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Dicamba is an important tool for managing hard-to-control weeds in Brazil. Its

use has increased, especially with the adoption of dicamba-tolerant crops,

making the implementation of best management practices essential to ensure

safe herbicide application, whether alone or in combination with other products.

This study evaluated the volatilization of dicamba (diglycolamine salt – DGA)

applied alone or in tank mixtures with glyphosate potassium salt (GK), a volatility

reducer (VR), and various commercial crop protection products, over corn straw

under controlled conditions. Volatilized dicamba was collected for 24 h at 40 °C

and quantified by LC–MS/MS (LOD = 0.09 ng mL-¹, LOQ = 0.39 ng mL-¹). The VR

consistently reduced dicamba vapor losses by up to 90%, regardless of the

mixture. Most tank mixes did not increase volatility relative to DGA + GK + VR,

except for combinations with glufosinate ammonium andmesotrione + atrazine,

which increased volatilization by 49% and 43%, respectively, compared to DGA +

GK + VR, though still ~70% lower than dicamba applied alone. These increases

were likely related to ammonia release and interactions with amine groups,

rather than pH differences. Findings demonstrate that VRs are effective for

mitigating dicamba volatilization even in complex mixtures, but certain

combinations require caution. Results provide practical guidance for tank-mix

decisions and support the adoption of best practices to reduce volatility-related

drift in dicamba-based weed control.
KEYWORDS

no-tillage systems, diglycolamine salt, tank mixture, volatility reducer, liquid
chromatography tandem-mass spectrometry (LC-MS/MS)
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1 Introduction

Pesticide application is a critical component of integrated crop

protection programs and directly affects the success of crop

establishment and long-term productivity. To optimize

operational efficiency, it is common for farmers to mix multiple

formulated products in the same spray tank, these include

herbicides, insecticides, fungicides, and other active ingredients

combined with adjuvants or even fertilizers to enhance

performance or reduce application costs (Gazziero, 2015; Costa

et al., 2020). In weed management, especially for hard-to-control

species, tank mixtures are essential to broaden the spectrum of

control and to manage herbicide-resistant weeds more effectively

and sustainably. By combining herbicides with different modes of

action, these mixtures allow broader-spectrum control, improve

performance against resistant weed biotypes, and help delay the

evolution of herbicide resistance. This is particularly important in

Brazilian agriculture, where resistance to multiple herbicide groups,

such as EPSPS inhibitors and ALS inhibitors, is increasingly

reported in species like Conyza spp. and Amaranthus spp. under

tropical no-tillage systems (Heap, 2025).

Among the chemical tools available, dicamba is a selective, post-

emergence auxin-mimicking herbicide (WSSA Group 4) with

systemic action (Carbonari et al., 2022b). It is widely adopted in

genetically engineered dicamba-tolerant crops and has become a

key alternative for controlling glyphosate-resistant broadleaf

species, such as Conyza spp., Amaranthus spp., and Ipomoea spp

(Flessner et al., 2015; Osipe et al., 2017; Soltani et al., 2020).

Dicamba is often used in combination with glyphosate or other

herbicides to supplement or replace traditional glyphosate-based

weed control programs (Osipe et al., 2017; Carbonari et al., 2022b).

However, the herbicide’s high potential for volatilization poses a

significant risk of off-target movement and injury to sensitive crops

(Carbonari et al., 2022a, b; Antuniassi et al., 2024).

In response to widespread dicamba drift incidents, such as the

1,411 and 605 injury complaints investigated in Missouri in 2017

and 2018, respectively, and the 1,500 complaints recorded by the

Illinois Department of Agriculture between 2017 and 2022, and

more than 3,500 reports nationwide in 2021, regulatory agencies

imposed stricter use restrictions, culminating in limited sales and

distribution for the 2024 season (Bradley, 2017, 2018; USEPA, 2021,

2024; Shipman, 2023; Dhanda et al., 2025). In Brazil, dicamba is

recommended primarily for pre-plant desiccation. For non-tolerant

crops such as cotton and soybean, a minimum interval between

application and planting must be observed. In contrast, for

dicamba-tolerant cultivars, application is also permitted post-

sowing, provided it occurs before crop emergence (Carbonari

et al., 2022a; Monsanto do Brasil, 2024).This underscores the

importance of adopting best management practices to ensure the

safe application of the herbicide, whether applied alone or in tank

mixtures (Behrens and Lueschen, 1979; Mueller and Steckel, 2019;

Sharkey et al., 2021).

Volatilization occurs when the pesticide converts to vapor and

moves away from the treated area. This process is influenced by

several factors, including temperature, humidity, wind speed, spray
Frontiers in Agronomy 02
pH, product formulation, and application practices such as tank

mixing and nozzle type (Behrens and Lueschen, 1979; Henry et al.,

2021; Sharkey et al., 2021). Dicamba has a vapor pressure of 1.67

mPa at 20°C, a Henry’s law constant of 5.05 x 10–5 Pa m³ mol-¹ at

25°C and water solubility of 250,000 mg L-¹ (Heap, 2025), making it

prone to vapor losses, especially under tropical conditions. Newer

low-volatility formulations, such as diglycolamine salt (DGA) and

N,N-bis(3-aminopropyl)methylamine (BAPMA), have shown

significantly lower volatility compared to older formulations like

dimethylamine salt (DMA) (Mueller et al., 2013; Mueller and

Steckel, 2019; Carbonari et al., 2022a; Antuniassi et al., 2024).

Nonetheless, even advanced formulations may volatilize under

certain conditions, and the selection of tank mix partners, based

on pH compatibility, volatility, and formulation types, is crucial to

minimize unintended volatilization (Egan andMortensen, 2012; Ou

et al., 2018).

Some studies indicate that increased dicamba volatility may be

associated with a decrease in spray solution pH (Mueller and

Steckel, 2019). As pH decreases, hydrogen ions become more

readily available, facilitating the formation of dicamba acid, which

is more prone to volatilization (Abraham, 2018). However, there is

no clear consensus regarding a direct relationship between lower

pH and increased dicamba volatility (Sharkey et al., 2020; Carbonari

et al., 2022a). Carbonari et al. (2022a) observed that dicamba

mixtures with glyphosate in diammonium and ammonium salt

formulations exhibited higher volatility than the mixture with

potassium salt glyphosate, despite having different spray solution

pH values of 6.4, 3.72, and 4.7, respectively.

Current understanding of dicamba volatility is underpinned by

a robust scientific framework, which includes field quantification

methodologies (Riter et al., 2020; Sall et al., 2020; Antuniassi et al.,

2024) and studies correlating field findings with controlled

environment experiments to isolate variables (Carbonari et al.,

2020, 2022a, 2022b; Taylor, 2021). Collectively, these works

provide the foundation for modeling the fate and transport of this

herbicide in the environment (Das, 2019). Despite these advances,

the focus has been predominantly on dicamba applied alone or in

simple mixtures with glyphosate. The influence of more complex

tank mixtures, a standard agricultural practice, on volatilization

potential remains a critically underexplored area.

Despite widespread tank mixing practices in tropical

agriculture, data on their effects on dicamba volatilization are

scarce. This study aimed to evaluate the volatilization of dicamba

(diglycolamine salt – DGA) when combined with other pesticides

commonly used in crop protection programs for managing pests

and weeds in soybean cropping systems.
2 Materials and methods

The experiment was conducted twice, sequentially between

2022 and 2023, under controlled laboratory conditions at the

Núcleo de Pesquisas Avançadas em Matologia (NUPAM), Faculty

of Agricultural Sciences, São Paulo State University (UNESP),

Botucatu, Brazil. A completely randomized design was used, with
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three replications per treatment. Treatments consisted of the

application of dicamba (diglycolamine salt – DGA) alone or in

tank mixtures with other crop protection products (Tables 1, 2).

Application rates followed the label recommendations for each

product, representing doses that are commonly used under field

conditions in soybean cropping systems in Brazil.

The different spray solutions (treatments) were applied to corn

straw fragments measuring 6 × 8 cm, with the edges covered by 1

cm on each side at the time of application, resulting in a useful spray

area of 35 cm². The straw was manually collected from a

commercial corn field during the R6 phenological stage (BBCH

89), with a moisture content of 7% at the time of application. No

sterilization was performed in order to preserve the natural surface

characteristics, but the material was cleaned to remove dust and

impurities. Applications were performed using a spray simulator

with velocity and pressure control, equipped with a spray boom

consisting of four TTI 110015 nozzles (TeeJet, Springfield, IL, USA),

spaced 0.5 m apart and positioned 0.5 m above the application

target. The application was carried out at a pressure of 3.0 bar and a

speed of 3.6 km h-¹, producing extremely coarse droplets with a

spray volume of 200 L ha-¹, which reflects the typical rates used in

field applications of post-emergence herbicides in Brazil (Alves

et al., 2021; Spricigio et al., 2021; Carvalho et al., 2023).

Following application, the targets were left undisturbed for 10

minutes to dry in a laboratory room at 22°C. The straw fragments

were then transferred to individual collection cartridges and placed

into a closed-loop vapor collection systemmade of PVC tubing with

an internal diameter of 20 mm, as described by Carbonari et al.

(2020). The system included inlets to accommodate 24 cartridges

and was connected to a vacuum pump via a 3 mm internal-diameter

hose, operating at an airflow rate of 100 mL min-¹, measured at the

beginning and end of the 24-hour collection period to ensure

consistency throughout the experiment. The system was

maintained in a chromatographic oven at a constant temperature

of 40°C, a temperature selected to simulate worst-case field

conditions for dicamba volatilization under tropical scenarios.

Each cartridge was sealed with a cap containing a 3 mm diameter

opening to allow airflow, and the outlet end was fitted with two

PVDF filters (0.20 μm pore size, 25 mm diameter) (Chromafill Xtra,

MN, Düren, Germany) installed in series to ensure high-efficiency

vapor capture, with the second filter serving primarily as a control

to confirm capture efficiency, as dicamba was virtually undetectable

at this stage (Figure 1).

After the 24-hour, dicamba was extracted from the straw, the inner

walls of the cartridges, and the filters using a methanol:water solution

(25:75 v/v) (Carbonari et al., 2022a; Antuniassi et al., 2024). To extract

the dicamba deposited on the straw, the samples were placed in

centrifuge tubes containing 40 mL of the extraction solution and

subjected to an ultrasonic bath for 30 minutes (Elmasonic P, Siegen,

Germany). The cartridges were rinsed with 10 mL of the methanol:

water solution to remove any dicamba residues adhered to the walls. In

both procedures, the resulting extracts were filtered using 0.45 μm

Millipore syringe filters and transferred to 2 mL vials. The amount of

volatilized dicamba was determined by individually rinsing the filters

with 1.5 mL of the extraction solution.
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Dicamba was analyzed using a liquid chromatography–tandem

mass spectrometry (LC-MS/MS) system composed of a high-

performance liquid chromatograph (Prominence UFLC,

Shimadzu, Kyoto, Japan) equipped with two LC-20AD pumps, a

SIL-20AC autoinjector, a DGU-20A5 degasser, a CBM-20A

controller system, and a CTO-20AC oven. The chromatograph

was coupled to a Triple Quad 4500 mass spectrometer (Applied

Biosystems, Foster City, CA, USA). Chromatographic analyses were
TABLE 1 Pesticides and other crop protection products and application
rates used in the experiment.

Active
ingredient1

Formulation
class2

Pesticide
class

Dose

dicamba (DGA) SL Herbicide 720 g ae ha-1

glyphosate SL Herbicide 960 g ae ha-1

acetic acid - potassium
acetate (VR)

SL Adjuvant 1.0% (v/v)

saflufenacil WG Herbicide 35 g ai ha-1

glufosinate ammonium SL Herbicide 700 g ai ha-1

chlorimuron-ethyl WG Herbicide 20 g ai ha-1

flumioxazin SC Herbicide 60 g ai ha-1

carfentrazone EC Herbicide 30 g ai ha-1

diclosulan WG Herbicide 35.028 g ai ha-1

imazethapyr SL Herbicide 100 g e.a ha-1

s-metholaclor EC Herbicide 1920 g ai ha-1

mesotrione + atrazine SC Herbicide
75 + 750 g ai

ha-1

lambda-cyhalothrin CS Insecticide 7.5 g ai ha-1

zeta-cypermethrin EC Insecticide 35 g ai ha-1

methomyl SL Insecticide 215 g ai ha-1

flubendiamide SC Insecticide 33.6 g ai ha-1

nonylphenoxy poly
(ethyleneoxy)
ethanol (NPE)

SL Adjuvant 0.5% (v/v)

orange peel oil SL Adjuvant 0.15% (vv)

methyl soybean
oil ester

EC Adjuvant 0.5% (v/v)

mineral oil EC Adjuvant 0.5% (v/v)

ADJ35 SL Adjuvant 0.075% (v/v)
1Formulated products registered and marketed in Brazil. DGA, digicolamine salt dicamba
(Xtendcan® - Bayer); Glyphosate, glyphosate potassium salt (Roundup Transorb R® - Bayer);
VR, volatility reducer - XtendProtect® (added in tank mixture) (Bayer); saflufenacil, Heat® -
BASF, glufosinate ammonium (Finale® - Bayer); chlorimuron-ethyl, (Classic® – FMC);
flumioxazin (Sumissoya® – Sumitomo); Carfentrazone, (Aurora® – FMC); diclosulan
(Spider® – Corteva); imazethapyr, (Pivot® – BASF); s-metolachlor, (Dual Gold® –

Syngenta); mesotrione + atrazine, (Calaris® – Syngenta); lambda-cyhalothrin, (Karate® –

Syngenta); zeta-cypermethrin, (Mustang® – FMC); Methomyl, (Lannate® - Corteva);
flubendiamide, (Belt® – Bayer); nonylphenoxy poly(ethyleneoxy) ethanol - non-ionic
surfactant (NPE) (Agral® – Syngenta); orange peel oil (Wetcit Gold® - Oroagri); methyl
soybean oil ester (Aureo® - BASF); mineral oil (Assist® – BASF); ADJ35 (tall oil alkyl ethoxylated,
adjuvant under development - Bayer). 2EC, emulsifiable concentrate; SL, soluble concentrate; CS,
capsule suspension; WG, Water-Dispersible Granules; SC, Suspension Concentrate.
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performed with a C18 column (Phenomenex Gemini 5 - C18RP

110Å) using an injection volume of 20 uL, with 5 mM ammonium

acetate (Avantor Performance Materials, Inc., Center Valley, PA,

USA) in water and 5 mM ammonium acetate in methanol (Merck

KGaA, Darmstadt, Germany). The flow rate used was 1.0 mL min-1,

and the ratio of the solvents was gradually increased from the 80:20

(methanol/water) to the 95:5 range from 0 to 4 min, maintained at

95:5 range from 4 to 10 min, and returned to the initial condition.

The total running time was 12 min. The retention time of dicamba

in this system was 5.68 min. The electrospray ionization source

(ESI) was used in the negative mode. Eight concentrations of the

dicamba analytical standards with a certified purity level of 99.9%

(Sigma Aldrich, St Louis, MO, USA) were used to construct the

calibration curve. The limit of quantification (LOQ) and detection

(LOD) for dicamba ware 0.39 and 0.09ng ml-1, respectively,

determined according to ICH guidelines. Dicamba was monitored

at unit resolution in multiple reaction monitoring (MRM) mode at

m/z 218.749 −174.7 with a confirmatory transition at m/z

218.749 −174.7.
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The data obtained in duplicate were independently subjected to

analysis of variance (ANOVA) using the F-test at a 5% significance

level, followed by the application of the residual variance

homogeneity test (Fmax) (Hattley, 1950). Upon confirmation of

homogeneity between experiments, the data were pooled into a

single dataset with six replicates and subjected to a new ANOVA.

When significant differences among treatments were confirmed,

means were compared using the t-test (LSD) at a 5% significance

level, employing the Sisvar software (Sisvar®, Lavras, MG, Brazil)

(Ferreira, 2014).
3 Results and discussion

The addition of the volatility-reducing agent (VR) to the spray

solution was effective at lowering levels of volatilized dicamba, both

when DGA was applied alone and when combined with other

pesticides (Table 3). When dicamba (DGA) was applied alone, the

total amount volatilized was 0.51 ± 0.072 g ha-¹, whereas the

addition of the VR reduced this value to 0.05 ± 0.010 g ha-¹, an

approximately 90% reduction (Table 3). To contextualize this value

(DGA alone), it represents approximately 0.07% of a typical applied

rate of 720 g ae ha-¹. This falls within the range of off-site losses

measured in large-scale field studies. For example, Sall et al. (2020)

reported dicamba fluxes from 0.023 to 0.302% of the applied rate

(median 0.08%) across diverse environmental conditions.

In the presence of glyphosate potassium salt (GK), dicamba

volatilization was also reduced from 0.34 ± 0.042 g ha-¹ (DGA +

GK) to 0.10 ± 0.018 g ha-¹ when the VR was added, representing a

70% reduction relative to DGA + GK and 80% relative to DGA alone

(Table 3). These findings confirm the effectiveness of the VRA in

mitigating dicamba volatilization even in complex spray mixtures.

Other studies have reported the effectiveness of volatility-reducing

agents in reducing the concentration of dicamba vapor, even in less

volatile formulations and when mixed with glyphosate (Abraham,

2018; Carbonari et al., 2020, 2022a). Carbonari et al. (2022a), when

studying the volatilization of dicamba in mixtures with glyphosate

from different formulations, observed that mixtures with ammonium

and diammonium glyphosate salts led to a significant increase in

dicamba volatilization.

Previous studies have established robust frameworks for

quantifying dicamba volatility under field and controlled

conditions. Riter et al. (2020) developed and validated an active

air-sampling approach coupled with aerodynamic and integrated

horizontal-flux models for field applications, and this framework

was applied across 23 trials by Sall et al. (2020) revealing substantial

variability driven by formulation, weather, and soil. Taylor (2021)

further compared field versus controlled-environment responses,

underscoring the roles of temperature and relative humidity. Our

results extend this body of work by quantifying how specific

commercial tank mixes, used with a volatility-reducing agent

under tropical conditions, alter dicamba vapor losses.

Antuniassi et al. (2024) investigated the volatilization behavior

of dicamba DGA salt formulated with a volatility-reducing agent at

six field sites located in tropical regions of Brazil. Their findings
TABLE 2 Treatments used to evaluate dicamba volatilization when
applied alone or in combination with other crop protection products
listed in Table 1, along with the corresponding pH values of the
spray solutions.

Treatments
Solution

pH

1 Dicamba diglycolamine sal (DGA) 7.06

2 DGA + glyphosate potassium salt (GK) 4.7

3 DGA + volatility reducer (VR) 6.65

4 DGA + GK + VR 5.24

5 DGA + GK + VR + saflufenacil + ADJ 35 5.38

6 DGA + GK + VR + glufosinate ammonium + ADJ 35 5.12

7 DGA + GK + VR + flumioxazin + mineral oil 5.4

8 DGA + GK + VR+ carfentrazone + mineral oil 5.39

9 DGA + GK + VR + diclosulan 5.39

10 DGA + GK + VR + imazethapyr 5.43

11 DGA + GK + VR+ mesotrione + atrazine + mineral oil 5.24

12 DGA + GK + VR + chlorimuron-ethyl + mineral oil 5.42

13 DGA + GK + VR + lambda-cyhalothrin 5.3

14 DGA + GK + VR + zeta-cypermethrin 5.28

15 DGA + GK + VR + methomyl 5.32

16 DGA + GK + VR + flubendiamide 5.29

17 DGA + GK + VR + s-metholaclor 5.39

18 DGA + GK + VR + methyl soybean oil ester 5.38

19 DGA + GK + VR + NPE 5.4

20 DGA + GK + VR + orange peel oil 5.43

21 DGA + GK + VR + ADJ 35 6.00
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revealed that dicamba volatilization peaked within the initial hours

following application, then declined sharply around 20 hours post-

application. The cumulative mass loss of dicamba was minimal,

averaging 0.15 ± 0.08% of the applied dose. Furthermore, the mean

in-field airborne concentration (38.66 ± 9.52 ng m-³) represented

only 28% of the No Observed Adverse Effect Concentration

(NOAEC) of 138 mg m-³, established by the U.S. Environmental

Protection Agency (USEPA - United States Environmental

Protection Agency, 2018), which represents the most sensitive

threshold reported without observable adverse effects. This

threshold has also been confirmed as protective in field-scale

studies, where even the worst-case scenarios estimated 24 h

average dicamba concentrations below 51 ng m-³ at 1 cm above

ground level, highlighting the low likelihood of off-target injury

when application best practices are followed (Sall et al., 2020). This

is particularly relevant for assessing the risk of off-target exposure in

susceptible crops at typical canopy heights.

Overall, the addition of other crop protection products to the

spray solution DGA + GK + VR did not increase the concentration

of volatilized dicamba, except for mixtures with glufosinate

ammonium + ADJ35 (0.155 ± 0.028 g ha-¹ and mesotrione +

atrazine + mineral oil (0.149 ± 0.039 g ha-¹), which increased by

49% and 43%, respectively (Figure 2; Table 3). However, when

compared to the isolated dicamba application (0.515 ± 0.072 g ha-¹),

the vapor produced in these mixtures was reduced by

approximately 70% (Table 3). Therefore, even with mixtures that

have the potential to increase dicamba volatilization, the use of the

volatility-reducing agent effectively minimizes these losses,
Frontiers in Agronomy 05
although its efficacy is lower compared to the DGA + VR and

DGA + GK + VR applications (Table 3; Figure 2).

The increased volatilization of dicamba, specifically in the

mixture with glufosinate, may be related to the interaction of

dicamba with ammonia. Although the glufosinate ammonium

herbicide and its metabolites are non-volatile (Takano and Dayan,

2020), tank mixtures of dicamba with ammonia-based products can

result in increased volatilization levels, as seen in mixtures with

ammonium glyphosate salt and diammonium salt (Carbonari et al.,

2022a). In the case of the mixture with mesotrione + atrazine, it is

challenging to provide explanations for dicamba volatilization based

solely on the chemical structure of other agents used in the mixture

with dicamba (Sharkey et al., 2020; Sharkey and Parker, 2024).

However, the interaction with the amine groups of these herbicides,

whether secondary or primary, could lead to complex interactions

and contribute to the increased volatilization of dicamba, since the

amines in dicamba salts themselves may have characteristics that

affect volatilization (Sharkey et al., 2020).

When comparing treatments with similar pH values but

different added components, it becomes evident that pH alone

does not explain the volatilization patterns observed. For example,

DGA + GK + VR presented a pH of 5.24 and resulted in

volatilization losses of 0.104 ± 0.018 g ha-¹. In contrast, DGA +

GK + VR + glufosinate ammonium and DGA + GK + VR +

mesotrione + atrazine showed comparable pH values (5.12 and

5.24, respectively) but volatilization increased by approximately

50% (0.155 ± 0.028 g ha-¹ and 0.149 ± 0.039 g ha-¹, respectively)

compared to treatment DGA + GK + VR (Tables 2, 3). This
FIGURE 1

Experimental setup for dicamba volatilization assessment using corn straw under controlled conditions. (A) Fragment of corn straw (useful area of 35
cm²) used as deposition target (35 cm²). (B) Collection cartridge assembled with straw fragments and outlet filters. (C) Cartridge holder with 24 units
prepared for vapor collection. (D) Chromatographic oven set at 40°C containing the vapor collection system. (E) Schematic representation of the
experimental procedure: application on straw, cartridge assembly, system installation in the closed-loop vapor chamber.
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outcome reinforces that, under the conditions tested, pH reduction

was not directly correlated with lower dicamba volatility. Instead,

the presence of glufosinate ammonium likely contributed to

increased vapor losses through the release of ammonia, while the

mesotrione + atrazine mixture may have influenced dicamba

protonation via interactions with their amine groups. Future

studies are needed to isolate and test these interactions directly.

Specifically, in the mixture with glyphosate, correlating dicamba

volatilization with the chemical structure becomes even more

complex due to the number of hydrogen-bonding sites, including

a carboxylic group, a secondary amine group, as well as a

phosphonate group (Sharkey et al., 2020). Solid crystals of

glyphosate and ammonium glyphosate are reported to have up to
Frontiers in Agronomy 06
eight and ten intermolecular hydrogen bonds per glyphosate

molecule, respectively (Knuuttila et al., 1979; Sagatys et al., 2000).

Thus, it is possible that these groups disrupt the hydrogen bonds

formed between dicamba and amines in the absence of glyphosate,

resulting in increased dicamba volatilization (Sharkey et al., 2020).

In a study aimed at elucidating the factors contributing to

dicamba volatilization with amine salts, Sharkey and Parker (2024)

found that increasing proportions of neutral dicamba relative to the

anion were correlated with higher volatilization from residues

prepared with DMA, DGA, and BAPMA. However, this

correlation was not observed with other amines (e.g., IPA),

suggesting that additional secondary factors associated with the

amines should be considered in explaining dicamba volatilization.

The additional properties of amines that may impact dicamba

protonation include the number of amine groups (e.g., multiple amine

groups in the case of BAPMA), the type of amine (e.g., primary amine

IPA vs secondary amine DMA), and the ability to form complex

bonding networks, as the strength of the hydrogen bond between the

amine and dicamba can influence the effect of the amine on dicamba

volatilization (Sharkey et al., 2020). Specifically, dicamba is more

extensively deprotonated by amines containing additional polar

groups (e.g., hydroxyl and ether groups in DGA), which may

explain the contribution of these groups to suppressing dicamba

volatilization (Sharkey et al., 2020). Thus, beyond the characteristics

of different dicamba salts, mixing with other products can generate

more complex interactions that affect dicamba volatilization.

Thus, beyond the characteristics of different dicamba salts,

mixing with other products can generate more complex

interactions that affect dicamba volatilization. These amine–

dicamba interactions are often pH-dependent, as pH influences

the equilibrium between neutral and ionic dicamba species.

However, in the present study, treatments with similar pH values

but different co-formulants (e.g., glufosinate ammonium vs.

mesotrione + atrazine) exhibited markedly different volatilization

patterns, indicating that pH alone was not the primary determinant

of volatility under the tested conditions.

In the study conducted by Sharkey and Parker (2024), in

addition to the characteristics related to dicamba amine salts, the

authors investigated the interference of S-metolachlor in dicamba

volatilization and observed that the herbicide did not affect dicamba

protonation in the residues, which was consistent with its negligible

effect on dicamba volatilization. These results are similar to those

found in the present study, as the mixture of DGA + GK + VRA + S-

metolachlor (T17) did not increase volatilization, whether

compared to the isolated dicamba application (T1) or the DGA +

GK + VRA mixture (T4) (Table 3; Figure 2).

In order to evaluate dicamba volatilization from mixtures with

glyphosate, saflufenacil, and adjuvants, Ferreira et al. (2020)

observed that the mixture of dicamba with potassium glyphosate

salt and an adjuvant based on lecithin + propionic acid was more

volatile and toxic to soybean plants. On the other hand, mixtures of

dicamba with lecithin + soybean methyl ester + ethoxylated alcohol

(D+F) and with potassium glyphosate + saflufenacil (D+R+H)
TABLE 3 Volatilized dicamba (g ha-¹) after isolated application and in
mixture with other phytosanitary products.

Treatments
Volatilized

dicamba (g ha-1)

1 Dicamba diglycolamine sal (DGA) 0.515 ±* 0.072

2 DGA + glyphosate potassium salt (GK) 0.338 ± 0.042

3 DGA + volatility reducer (VR) 0.053 ± 0.010

4 DGA + GK + VR 0.104 ± 0.018

5 DGA + GK + VR + saflufenacil + ADJ 35 0.025 ± 0.009

6
DGA + GK + VR + glufosinate ammonium +
ADJ 35

0.155 ± 0.028

7 DGA + GK + VR + flumioxazin + mineral oil 0.020 ± 0.013

8
DGA + GK + VR+ carfentrazone +
mineral oil

0.032 ± 0.025

9 DGA + GK + VR + diclosulan 0.019 ± 0.008

10 DGA + GK + VR + imazethapyr 0.027 ± 0.021

11
DGA + GK + VR+ mesotrione + atrazine +
mineral oil

0.149 ± 0.039

12
DGA + GK + VR + chlorimuron-ethyl +
mineral oil

0.021 ± 0.009

13 DGA + GK + VR + lambda-cyhalothrin 0.025 ± 0.008

14 DGA + GK + VR + zeta-cypermethrin 0.083 ± 0.027

15 DGA + GK + VR + methomyl 0.075 ± 0.033

16 DGA + GK + VR + flubendiamide 0.028 ± 0.004

17 DGA + GK + VR + s-metholaclor 0.037 ± 0.007

18 DGA + GK + VR + methyl soybean oil ester 0.021 ± 0.005

19 DGA + GK + VR + NPE 0.044 ± 0.008

20 DGA + GK + VR + orange peel oil 0.035 ± 0.006

21 DGA + GK + VR + ADJ 35 0.045 ± 0.007
*The value followed by ± represents the value of the confidence interval at a 5%
significance level.
Application on corn straw.
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showed low levels of injury to soybean plants. It is important to note

that the authors did not quantify the volatilized dicamba

production; instead, the assessments were based on the visual

effects of dicamba on soybean plants. The experimental setup

prevented particle drift, as treated soil was placed in sealed plastic

chambers connected only by hoses that allowed gas exchange with

separate chambers containing soybean plants. Therefore, the injury

observed in soybean plants was attributable exclusively to dicamba

vapor exposure, rather than to droplet drift or direct contact with

the spray solution. Although the study did not quantify the amount

of volatilized dicamba, the visual assessment of injury provides

qualitative evidence supporting volatilization potential under

different mixture scenarios.
4 Conclusions

Volatility reducers effectively lower dicamba vapor levels, achieving

reductions of up to 90%. Even when other products are included in the

spray solution, reductions of approximately 70% are still observed.

However, mixtures containing glufosinate ammonium or mesotrione

+atrazine increased dicamba volatilization compared to DGA + GK +

RV alone. The influence of additional tank-mix components on

dicamba vapor loss remains poorly understood and may involve

complex chemical interactions. These findings underscore the need

for further research to clarify these mechanisms and optimize tank-mix

strategies. By improving understanding of these interactions, application

practices can be refined to maximize weed control efficacy while

minimizing off-target movement and potential environmental impacts.
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