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Coffee is one of the most vulnerable crops to climate change and farming
practices, since its productivity is shaped by factors such as temperature,
precipitation, and soil, among others. Consequently, the final product’s
chemistry and quality can be significantly altered. This study investigates the
hypothesis that higher coffee quality is associated with production areas
implementing sustainable management practices. For that, we assessed the
link between agricultural practices, sensory quality and bioactive chemical
profile of coffee. Coffea arabica beans were sourced from two contrasting
cultivation areas in Brazil. The changes in the chemical composition of the
beans were assessed by targeted metabolomics, while the quality of the coffee
was evaluated by sensory grading. Higher quality and higher altitudes correlated
with lower levels of all xanthine alkaloids, ferulic acid and p-coumaric acid.
Higher soil organic matter was associated with lower levels of trigonelline,
theophylline, caffeine and ferulic acid. Interestingly, soil organic matter and
organic carbon stock correlated positively with coffee quality. Therefore, this
study demonstrates that promoting coffee production through sustainable
practices contributes not only to the mitigation of effects of greenhouse gas
emissions but also to the production of higher-quality coffees with increased
added value.
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1 Introduction

Brazil stands as the world’s leading coffee producer and
exporter, accounting for over one-third of the total global
production (CONAB, 2024). With extensive cultivation areas
located in southern Brazil, the state of Minas Gerais is responsible
for about two-thirds of the Brazilian productivity (Tieghi et al,
2024). The southern and southwestern Brazilian regions offer coffee
plantations optimal growing conditions. Indeed, successful C.
arabica cultivation in tropical regions is influenced by a
combination of environmental and crop management factors.
Optimal cultivation occurs under mean annual temperatures of
14-26°C, annual precipitation ranging from 1,000 to 2,700 mm, and
a distinct dry season of 1-3 months. These conditions are typically
associated with altitudinal ranges of approximately 400-1,200 m
above sea level in tropical regions, or 1,000-2,100 m above sea level
in equatorial regions (Ahmed et al., 2021). However, those optimal
conditions are being increasingly threatened by climate change,
which directly affects flowering, fruit ripening, and pest incidence,
impacting quality, productivity and price (Ahmed et al., 2021; Faraz
et al., 2023).

Besides the natural environmental conditions, coffee’s
physiological growth stages are highly dependent on the nutrient
availability, being nitrogen (N), phosphorus (P), and potassium (K),
the primary macronutrients influencing yield and bean quality.
Nitrogen, with optimal range levels varying between 51 mg/kg and
87 mg/kg is especially important for the vegetative growth;
Appropriate values of potassium (ranging from 78 and 156 mg/
kg) contribute to enhanced bean quality and prevents plant
defoliation; Soil phosphorus, with suitable values between 10 and
20 mg/kg is essential to for enhances leaf gas exchange,
photosynthesis, and overall growth of young arabica coffee plants,
even under water deficit conditions (Rakocevic et al., 2022; Chilito
et al., 2025).

The quality of the final product is dependent on the chemical
composition of the green beans, rich in bioactive compounds such
as phenolic compounds, alkaloids and diterpenes, as well as primary
metabolites such as sugars, lipids and amino acids. After roasting,
those compounds develop the characteristic flavor, aroma and other
sensory attributes, which will give coffee the many different
classifications and market value (Varady et al., 2022).

It is well known that the relative concentration of such
compounds is dependent on the combination between the genetic
background, the geographical origin and environmental growing
conditions (Tieghi et al., 2024). However, up to date, no study has
evaluated the influence of implemented sustainable agronomic
practices with the quality of the final product in terms of
chemical profile of the green beans and the corresponding
sensory score provided by the roasted beans. Therefore, this study
examines the hypothesis that superior coffee quality is associated
with production areas where sustainable management practices are
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applied. It also provides preliminary insights into the relationship
between local environmental factors, agricultural management, and
coffee biochemistry.

2 Material and methods

2.1 Coffee beans sampling, processing and
analysis

Eight samples of green (unroasted) coffee beans and their
corresponding roasted counterparts were obtained from two
distinct and contrasting coffee-producing regions in the state of
Minas Gerais, Brazil. These included the farms of Conquista,
located in the municipality of Alfenas/MG (ALF), and Rio Verde
at the municipality of Concei¢ao do Rio Verde/MG (CRV). At ALF,
all the collected coffee varieties were Acaia, whereas at CRV, the
collected varieties comprised Bourbon, Catuai, Gueisha, and Acaia.
At ALF, harvesting is mechanized, while CRV harvesting is manual
and selective (Table 1). All samples were harvested and processed in
2023. The sensory evaluation was performed by Q-graders from
Ipanema Coffees, following the Specialty Coffee Association (SCA)
protocols (SCA - Specialty Coffee Association, 2008).

Intact coffee beans (green and roasted) were packaged in sealed
plastic bags and stored at 10°C. From each sample, 10 g of beans
were ground in a knife mill and the particle size was standardized
using a 20 mesh granulometric sieve. The powdered samples were
stored in 2.0 mL Eppendorf tubes at -20°C. An amount of 100 mg (+
2 mg) of each sample was transferred to 1.0 mL Eppendorf tubes
and extracted with 1 mL of 80% v/v methanol, containing 200 pg/
mL of naringenin as internal standard (IS), with the aid of an
ultrasound bath. All samples were analysed by high-performance
liquid chromatography (HPLC-UV-DAD, Shimadzu, Kyoto,
Japan), in three technical replicates (n=3) exactly as described by
Tieghi et al. (2024).

Chromatographic separations were carried out using a CI8
chromatographic column (150 x 4.6 mm, 5 um, Phenomenex,
Torrance, CA, USA), protected by a guard column of the same
stationary phase. Purified water acidified with 0.2% of formic acid
(v/v), pH 2.7 (solvent A), and methanol containing 10% of
acetonitrile and 0.2% of formic acid (v/v) (solvent B) were used as
mobile phase components. The elution gradient ranged from 10%
to 25% of B, from 0 to 2 min, then from 25% to 50% of B from 2 to
16 min, and from 50% to 100% of B until 22 min, keeping at 100%
of B until 28 min. Gradient return to initial condition (10% of B)
was performed in 1 min and column re-equilibration was achieved
with additional 7 min. The flow rate was 1.0 mL/min and the
injection volume was 10 uL. Detection of analytes was performed at
a wavelength window ranging from 200 to 800 nm. Peaks were
assigned by comparison with authentic standards retention time
and UV spectra. For the quantitative analysis, peaks were integrated
at 268 nm for trigonelline, 275 nm for theophylline, theobromine,
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TABLE 1 Samples’ varieties and origins, altitude, temperature, rainfall average, harvesting method, and characterization of the producing areas.

Municipality
(Minas
Gerais state)

Altitude
(m) °C

Sample Variety

Temperature

SOC SOM
(ton/Ha) (VA

e
(mm)

Harvesting
method

1 Acaia Alfenas 856 22.01 1250 Mechanized 46 4.6 35 3.6
2 Acaia Alfenas 800 22.01 1250 Mechanized 32 42 22 2.8
3 Acaia Alfenas 893 22.01 1250 Mechanized 56 44 32 2.4
4 Acaia Alfenas 842 22.01 1250 Mechanized 20 4.8 44 2.5
Conceigdo do .
5 Bourbon X 1260 20.50 1453 Manual/selective = 5 4.8 60 3.8
Rio Verde
, Conceigao do .
6 Catual . 1139 20.50 1453 Manual/selective = 14 43 45 35
Rio Verde
. Conceigdo do .
7 Gueisha ) 1227 20.50 1453 Manual/selective = 11 4.8 75 3.8
Rio Verde
» Conceigdo do .
8 Acaia . 1110 20.50 1453 Manual/selective | 16 4.9 34 29
Rio Verde
and caffeine, and 325 nm for chlorogenic acid, caffeic acid, ferulic SOC x Sd x t
R R . SOCstock = —————
acid, and p-coumaric acid. 10

2.2 Mapping and characterization of the
studied areas

The maps of the producing regions were generated using
ArcGIS 10.8 (ESRI Environmental Systems Research Institute,
2020). The land use and land cover (LULC) table (Supplementary
Table S1, Supporting Information) was elaborated based on data
from Collection 8 of the MapBiomas platform (MapBiomas Project,
2023), the Landsat-8 TM (Thematic Mapper) satellite images, and
mappings elaborated by Ipanema Coffees. The Digital Elevation
Model (DEM) (Figures 1A, B) was developed based on images with
30 m resolution from the Copernicus program, specifically GLO-30,
from the X-band of the TanDEM-X and TerraSAR-X missions
(ESA European Space Agency, 2024).

2.3 Soil organic matter and organic carbon
analysis

Soil samples from each farm were collected from the coffee plots
to determine the soil organic matter (SOM) content and soil organic
carbon (SOC) stock. All the samples were collected in a
disaggregated form, at a 0 to 20 cm depth, weighing around 600
g. SOM content was determined by Cooxupe laboratories using the
dry quantification methodology in a muffle furnace by incineration
(Sousa et al., 2018). The SOC content was estimated assuming that
58% of the SOM content consists of SOC (Van Bemmelen, 1890).
According to the SOC content for each point sample, the SOC stock
was determined, in Mg/ha, for each glebe, from 2019 to 2024, using
the Veldkamp equation (Veldkamp, 1994), described by Equation
below:
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In which: SOCstock = total stock of organic C at a given depth,
in this case, 0-20 cm (Mg/ha); SOC = total soil organic C content at
the depth sampled (g/dm’); Sd = soil density (kg/dm’) and t =
thickness of the layer considered (cm).

2.4 Statistical analysis

Comparisons between means, normality and correlation
analyses were performed using Prism software (version 8.0.1,
GraphPad software®, La Jolla, CA, USA). Statistical differences
were considered significant if p-value < 0.05. Numerical variables
were subjected to four normality tests: Anderson-Darling,
D’Agostino & Pearson; Shapiro-Wilk; and Kolmogorov-Smirnov.
The Mann-Whitney test was used to compare the averages between
ALF and CRV samples. The heatmap was based on a correlation
matrix comparing the 8 quantified compounds with geographic
variables (altitude, SOM, SOC, soil pH) and sensory score. Pearson
and Spearman correlation coefficients were evaluated for variables
with normal and non-normal distribution, respectively. The red-
blue scale was added using Microsoft® Excel® for Microsoft 365
MSO (v.2305 Build 16.0.16501.20074) software. For the
multivariate data analysis, the data obtained for the green coffee
beans were normalized by the IS, auto scaled and subjected to
principal component analysis (PCA) using MetaboAnalyst 6.0
(Montreal, QC, Canada) (https://www.metaboanalyst.ca/).

3 Results

3.1 Description and characterization of the
producing regions

The present study included coffee beans and metadata from two
main geographical regions of Minas Gerais (Supplementary Figures
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S1A, B, Supporting Information). Both areas are classified under a
humid subtropical climate (Cwb) (Alvares et al., 2013). Over the
past five years, based on meteorological and pluviometry
measurements in the study area, ALF and CRV recorded an
annual average temperature of 22.01°C and 20.50°C and an
average yearly rainfall of 1250 mm and 1453 mm, respectively.
The LULC classes are presented in Supplementary Table SI
(Supporting Information). Due to the flat topography and good
spacing between the plants, mechanized harvesting is next to 100%
at ALF and 69% at CRV, which enables lower operational costs. In
CRV, manual or semi-manual picking is used to harvest the ripe

10.3389/fagro.2025.1645329

cherries. The general differences between the two harvesting
methods are presented in Supplementary Figure S2 (Supporting
Information). In ALF, the spacing between planting rows and same
row plants varied from 3.5 to 4.0 m and from 0.5 to 1.0 m,
respectively; in CRV, spacing between planting rows and plants
within the same row varied from 2.0 to 4.0 m and from 0.5 to 2.0 m,
respectively. Both coffee production areas are in a full sun model,
managed with agronomic practices including fertilization, weed,
pest and disease control, pruning management, irrigation and post-
harvest treatments. The average altitude of CRV is significantly
higher (p = 0.029) than that of ALF, as can be seen in Figures 1A, B,
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FIGURE 1

Comparison between coffee samples from two farms located in Alfenas-MG (ALF; n = 4) and Concei¢do do Rio Verde-MG (CRV; n = 4). (A) Altitude map of
ALF and (B) CRV showing the samples’ locations. (C) PCA score plot based on the samples’ chemical profile; (D) Box-plots representing Mann-Whitney test
comparing samples from ALF and CRV regarding altitude (p-value = 0.029), (E) soil organic matter - SOM (p-value = 0.114); (F) soil organic carbon - SOC (p-
value = 0.029); (G) soil pH (p-value = 0.314) and (H) sensory score (p-value = 0.029).
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D. Regarding soil, SOC was significantly higher at CRV (p = 0.029,
Figure 1F), while SOM and pH were shown to be statistically
equivalent (p = 0.114 and p = 0.314, respectively) (Figures 1E, G,
respectively). Both SOC and SOM correlated positively with altitude
(Figure 2B, C, respectively).

3.2 Chemical profile characterization of
green and roasted beans and sensory
quality

The chemical analysis of the green and roasted beans (Figure 3,
Supplementary Table S2, Supporting Information) shows
significant differences in the content of all compounds, except for
caffeine (n==8). After roasting, the content of all phenolic
compounds and trigonelline increase, whereas the content of
theophylline and theobromine is reduced. An unsupervised
multivariate data analysis (PCA) revealed subtle differences
between the chemical composition of the green coffees produced
in the two regions. While the first two principal components (PC1
and PC2) explained 82.6% of the data variability, the better
separation between samples farms was observed when comparing

10.3389/fagro.2025.1645329

PC2 and PC4, as confirmed by PERMANOVA analysis (999
permutations; F = 5.0636; 2 = 0.45768; p = 0.028). The
differences in the chemical composition between the two regions
were primarily captured by PC2. According to the PC2 loadings,
trigonelline, ferulic acid, and p-coumaric acid were the most
influential compounds contributing to the differentiation between
the two farms. Caffeine and chlorogenic acid, which are the two
major compounds found in both green and roasted beans did not
influence the separation (Supplementary Table S3, Supporting
Information). Coffees from CRV presented higher sensory scores
than those from ALF (Figure 1H), with a statistically significant
difference according to the Mann-Whitney test (p = 0.029).

3.3 Correlation analysis between the
chemical profile, geographical origin, and
sensory quality

The correlation coefficients related to the chemical profile,
geographic aspects, and sensory score are shown in the heatmap
of Figure 2A. Lower levels of all xanthine alkaloids, ferulic acid and
p-coumaric acid were associated to higher quality and higher

1400
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FIGURE 2

(A) Correlation analysis between chemical composition of the green coffee beans and geographical variables: Heatmap based on correlation
coefficients comparing chemical profile and geographical variables; (B) Correlation analysis between altitude and soil organic carbon (SOC); (C)
Correlation analysis between altitude and soil organic matter (SOM); (D) Correlation analysis between SOC and sensory score; (E) Correlation
analysis between SOM and sensory score; (F) Correlation analysis between altitude and sensory score.
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FIGURE 3

Quantitative analysis of target secondary metabolites present on green and corresponding roasted coffee beans (n=8). *Significant at p < 0.05.

altitudes. Coffee quality (sensory score) correlated positively with
organic carbon stock, soil organic matter and altitude (Figures 2D-
F, respectively). Higher soil organic matter was associated with
lower levels of trigonelline, theophylline, caffeine and ferulic acid.
However, only theophylline showed stronger negative correlation
with soil carbon storage. Chlorogenic acid derivatives were
positively correlated with higher soil pH.

4 Discussion

The non-supervised multivariate data analysis (PCA) indicated
the feasibility of distinguishing coffees originating from two distinct
producing regions based on the concentrations of eight bioactive
compounds (four alkaloids and four phenolic compounds)
(Figure 1C). It is worth noting that the chemical information
preserved within the green beans was utilized for this purpose.
Roasting transforms the chemical composition of green beans into
volatile and non-volatile compounds responsible for the aroma and

Frontiers in Agronomy

flavor of a cup of coffee. The main chemical reactions involve the
decomposition of sugars, oxidation of lipids, pyrolysis, and the
Maillard reaction (Angeloni et al., 2021; Moon et al, 2025).
Chlorogenic acid was the most abundant compound quantified in
the present study and underwent substantial degradation during
roasting (Liao et al., 2022). Its degradation is expected as it is an
unstable ester of caffeic acid and quinic acid, easily converted into
these two compounds in the roasting process. Subsequent reactions
give rise to a variety of volatile compounds, such as phenol, benzoic
acid, catechols and their derivatives, as well as non-volatile
compounds, including quinic acid epimers and lactone derivatives
of chlorogenic acids (Viencz et al, 2023). These compounds
collectively contribute to the sensory characteristics of the coffee
(Hu et al.,, 2020). Additionally, a decrease in caffeic acid levels was
observed, consistent with previous studies on roasting processes
(Alcantara et al., 2025; Rzyska-Szczupak et al., 2025). Trigonelline,
the second most abundant compound quantified in this study, also
underwent decomposition during roasting. Its degradation
generates flavor and aroma desirable products, including furans,
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pyrazines, alkyl-pyridines, and pyrroles (Toci et al., 2020; Wu et al.,
2022). Following the abundance sequence, the caffeine content did
not change significantly during roasting. This observation is
expected given its well-established stability in the literature
(Tarigan et al., 2022). The other evaluated metabolites underwent
statistically significant but biologically subtle alterations.

Notably, the chemical constituents measured in the green bean
exhibited correlations with altitude, SOM, SOC, and the overall
quality of the brewed beverage (Figure 2A). These findings offer a
chemical rationale for the different cultivation and environmental
conditions shown by the two contrasting locations, and their
influence on the sensory attributes of the final beverage (coffee
after roasting and extraction). Trigonelline, ferulic acid, and p-
coumaric acid were the principal chemical constituents responsible
for distinguishing the geographical origin of the coffee beans. From
those, p-coumaric acid, in addition to all xanthine alkaloids
(theobromine, theophylline and caffeine) showed stronger
negative correlation with altitude (Figure 2A). Interestingly, coffee
exhibiting reduced concentrations of these compounds were also
associated with higher sensory scores. Higher soil organic matter
was associated with lower levels of trigonelline, theophylline,
caffeine and ferulic acid. Our observations are consistent with the
lower content of caffeine and trigonelline in coffees grown in richest
organic matter soil observed by Gebrekidan et al. (2019).
Unprecedently, we also report a negative correlation between
theophylline and ferulic acid with organic matter in soil.
Interestingly, soil organic matter and organic carbon stock
correlated positively with coffee quality.Those findings revealed
that high-quality coffee beans presented reduced concentrations
of xanthine derivatives, in addition to p-coumaric acid. Coffee beans
possessing relatively lower amount of those compounds in the green
beans were predominantly sourced from elevated regions with soils
enriched in organic matter, reinforcing the observation that coffees
cultivated at CRV, a farm characterized by higher altitude and
higher SOC content, consistently achieved superior sensory score.

From the agricultural practices’ perspective, although SOM
content is statistically similar between the two farms, SOC levels
are significantly higher in CRV. It is noteworthy to mention that the
higher average soil organic carbon (SOC) stock observed in the
CRV region (Figures 1F, 2B) can be partially attributed to its
elevated altitude. Cooler climates at higher altitudes tend to
suppress microbial activity, thereby slowing the decomposition
rate of soil organic matter (SOM) and enhancing SOC
sequestration (Li et al., 2022; Pellikka et al., 2023). Both SOM and
SOC play a critical role in improving crop yields and creating
favorable soil conditions for coffee cultivation (Sousa et al., 2018;
Tassew et al, 2021; Freitas et al., 2024). Besides, the adoption
sustainable agricultural management practices at CRV also
promotes SOC accumulation through several measures: (i)
maintaining vegetation cover interspersed within cultivation
areas; (ii) reducing the spacing between rows to increase plant
density; (iii) practicing manual harvesting in steep areas to
minimize soil compaction; (iv) enhancing the incorporation of
plant residues into the soil; and (v) maintaining higher biomass
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in the cultivated plants. These practices not only increase SOC levels
but also improve soil nitrogen (N) retention, thereby reducing the
dependence on synthetic fertilizers (Tassew et al., 2021; Yin
et al., 2022).

In addition, other agronomic practices employed in CRV may
contribute to improved crop quality. These include (i) selective
harvesting at optimal ripening stages, (ii) close monitoring of
climatic conditions, (iii) annual soil and foliar analyses, (iv)
efficient fertilizer application, and (v) proper post-harvest storage
of beans (Worku et al., 2018; Alliance for Coffee Excellence, 2023).
Collectively, these measures help reduce pest incidence and
promote the development of denser, higher-quality beans (Cheng
et al.,, 2016). They also contribute to prolonged fruit ripening and
improved soil drainage, resulting in beans enriched with complex
sugars, acids, and amino acids that enhance the sensory
characteristics of the final beverage (Matiello et al., 2005; Vaast
et al., 2006).

Those observations are corroborated by a previous study from
Silveira et al. (2016), which concluded that altitude, associated with
good agricultural management practices, were the major factors
influencing coffee quality in Matas de Minas (Silveira et al., 2016).
However, it is important to mention that altitude, temperature and
rainfall may not directly impact beverage quality; instead, they can
create the best environmental conditions for growing coffee
(Gumecindo-Alejo et al., 2021).

It is important to highlight that both regions included in the
present study favours the cultivation of C. arabica. However, the
suitability of a region for coffee cultivation depends on several
factors. Even within the same favourable areas, significant
variations arise from microclimates, soil characteristics, and
management practices. In our study, the region of Alfenas has
lower altitudes and higher temperatures, which accelerates the
maturation cycle, and potentially reducing the accumulation of
sugars and aromatic compounds (Ramalho et al., 2018). In
Concei¢do do Rio Verde, higher altitudes and cooler climate
prolong maturation, allowing for a greater development of flavour
complexity, vibrant acidity, and a richer aromatic profile, which are
commonly associated to specialty coffees profiles. It is worth noting
that the sensory analysis of roasted beans from each farm reflected
the chemistry of the original green beans, revealing clear differences
in cup quality and in the corresponding aromas and flavors —
samples from CRV showing higher sensory score in comparison to
samples from ALF. Interestingly, the samples from ALF showed
higher variation among the sensory scores in comparison with the
samples from CRV (Figure 1H). That result may suggest that the
higher variation in the sensory score of samples from ALF might be
due to the general management practices employed on that farm.
Finally, attention should also be drawn to the fact that coffee is a
highly demanding crop, and nutrients availability can still alter its
physiological development. Hence, the application of appropriate
fertilization regimes is important to fulfil the nutritional demands of
coffee throughout its vegetative and reproductive stages, supporting
optimal photosynthetic performance, and contributing to higher
yields and superior bean quality (Li et al., 2023).
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5 Conclusion

The present study identifies a relationship between sustainable
management practices, coffee bioactive chemical profile and
quality. Although further research is currently ongoing to
deepen the understanding, the results suggest that the chemical
information preserved within the green beans can be associated
with altitude, SOM, SOC, and the overall quality of the final
beverage. Notably, while trigonelline, ferulic acid, and p-coumaric
acid were the principal chemical constituents responsible for
distinguishing the geographical origin of the coffee beans, lower
levels of all xanthine alkaloids in addition to ferulic and p-
coumaric acid were associated to higher quality and higher
altitudes, providing a chemical rationale for the observed
variations in coffee quality across different farms and
production regions.

A limitation of this study is the relatively small sample size,
which may affect statistical power and is characteristic of pilot
studies. However, a key strength of our research lies in its evaluation
of the hypothesis that sustainable management practices
significantly influence coffee cup quality. Furthermore, this study
established a methodological framework for investigating this
relationship. Future research expanding the analysis of the
chemical composition through untargeted metabolomics,
combined with a broader range of management practices,
environmental factors, and beverage quality metrics, will
contribute to a more comprehensive understanding of the
chemical mechanisms underpinning coffee quality and its
association with sustainable agricultural practices.
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