total microbial biomass carbon. The 3D PCA graphs

for macro-nutrients, micro-nutrients, and biological properties

depicted the relative positions of observations corresponding to

each treatment, highlighting the interactions between the two main

components (Figure 4).
4 Discussion

4.1 Bulk density

The bulk density decreased as a result of residue from crop

retention with zero tillage and permanent bed; this effect was most

apparent in the top soil layer. Among the scenarios studied, the

combination of PTR followed by zero-till wheat, permanent bed

maize, and permanent bed soybean (S2, S4, and S6) caused the bulk

density of the soil to drop. Notably, the double legume-based

cropping system with residue retention (S6) exhibited the lowest

soil bulk density (Gogoi et al., 2018; Raj et al., 2023). This could be

attributed to higher presence of organic C on the soil surface,

resulting in improved soil aggregates and creation of more pore

space, consequently leading to a lower bulk density in scenarios

where crop residues were retained (Lynch et al., 2022; Musto et al.,

2023; Yadvinder-Singh et al., 2022). As is frequently documented in

the IGP region, the layering of various management approaches had

a minor effect on soil bulk density, suggesting the presence of

subsurface compaction in the rice–wheat–mungbean, maize–

wheat–mungbean, and soybean–wheat–mungbean cropping

systems (Chandra, 2011; Govaerts et al., 2006; Roldan et al., 2005).
TABLE 6 Effect of conservation agriculture-based cropping systems on the available nitrogen, phosphorus, and potassium status of soil after 2 years.

Scenario
Available N (kg ha-1) Available P (kg ha-1) Available K (kg ha-1)

0–7.5 cm 7.5–15 cm 0–7.5 cm 7.5–15 cm 0–7.5 cm 7.5–15 cm

R-W-SM (R0)- S1 199.8d 164.9c 23.3d 21.5c 215.4c 178.7a

R-W-SM (R+)- S2 250.2b 190.5a 28.4ab 22.0bc 221.4bc 181.9a

M-W-SM (R0)- S3 215.7c 185.0a 25.3c 23.0a 216.7c 179.9ab

M-W-SM (R+)- S4 255.6ab 175.1b 29.2ab 22.2b 224.5ab 176.2b

S-W-SM (R0)- S5 219.9c 175.3b 26.3bc 22.9a 220.8bc 177.4b

S-W-SM (R+)- S6 259.9a 190.5a 30.5a 23.3a 230.1a 182.2a
Similar letters within a column indicate a non-significant difference at 0.05 level of probability using Tukey’s HSD test.
S1, conventional PTR, conventional tilled wheat (CT), mungbean; S2, partially CA PTR, Happy Seeder wheat, ZT mungbean; S3, conventional fresh bed maize (FB), conventional tilled wheat
(CT), mungbean; S4, fully CA permanent bed maize (PB), permanent bed wheat (PB), permanent bed mungbean (PB); S5, conventional fresh bed soybean (FB), conventional tilled wheat (CT),
mungbean; S6, fully CA permanent bed soybean (PB), permanent bed wheat (PB), permanent bed mungbean (PB).
TABLE 7 Effect of conservation agriculture-based cropping systems on
DTPA extractable soil micro-nutrients after 2 years.

Scenario

DTPA soil micro-nutrients
(mg kg-1)

Zn Fe Mn Cu

R-W-SM (R0)- S1 1.90d 9.30c 8.40b 0.43b

R-W-SM (R+)- S2 2.00bc 10.43bc 9.00a 0.51b

M-W-SM (R0)- S3 1.92d 9.42c 8.55b 0.44b

M-W-SM (R+)- S4 2.04ab 11.59ab 9.05a 0.68a

S-W-SM (R0)- S5 1.94cd 9.51c 8.62b 0.46b

S-W-SM (R+)- S6 2.10a 12.96a 9.10a 0.70a
Similar letters within a column indicate a non-significant difference at 0.05 level of probability
using Tukey’s HSD test.
S1, conventional PTR, conventional tilled wheat (CT), mungbean; S2, partially CA PTR,
Happy Seeder wheat, ZT mungbean; S3, conventional fresh bed maize (FB), conventional
tilled wheat (CT), mungbean; S4, fully CA permanent bed maize (PB), permanent bed wheat
(PB), permanent bed mungbean (PB); S5, conventional fresh bed soybean (FB), conventional
tilled wheat (CT), mungbean; S6, fully CA permanent bed soybean (PB), permanent bed
wheat (PB), permanent bed mungbean (PB).
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4.2 Infiltration

Agronomic practices such as tillage, crop residue management, and

changes in cropping systems can significantly impact soil infiltration

rates (Dev et al., 2023; Indoria et al., 2020). Our study focused on

intensifying cropping systems with mungbean under CA (S2, S4, and

S6), which resulted in a substantial improvement in infiltration rates

compared with CT. The higher infiltration observed in CA treatments

can be attributed to three main factors. Firstly, the retention of crop

residue protects the soil from the impact of raindrops, preventing

displacement of surface aggregates and clogging of large pores

(Fernández et al., 2017; Gómez-Paccard et al., 2015). Secondly, CA

practices promote larger andmore continuous pores through increased

biological activity, creating root channels and macropore networks (de

Moraes et al., 2016; Patra et al., 2023). Lastly, CA practices facilitate the

accumulation of soil organic matter, contributing to macropore

formation (Bhattacharyya et al., 2008; Gathala et al., 2011; Jat et al.,

2013; Kahlon et al., 2013; Kumar et al., 2022). Similar results were

found in northwest India, where CA-based systems like maize–wheat–

mungbean and rice–wheat–mungbean demonstrated better infiltration

rate and cumulative infiltration compared with the rice–wheat system

under CT (Jat et al., 2018; Singh et al., 2014).
4.3 Soil organic carbon

After 2 years of field study assessment, SOC was significantly

higher by 26%–31% under zero tillage and permanent bed CA

treatments including S2, S4, and S6 because C tends to accumulate

in less disturbed soils (Francaviglia et al., 2023; He et al., 2023). In

Sc6, the SOC content increased by 31.6% due to retention of crop

residue of zero cycle crops (wheat and mungbean), year-round soil

cover with zero tillage, preventing direct sunlight exposure and

oxidation of organic matter. Compared to rice residue retention

(S2), the inclusion of double legume crops in S6 reduced the C/N

ratio, leading to increased SOC content. In S2, the high rice residue

load (14.2 t ha-1) and higher C/N ratio along with high silica and

lignin content resulted in slower mineralization and subsequently

low SOC (Choudhary et al., 2018; Das et al., 2013; Naorem et al.,

2023; Qi et al., 2023; Balota et al., 2004). The decomposition of crop

residues releases different organic compounds and increases

microbial activity as binding agents, which cements the smaller

particles into larger macro-aggregates (Sharma et al., 2025).

The incorporation of leguminous green manure has been

reported to favor the net C buildup in soil, which is considered as

an important indicator of C sequestration in soil (Six and Paustian,

2014; Sharma et al., 2019). The inclusion of legumes in rice–wheat

systems releases root exudates, improves the soil biological activity,

and thereby causes a higher C concentration in soil macro-

aggregates (Sharma et al., 2021). Changes in SOC associated with

different tillage practices can significantly affect the N content.

Conventional tillage often leads to greater N losses due to

repeated soil disturbance, enhanced leaching, and increased

mineralization (Lal, 1997; Cui et al., 2023). The increase in SOC

in the absence of tillage might be due to the deep penetration of
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wheat roots and the reduced oxidation of in situ organic matter

(Modak et al., 2020). Crop residue retention or assimilation

improved the productivity of intensified irrigated agriculture

systems and increased the organic C (Modak et al., 2020; Sarkar

and Kar, 2006). Reduced tillage and residue retention slow down the

pace at which soil organic matter (SOM) breaks down, which causes

SOC to rise over time (Gwenzi et al., 2009). It has been revealed that
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labile C derived from crop residues is first incorporated into labile C

pools and subsequently accumulates and becomes stable or

recalcitrant C in soils. Furthermore, the rice residue mulch may

have improved the soil structure by protecting SOM through

aggregation against microbial degradation and the reduced rate of

SOC decomposition (Diekow et al., 2005; Gong et al., 2009).

Moreover, an increase in SOC fractions with CA-based cropping
FIGURE 3

Correlation matrix between different soil properties under conservation agriculture practices. Av. N, available nitrogen; Av. K, available K; Av. P,
available phosphorus; Cu, copper; Mn, manganese; Zn, zinc; Fe, iron; TMC, total microbial count; DHA, dehydrogenase activity; Alk. P, alkaline
phosphate enzyme; BSR, basal soil respiration.
FIGURE 2

Aerial view of the research experiment captured with the help of a drone. The left image shows six treatments with four blocks: in the first block
from left to right were the first two types of rice (conventional puddled transplanted rice and conservation puddled transplanted rice), the third and
fourth were maize (fresh bed maize and permanent bed maize), and the fifth and six were soybean (fresh bed soybean and permanent bed soybean).
A similar trend is shown for the other three blocks and second aerial view (right image).
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systems caused slower SOC decomposition compared with CT and

residue removal because of the reduction in soil disturbance and

protection within aggregates and changes in the soil microbial

environment under various tillage practices (Salve et al., 2012;

Chen et al., 2009). In addition a large amount of rice residue

addition provided C source which, upon decomposition,

ultimately became part of SOC. These findings reinforce that

changes in soil organic carbon (SOC) following tillage are largely

attributed to active carbon pools, owing to their high turnover and

sensitivity to disturbance (Culman et al., 2010). Additionally, the

significant increase in SOC under scenario S6 might be due to the

increase in annual C input and variations in organic matter quality,
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thus modifying the liability of C to change to an oxidized form

(Ladha et al., 2004, 2003).
4.4 Available soil nutrients

The fertility of the soil and nutrient preservation are enhanced

by conservation agriculture techniques like permanent bed (S4 and

S6) and zero tillage (Anil et al., 2022; Chaudhary et al., 2019; Parihar

et al., 2018; Palm et al., 2014). Zero tillage systems (S2, S4, and S6)

slow down soil organic matter mineralization, increase soil N

reserves, and enhance microbial activity compared with
FIGURE 4

Principal component analysis of soil properties after 2years. (A, B) PCA of different treatments. (C) PCA of macro-nutrients (available N, P, and K).
(D) PCA of micro-nutrients (Fe, Zn, Cu, and Mn). (E) PCA of biological properties. (F) Loading plot of PC1; Av. N, available nitrogen; Av. K, available K;
Av. P, available phosphorus; Cu, copper; Mn, manganese; Zn, zinc; Fe, iron; TC, total count; DHA, dehydrogenase activity; Alk. P, alkaline phosphate
enzyme; BSR, basal soil respiration.
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conventional tillage (S1, S3, and S5) (Acosta-Martıńez et al., 2004;

Thapa et al., 2023; Pisante et al., 2015). Double legume cropping

systems (S6) contribute to a higher mineral N content due to the

chelation of inorganic P and increased SOM (Jangir et al., 2021;

Kumar et al., 2023; Mutuku et al., 2020). The higher N and

phosphorus (P) availability is typically observed in the surface

layers of soil under zero and minimum tillage systems than CT.

The accumulation of available P is primarily due to its limited

mobility within the soil profile, as previously documented (Nze

Memiaghe et al., 2022). Similarly, the increased availability of

available K and available P under conservation and organic

management practices may be attributed to the reduced fixation

and enhanced solubilization of fixed forms. This is often facilitated

by the presence of organic acids and the mineralization of added

organic manures, as reported in earlier studies (Elayarajan et al.,

2015; Meena et al., 2019; Mahanta and Rai, 2008 et al., 2010).

Moreover, CA-based practices also enhance the available K content

by chelating nutrients with organic matter, resulting in higher soil

nutrient availability (Jat et al., 2021; Lv et al., 2023).
4.5 DTPA soil micro-nutrients

In comparison with conventional tillage scenario (S1), the

conservation agriculture scenario (S6) showed higher levels of DTPA

Zn, Fe, Mn, and Cu by 10.5%, 39.5%, 8.3%, and 62.8%, respectively.

The retention of crop residues on the soil surface in CA positively

influences micro-nutrient availability, likely due to the mixing of

previous crop residues (Mhlanga et al., 2022; Yadav et al., 2022),

which increases the presence of labile C after the decomposition of

residues from previous years. In order to preserve the availability of

micro-nutrients in the soils of this area, conservation tillage in

conjunction with organic nutrient management may be a viable

strategy. Nevertheless, their phyto-availability in soils may be reduced

in the future due to their removal from crop biomass with continued

cropping. Thus, regular soil testing may aid in determining their

depletion in soil so that suitable corrective action can be taken

(Khoshgoftarmanesh et al., 2010). In a similar vein, Jayaraman et al.

(2021) found that, in Central Indian vertisols, the available Fe content

was comparatively greater under no-till scenarios than conventional

tillage. Under conservation agriculture, the decomposition of fresh crop

residues releases organic tissue-bound micro-nutrients and natural

chelating agents like citric acid and humic acids, thereby enhancing

micro-nutrient availability in the soil (Chaudhary et al., 2019). The

lowest micro-nutrient levels were observed in the conventional tillage

scenario (S1). Similar positive effects of conservation agriculture on

micro-nutrient content have been reported by other researchers as well

(Chaudhary et al., 2019; Das et al., 2018; Kharia et al., 2017; Yadav S. L.

et al., 2022; Yadav M. et al., 2022).
4.6 Soil microbial properties

In the conservation agriculture scenario (S6), the total microbial

population was 233% and 232% higher than CT (S1) in the first and
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second year, respectively, which is likely due to increased organic C

addition and availability of food sources for microbial growth (Gupta

et al., 2020; Yadav et al., 2023). Furthermore, in S6, a double legume

crop was included in the cropping system, which resulted in the

deposition of root exudates in soil, serving as a nutrient source for soil

microbes (Hazra et al., 2020b). Conservation tillage techniques

enhance fungal and bacterial populations, while the preservation of

crop residues further stimulates microbial activity (Kumawat et al.,

2022). The presence of cover crop residues as substrate enhances

microbial diversity, C content, mineralization rate, soil respiration,

and enzyme secretion (Choudhary et al., 2018; Dasila et al., 2023;

Ghimire et al., 2014; Helgason et al., 2009). Additionally, minimum

soil disturbance in conservation-based practices provides a suitable

environment for microbes by moderating soil moisture and

temperature than the CT practices (Choudhary et al., 2018; Saikia

et al., 2019). An additional benefit for improvedmicrobial growth was

the retention of crop residue and the addition of organic manure and

mineral fertilizers, which sped up nutrient mineralization and

improved nutrient availability (Kiboi et al., 2021). The continued

retention of crop waste above the soil surface may be caused by this

impact since it increases the accessibility of labile carbon created by

the breakdown of residues during the previous year (Piper, 2019). A

high content of SOC is beneficial to the growth of microorganisms

with active metabolic processes, which, in turn, leads to the

accumulation of soil enzymes. In the present study, the increased

availability of substrate (green manure and crop residues) and a

favorable habitat for microbial communities seem to be responsible

for higher enzyme activities. Furthermore, DHA and APA activities

were linked to increased microbial activity, especially microbial

biomass carbon and microbial biomass nitrogen through the

release of organic compounds, contributing to a positive

rhizosphere effect (Dasila et al., 2023; Roldán et al., 2005). In

addition, DHA activity increased under CA-based cropping system,

which supplied continuous substrates for microbial proliferation,

along with improved SOC, which increased adsorption sites and

supplied energy to micro-organisms throughout the decomposition

process to improve enzyme activity (Sharma et al., 2025). Under CA-

based practices, the increase in bacterial and fungal population was

due to minimum soil disturbance, which plays a major role in the

initial phases of decomposition of organic C compounds and

degrades cellulolytic material through ligno-cellulytic enzyme

activity (Sharma and Singh, 2023).
4.7 Principal component analysis and
correlation matrix

The majority of the calculated variables were maximum with

scenario S6, followed closely by S4 (Figure 4). The main influential

variables for PC1 and PC2 were different available nitrogen,

available K, available phosphorus, copper, manganese, zinc, iron,

total microbial count, DHA enzyme, APA, and BSR with scenario

S6, followed by S4 and S2 (Figure 4). The clustering of SOC with

microbial activity under conservation agriculture (CA) creates

synergistic effects that enhance both climate adaptation through
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improved water retention and soil structure stability and mitigation

through increased carbon sequestration rates (Powlson et al., 2014).

This implies that the continuous addition of C sources by previous

crop residues raised more soil C pools and hydrolytic enzymatic

activities, along with the activity of microbes, the accessibility of

different communities of microbes in the soil, the availability of

nutrients, and rhizodeposition. The majority of variables under

study—microbial biomass, C respiration, and basal soil respiration

—were more strongly conjugated in organically managed soils than

in inorganically managed soils (Araújo et al., 2008).
5 Conclusion

The present study demonstrated the significant positive impact

of conservation-diversified legume-based cropping system on

nutrient availability and soil properties. The soybean–wheat –

mungbean CA-based cropping system demonstrated significantly

increased infiltration rate, SOC, DHA, and BSR by 45.6%, 31.5%,

58.8%, and 40.7%, respectively, compared with conventional

practices. The results of the PCA indicated a robust association

between SOC and biological properties, with scenario Sc6

surpassing the correlations observed in other cropping systems.

CA, particularly soybean–wheat –mungbean cropping system with

legume inclusion, has the potential to enhance soil properties and

nutrient availability, contributing to improving long-term soil

health and sustainability. The principal component analysis

identified zinc, pH, and microbial biomass carbon as the most

sensitive and influential variables to assess soil quality. Future

studies should focus on the long-term monitoring of soil

biological function across diverse agroecological zones to establish

comprehensive sustainability of soil quality and crop production

under climate-smart conservation agriculture systems.
6 Cautions and limitations

This study’s temporal scope may not capture the long-term

cumulative effects of intensified conservation agriculture that

typically manifest over decades. Site-specific conditions including

soil type, climate, and topography may limit the transferability of

results to other agroecological regions. The research assumes a

consistent implementation of conservation practices, which may

not reflect variable adoption rates in diverse farming systems.

Seasonal weather variations during the experimental period could

influence the outcomes and may not represent typical climatic

patterns. Additionally, the focus on soil physico-chemical

parameters may overlook broader ecosystem interactions and

socioeconomic factors crucial for sustainable agriculture.
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