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1 Background and summary

The Fall Army Worm (FAW), Spodoptera frugiperda, is an invasive species that has

rapidly spread across several continents, causing severe damage to a variety of crops,

particularly maize (Dessie et al., 2024). Its ability to reproduce quickly and migrate long

distances makes it particularly difficult to manage. Early detection and continuous

monitoring of FAW are critical for timely intervention and effective pest management

strategies (Mhala et al., 2024). However, traditional pest monitoring methods, such as

visual inspection, are labor intensive, time-consuming and inefficient in large-scale

agricultural settings.

To address these limitations, recent studies have explored the use of remote sensing

(Dzurume et al., 2025) and computer vision (Oyege et al., 2024; Shinde et al., 2024)

technologies for automated pest detection. Among these, thermal imaging (Bhakta et al.,

2023) has shown particular promise due to its ability to capture subtle physiological

changes in plant tissues through temperature variations – changes that may be early

indicators of pest infestation. Combined with RGB imaging, which provides detailed visual

information, this multimodal approach would be a powerful tool for improving pest

detection accuracy.

In this study, we present a novel dataset consisting of both thermal and RGB images of

maize crop, including samples both infested by FAW and healthy controls. The images

were captured under real field conditions using a FLIR E8 thermal camera and an iPhone

RGB camera, ensuring practical relevance.

Given the limited availability of datasets for this specific use case involving thermal-

RGB fusion, our dataset provides a valuable resource for the agricultural and computer

vision communities by filling an important gap. In addition, we applied a comprehensive

set of 38 image augmentation techniques to increase the variability and robustness of the
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dataset, making it suitable for training deep learning models

(Upadhyay et al., 2025) in FAW detection and classification tasks.
2 Methods

The dataset consists of thermal and RGB images of maize

plants, both infested with FAW and healthy, collected under

varied environmental conditions. A detailed breakdown of the

data collection process and the augmentation techniques is

provided below.
2.1 Data collection

The images were collected in agricultural fields where maize

plants were actively growing. Two types of images were captured:
Fron
‐ Thermal (Infrared) Images: These images were captured

using a FLIR E8 thermal imaging camera, which has a

thermal resolution of 320 x 240 pixels. The camera captures

temperature variations, which are indicative of plant health,

pest infestations, or environmental stress.

‐ RGB Images: RGB images were collected from both thermal

camera and iPhone camera, providing high-resolution visible

light images of maize plants. The images were taken from

multiple angles and distances to capture varying perspectives

and the spatial distribution of FAW infestations.
The images were taken under varying lighting conditions (e.g.,

morning, afternoon, cloudy, clear skies) to ensure the dataset is

robust to environmental changes.
• RGB Images (FLIR) – RGB images captured using the FLIR

E8 camera.

• RGB Images (iPhone) – RGB images captured using

an iPhone.

• Thermal Images – Corresponding thermal images from the

FLIR E8 camera.
2.2 Data augmentation

To enhance the diversity and size of the dataset and enable the

development of robust AI models, we applied 38 image

augmentation techniques. These techniques were chosen to

simulate various real-world conditions, such as changes in scale,

orientation, lighting, and noise that might occur in agricultural

fields. The augmentation methods applied include:
tiers in Agronomy 02
‐Geometric Transformations: skew, rotate, translate, scale, flip,

zoom, random cropping, affine transform, perspective

transform, elastic distortion, spatial transform, image

warp, and deformable convolution.

‐ Noise Addition: gaussian noise, salt & pepper noise.

‐ Image Distortion: gaussian blur, sharpen, temperature jitter,

random erasing, occlusion, pseudo coloring, and mosaic.

‐ Color Adjustments: channel shuffle, solarize, invert, cut mix,

color jitter, sigmoid contrast, gamma contrast, linear

contrast, color shift, and contrast adjustments.

‐ Advanced Augmentations: bounding box, collar jitter, hide &

seek, grid mask, mix up, polar distortion.
These augmentations ensure that the dataset is well-suited for

training deep learning models that can generalize across a variety of

conditions and environments (Alessandrini et al., 2021). The

augmented images were generated by applying the above methods to

both the thermal and RGB images of healthy and infested maize plants.

Figures 1–5 provide visual examples of these augmentations,

showcasing how image variability is introduced across different

classes and imaging types. These figures highlight the effectiveness

of the augmentation strategies in simulating realistic variations that

models may encounter in real-world agricultural settings.
2.3 Data records
‐ Total Number of Images: The dataset post augmentation

contains over 59,943 images (24,687 thermal and 35,256

RGB – 24,687 (FLIR), 10569 (iPhone)), with approximately

40% representing healthy maize plants and 60% showing

FAW infestations at various stages of severity. Data

structure as deposited in repository is presented in Figure 6.

‐ Image Resolution: Thermal images are captured at a

resolution of 320 x 240 pixels, while RGB images are of

varying resolutions, typically around 640 x 480 (FLIR) and

3024 x 4032 (iPhone) pixels.

‐ Augmented Images: After augmentation, the dataset is

significantly expanded, offering a highly varied set of

images for training and testing machine learning models.
The dataset is available on Figshare (A Thermal and RGB Image

Dataset for Fall ArmyWormDetection inMaize Leaves), an open-access

repository that enables users to share, cite, and discover research outputs.

The dataset includes images of Fall Army Worm (FAW)-infested and

healthy maize leaves captured using a FLIR E8 thermal camera and an

iPhone. It is structured into categories: ‘FAMRGB - IFR’, ‘Healthy RGB -

IFR’, ‘IFR FAW’, ‘IFR Healthy’, and ‘RGB FAW’. The dataset can be

accessed at Figshare (DOI: 10.6084/m9.figshare.28388018).
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2.4 Technical validation

To ensure dataset reliability, we:
Fron
• Cross-validated RGB and thermal images for consistency.

• Performed manual inspections for labelling accuracy.

• Employed baseline deep learning model (CNN) to validate

the dataset’s usability for FAW detection.
tiers in Agronomy 03
3 Usage notes
The primary application of this dataset is in the development

and training of machine learning models for the detection of FAW

infestations in maize crops. The dataset can be used in several

key areas:
FIGURE 1

Samples images of augmentation for the class FAW (FLIR - IFR).
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3.1 Pest detection and classification

Machine learning models, particularly convolutional neural

networks (CNNs), can be trained on this dataset to automatically

detect and classify images based on the presence or absence of

FAW. Thermal images are particularly useful for identifying

temperature anomalies caused by pest activity, while RGB images
Frontiers in Agronomy 04
provide detailed visual information about the physical state of

the plants.

3.2 Early pest detection

The dataset is particularly valuable for early-stage pest

detection, which is crucial for minimizing crop damage and
FIGURE 2

Samples images of augmentation for the class FAW (FLIR - RGB).
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reducing pesticide use. By leveraging the thermal imaging modality,

which can detect heat signatures from pests even before visible signs

of damage occur, the dataset can help in the development of AI-

based systems that alert farmers to potential infestations in real-

time (Appiah et al., 2025).
Frontiers in Agronomy 05
3.3 Precision agriculture

The dataset can be used as part of precision agriculture

initiatives (Genze et al., 2024; Olaniyi et al., 2023; Mesıás-Ruiz

et al., 2025), where machine learning models analyze images of
FIGURE 3

Samples images of augmentation for the class Healthy (FLIR - IFR).
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crops to identify pest outbreaks and other environmental stresses

(Salaić et al., 2023), allowing farmers to take targeted actions,

such as localized pesticide spraying or pest control measures.

This can reduce costs, minimize pesticide use, and enhance

crop yield.
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3.4 Crop health monitoring

In addition to pest detection, this dataset can also be employed

for broader crop health monitoring applications. By analyzing both

thermal and RGB images, researchers can study the physiological
FIGURE 4

Samples images of augmentation for the class Healthy (FLIR - RGB).
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stress factors affecting maize plants, including water stress, disease,

and pest damage.

3.5 Image analysis

To evaluate the effectiveness of the dataset, a simple

Convolutional Neural Network (CNN) was implemented to
Frontiers in Agronomy 07
classify maize leaves as either healthy or FAW-infected. The

model was trained on both RGB and infrared (IFR) images

collected using a FLIR E8 thermal camera and an iPhone. The

CNN architecture consisted of multiple convolutional layers,

max-pooling, and fully connected layers, ensuring a basic yet

effective feature extraction process. The dataset was split into 80%

training and 20% validation, with all images resized to 224×224
FIGURE 5

Samples images of augmentation for the class FAW (iPhone - RGB).
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pixels for uniformity. The results from this preliminary analysis

demonstrate the dataset’s potential for distinguishing between

healthy and infected leaves, serving as a foundation for future,

more advanced models. The evaluation results obtained were

tabulated below (Table 1) and their respective curves are

presented in Figures 7–9.
4 Novelty and contribution

This dataset is unique in several respects:

- Combination of Thermal and RGB Imaging: This dataset is

among the first to combine close-range thermal and RGB images

specifically for FAW detection in maize. The dual-modality
Frontiers in Agronomy 08
approach allows for more accurate and robust identification of

infestation, capturing both visual features and thermal signatures

associated with pest activity, something not possible with RGB or

satellite data alone.
FIGURE 6

Dataset structure.
TABLE 1 Accuracy metrics for the evaluated train and test sets.

Image Class Train
accuracy

Validation
accuracy

FLIR: RGB – FAW Vs Healthy 0.99 0.99

FLIR: IFR – FAW Vs Healthy 0.99 0.98

iPhone: RGB – FAW Vs FLIR RGB
- Healthy

1.00 1.00
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FIGURE 7

Accuracy and loss curve evaluated for FLIR: RGB – FAW Vs Healthy.
FIGURE 8

Accuracy and loss curve evaluated for FLIR: IFR – FAW Vs Healthy.
FIGURE 9

Accuracy and loss curve evaluated for iPhone: RGB – FAW Vs FLIR RGB – Healthy.
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- Real-World Applicability: All images were collected under natural,

real-field conditions using a FLIR E8 thermal camera and an iPhone

for RGB imagery. This enhances the dataset’s relevance and

applicabi l i ty for practical deployment in operational

agricultural settings.

- Extensive Augmentation Techniques: To further improve the

dataset’s utility, we applied 38 diverse image augmentation

techniques to increase variability and robustness, enabling

deep learning models trained on this dataset to generalize better

across environmental conditions, infestation levels and image noise.

This dataset offers a fine-grained, multimodal and field-

validated resource that is currently lacking in pest detection

research. This contribution can support the development of more

precise and scalable AI models for sustainable pest management

in agriculture.

5 Conclusion

This dataset offers exciting avenues for future research and

application. It can be directly used to develop robust AI models

for real-time FAW detection in maize, deployable on mobile

devices or UAV-mounted imaging systems. Its dual-modality

(thermal and RGB) makes it ideal for integration into smart

farming platforms and early warning systems to minimize crop

loss. Moreover, researchers can leverage this dataset to

explore multimodal learning, domain adaptation, and

generalizable pest detection frameworks across various

agricultural environments.
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