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A novel framework for assessing
ecosystem services through
agroecological practices
Chiara Flora Bassignana, Valentina Bruno and Paola Migliorini*

University of Gastronomic Sciences, Bra, Italy
Ecosystem services (ESs) are increasingly recognized as critical indicators of

agricultural sustainability, yet existing assessment frameworks often lack

applicability at farm level or fail to account for the synergistic effects of

agroecological practices. In response, we developed the APES (Agroecological

Practices for Ecosystem Services) framework within the Horizon 2020 RADIANT

project. APES is a participatory, practice-based tool designed to assess 22

ecosystem services (eight provisioning and fourteen regulating/supporting)

based on the implementation of agroecological practices. The framework was

developed through a literature review and refined via participatory workshops

with farmers and stakeholders in Greece and Scotland. Provisioning services are

assessed through farmer perceptions and crop diversity, while regulating and

supporting services are evaluated based on the degree of practice

implementation. An illustrative case study on dairy farms in Northern Italy

demonstrates the practical application of APES and highlights how ecosystem

services emerge from the combination and interaction of multiple strategies

within diversified systems. By making ESs visible and actionable, APES supports

farmers, researchers, and advisors in driving agroecological transitions and

informing more sustainable food system planning.
KEYWORDS

agroecology, ecosystem services assessment, sustainable farming systems, practice-
based framework, farm level assessment
Highlights
• APES assesses 22 ecosystem services using farm-level agroecological practices.

• The framework links specific practices to ESs via literature and participatory input.

• Provisioning services are evaluated through farmer perception and crop diversity.

• Regulating/supporting services scored via a gradient of agroecological

practice implementation.

• APES supports ecological visibility and agroecological transitions at farm scale as

well as at territorial level.
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1 Introduction

Agricultural systems are increasingly being recognized not only

for their capacity to produce food, feed, and raw materials, but also

for the broad array of ecosystem services (ESs) they generate or

compromise. The concept of ecosystem services refers to the

benefits humans derive from ecosystems, encompassing

provisioning services - such as food, fiber, and energy - as well as

regulating, supporting, and cultural services, including pollination,

nutrient cycling, soil fertility, landscape heterogeneity, and climate

regulation. As biodiversity loss, soil degradation, and climate

change intensify, the ability of farming systems to maintain

ecological functions has become a central concern in both science

and policy (Mabhaudhi et al., 2022; Jenkins et al., 2023).

Assessing ecosystem services in agriculture is now considered

essential to support transitions toward more sustainable and

resilient food systems. Global policy agendas - including the EU

Green Deal, the Biodiversity Strategy, and the Sustainable

Development Goals - emphasize the multifunctionality of

agriculture and call for evidence-based tools to guide land-use

and farm-level decisions (Rodrıǵuez-Ortega et al., 2014; Pascual

et al., 2017). Evaluating how different farming practices impact ESs

is crucial for identifying systems that promote resource efficiency,

ecological resilience, and climate adaptation (Lungarska and

Chakir, 2024). Moreover, making these services visible through

assessment enables us not only to highlight the benefits of certain

farming models, but also to expose the hidden environmental costs

of intensive, input-dependent systems (Vidaller and Dutoit, 2022;

Soulé et al., 2023).

In recent years, a growing number of frameworks have emerged

to assess ecosystem services in agricultural systems. These include

quantitative models based on biophysical or land-cover data,

participatory approaches integrating local knowledge, and tools

combining multiple sustainability indicators. For instance, the

work of Boeraeve et al. (2020) highlights how agroecological

systems contribute to bundles of ecosystem services, using a

multi-criteria approach that integrates landscape and farm-level

indicators. Similarly, the method developed by Soulé et al. (2023)

seeks to link ecosystem service provision with environmental

impacts, offering a decision-support tool at farm level. Other

approaches, such as those by Andersson et al. (2015) and

Rodrıǵuez-Ortega et al. (2014), examine ES delivery through

social–ecological lenses, emphasizing farmer perceptions,

landscape structure, and livestock systems. While these

contributions have significantly advanced our understanding,

most existing ES frameworks face key limitations: they often

prioritize provisioning services, lack specificity in linking practices

to services, or require high levels of technical data and expertise that

constrain their use by farmers (Schipanski et al., 2014; Vidaller and

Dutoit, 2022).

In parallel, there is increasing interest in approaches that

ground ecosystem service assessments in the actual practices

implemented on farms, particularly those informed by

agroecology. Agroecological systems are characterized by

biodiversity enhancement, circular resource flows, and knowledge
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co-creation, and they depend on context-specific practices such as

crop diversification, soil conservation, intercropping, agroforestry,

and the use of local varieties. Yet the ecosystem services provided by

these practices are often underrepresented in policy frameworks

and undermeasured in conventional ES assessment tools

(Temesgen and Wu, 2018; Boeraeve et al., 2020; Mabhaudhi

et al., 2022).

While the ecosystem services framework offers a powerful lens

to evaluate the ecological and societal benefits of farming systems, it

is not without critique. Scholars have pointed out its inherently

anthropocentric orientation, which tends to value nature primarily

in terms of its utility to humans, often reducing complex ecological

relationships to quantifiable outputs or economic proxies

(Silvertown, 2015; Muradian and Gómez-Baggethun, 2021). This

risk of instrumentalizing nature can obscure intrinsic values,

ecological integrity, and the ethical dimensions of human–nature

relations (Raymond et al., 2013; Arias-Arévalo et al., 2017).

Furthermore, the ES framework has been critiqued for its

tendency to simplify social–ecological complexity and undervalue

situated knowledge systems, especially those embedded in rural or

traditional agroecosystems (Buizer et al., 2016; Peredo Parada and

Barrera Salas, 2024). Nonetheless, within the current socio-

economic context, dominated by market logics, reductionist

indicators, and externalized environmental costs, the ES

framework remains a strategically valuable tool. It enables

researchers, farmers, and policymakers to make visible the often-

overlooked ecological functions and public goods generated by

diversified and agroecological farming systems (Andersson et al.,

2015; Balzan et al., 2020).

Agroecology offers a promising lens to overcome these

limitations. As both a science and a practice-based approach,

agroecology integrates ecological principles into farming systems,

fostering biodiversity, circular resource flows, and context-specific

knowledge. Agroecological practices, including intercropping,

organic fertilization, conservation tillage, cover cropping,

agroforestry, and the use of local seeds - are known to enhance

ecosystem services across multiple domains, yet their contributions

remain difficult to measure in a practical and systematic way (Wezel

et al., 2014; Nicholls and Altieri, 2018).

In response to these gaps and critiques, we present a novel

assessment tool: the APES – Agroecological Practices for Ecosystem

Services framework. Developed within the Horizon 2020

RADIANT project, APES is a participatory, practice-based tool

designed to assess ecosystem services generated through

agroecological practices at farm level. The framework evaluates

twenty-two ecosystem services - eight provisioning and fourteen

regulating/supporting - by linking each service to specific

agroecological practices. Designed to be accessible and adaptable,

APES enables both farmers and researchers to assess not only the

positive contributions but also the missed ecological opportunities

associated with current management strategies. In doing so, it

provides a concrete tool to support transitions toward

agroecology by enhancing ecosystem visibility, enabling

knowledge co-production, and informing more just and

sustainable food systems.
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2 Materials and methods

2.1 The APES framework development and
general description

The development of the APES (Agroecological Practices for

Ecosystem Services) framework followed a two-phase process

involving both a comprehensive literature review and multi-actor

participatory engagement. Initially, scientific literature provided the

conceptual foundation for linking agroecological practices to

ecosystem service (ES) provision. However, to ensure the

framework’s relevance and usability across diverse agricultural

contexts, its design was tested and refined through two

participatory workshops conducted within the scope of the

Horizon 2020 RADIANT project.

The first of these workshops took place during the CREATOR

event in Athens, Greece, in June 2022, bringing together farmers,

researchers, policy actors, and food chain stakeholders. The second

workshop was held in Orkney, Scotland, in July 2022, as part of a

similar CREATOR event. In both workshops, participants were

invited to brainstorm collaboratively around two central questions:

(1) Which ecosystem services are perceived as most important or

under pressure in their farming systems? and (2) Which farming
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practices do they consider most influential in enhancing or

degrading these services? Insights from these workshops proved

crucial in grounding the framework in real-world farming

experiences and socio-ecological contexts. Participants’ inputs

helped refine the scope of relevant services and informed the final

selection of practices to be included as indicators. This co-

development process also contributed to the legitimacy and

usability of the tool by incorporating knowledge from across the

agricultural knowledge and innovation system (AKIS), including

farmers, consumers, processors, advisors, and researchers. While

geographically located in two specific countries, the Athens

workshop included a diverse group of stakeholders from different

Mediterranean and European regions. This allowed for a broader

range of perspectives to inform the development of the framework,

despite the limited number of workshop locations.

The APES framework, resulting from the above mentioned co-

development process, is designed to quantify ecosystem service

delivery through a series of practice-based indicators applied at

farm level. In total, the framework evaluates twenty-two ecosystem

services: eight provisioning services (e.g., food, feed, fiber, genetic

resources) and fourteen regulating and supporting services (e.g., soil

fertility, pest regulation, climate regulation, biodiversity

conservation). These services were defined and categorized based
FIGURE 1

Selected ecosystem services.
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on the Common International Classification of Ecosystem Services

(CICES) (https://cices.eu/) to ensure consistency with widely

recognized ES typologies (see Figure 1).
2.2 Assessment of provisioning ecosystem
services with the APES framework

Given the diversity of provisioning ecosystem services and the

challenge of capturing their value through conventional metrics, we

adopted a qualitative, perception-based approach that draws on

farmer-reported satisfaction with yields and crop diversity. This

aligns with broader calls in the literature to expand and adapt

provisioning service assessment beyond purely economic or

production-based indicators (Anand and Gupta, 2020). The

evaluation of provisioning ecosystem services in the APES

framework is grounded in the principle that farmers are uniquely

positioned to assess the productivity and performance of their

systems. As a result, we adopted an approach based primarily on

farmers’ perceptions of satisfaction with yields, complemented by

quantitative measures of crop and varietal diversity for genetic

resources. This method ensures that the evaluation reflects not only

ecological performance but also context-specific knowledge and

experience, which are critical in agroecological systems.

Provisioning services such as food, feed, fiber, raw materials,

energy, cosmetics and medicines, and timber are evaluated through

farmer self-assessment of yield satisfaction. During the

participatory assessment, farmers are asked to rate their

satisfaction on a three-point scale: 1: not satisfied, 2: moderately

or averagely satisfied, 3: very satisfied.

This scale is used to score each provisioning service relevant to

the farm’s production system. The emphasis on subjective yield

satisfaction recognizes that agroecological productivity is often

measured in terms that go beyond yield quantity, such as

stability, diversity, cultural relevance, and input efficiency.

For genetic resource services, which are a crucial component of

provisioning in agroecological systems, the evaluation is based on

the number of species and varieties cultivated. This reflects the role

of crop and varietal diversity in enhancing resilience, food security,

and long-term sustainability. The number of crops (species)

adopted at farm level is assessed using a scale from: 1: only one

crop, 2: two to three crops, 3: more than three crops.

Likewise, the number of varieties per crop is assessed as follows:

1: one variety per crop, 2: two varieties per crop, 3: three or more

varieties per crop.

This dual approach, combining qualitative self-assessment with

quantitative diversity indicators, ensures that the provisioning

dimension of ecosystem services is captured in a way that is both

farmer-led and ecologically meaningful. The full system of

assessment for provisioning ESs is presented in Table 1.

The reliance on perception-based indicators for assessing

provisioning ecosystem services reflects the importance of farmer

knowledge in agroecological systems. This approach acknowledges that

yield satisfaction is context-dependent, influenced by local conditions,

goals, and resource availability. It offers an inclusive entry point for farm-
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level assessment, especially where quantitative yield data may be lacking.

Moreover, the choice to adopt perception-based indicators was also

intentional in order to keep the APES tool accessible, and not overly

complex to apply for farmers and facilitators, therefore enhancing its

usability in diverse real-world contexts.
2.3 Assessment of regulating and
supporting ecosystem services through
practices indicators

The set of sixteen agroecological practice indicators used to assess

the provisioning of regulating and supporting ecosystem services in

the APES framework was developed through an extensive literature

review and synthesis of existing methodologies. These indicators

reflect practices that are widely recognized for their potential to

enhance key agroecosystem functions such as nutrient cycling, soil

fertility, biodiversity, and climate regulation.

The selection of practices draws heavily on the OASIS system

(Original Agroecological Survey Indicator System) proposed by

Peeters et al (Peeters et al., 2021), which offers a simple yet

comprehensive methodology for assessing agroecological transition

at farm level. The OASIS framework served as a conceptual starting

point for structuring the indicators and aligning them with

internationally recognized categories of ecosystem services.
TABLE 1 Indicators to assess the Provisioning Ecosystem Services.

Provisioning
ecosystem
Services

Method Indicators and
values (1-3)

Food: legumes, grain,
vegetables, fruit, herbs,
meat and animal
products

According to the
perspective of the farmer
on the yield. The values
assigned can be:

1 - not satisfied, 2 -
average satisfied, 3 -
very satisfied

Feed and fodder 1 - not satisfied, 2 -
average satisfied, 3 -
very satisfied

Fibres and raw
materials

1 - not satisfied, 2 -
average satisfied, 3 -
very satisfied

Cosmetics and
medicines

1 - not satisfied, 2 -
average satisfied, 3 -
very satisfied

Timber 1 - not satisfied, 2 -
average satisfied, 3 -
very satisfied

Energy 1 - not satisfied, 2 -
average satisfied, 3 -
very satisfied

Genetic resources
(number of species)

According to the number
of crops adopted at farm
level:

1- 1 crop, 2 - 3 or more
crops, 3 - more crops

Genetic resources
(number of varieties)

According to the number
of varieties adopted at
farm level:

1- 1 variety per crop, 2 -
2 varieties per crop, 3 -
3 or more varieties per
crop
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Further refinement was informed by foundational reviews on

agroecological practices. For instance, Wezel et al. (2014) provided

an extensive typology of practices - including crop diversification,

agroforestry, green manures, and biological pest control - that have

been shown to contribute to sustainable agriculture. Their work

highlights how these practices operate synergistically to support

regulating and supporting ESs, such as soil health and pest

regulation. Similarly, Nicholls and Altieri (2018) emphasized the

role of agroecological strategies in amplifying ecological functions at

the landscape scale, reinforcing the importance of context-

specific implementation.

The indicators also build on comparative analyses of

agroecological and organic farming regulations by Migliorini and

Wezel (2017), which identified convergences and divergences in

practice-based standards and their implications for environmental

outcomes. These insights were key to shaping the scope of the

indicators used in the APES framework, ensuring they are both

ecologically grounded and practically applicable across different

farming systems.

Each of the sixteen indicators is applied at the farm level, where

it is scored based on the degree to which the corresponding practice

is implemented. This scoring system was developed from the

literature and adapted to reflect observable gradients of adoption,

ranging from non-implementation to full integration within a

system-level agroecological design. The resulting scores serve as

proxies for the expected contribution of each practice to specific

ecosystem services, allowing for a structured and transparent

evaluation of service delivery at farm scale.

The Indicators for assessing Regulating and Supporting

Ecosystem Services, their relative descriptions and the scoring

thresholds are displayed in Tables 2 and 3.

To evaluate regulating and supporting ecosystem services (ESs)

within the APES framework, each ES is assigned a score that reflects

the degree to which relevant agroecological practices are

implemented on the farm. Specifically, the score for each service

is calculated as the average of the individual scores assigned to all

practices identified as contributing to that service. This method

ensures that the assessment captures the cumulative effect of

multiple farming practices on the provision of a given ES,

acknowledging the synergistic nature of agroecological systems.

Therefore, all agroecological practices are assumed to contribute

equally to each associated ecosystem service. This equal-weighting

approach was chosen to ensure transparency and facilitate ease of

use in participatory and farm-level contexts. However, it is

important to acknowledge that in practice, the magnitude and

relevance of each practice’s contribution to a given ecosystem

service may vary depending on environmental conditions,

implementation intensity, and interactions with other practices.

Future versions of the framework could explore differentiated

weighting schemes based on empirical data, expert judgment, or

modeling approaches to better reflect the relative importance of

each practice. Such refinements would enhance the analytical power

of the tool while maintaining its usability for farmers, advisors, and

policymakers. Methods for participatory workshops and farmer

surveys should be described in greater detail to enable replication.
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To establish robust and meaningful links between practices and

ecosystem services, an extensive literature review was carried out.

This review identified evidence-based associations between specific

agroecological practices and the ESs they are known to support. The

resulting matrix defines which practices contribute to which

services, allowing for a transparent and consistent scoring process

grounded in scientific and applied knowledge.

The outcome of this matching process, linking each of the

sixteen agroecological practice indicators to the relevant regulating

and supporting ESs, is visually presented in Figure 2, which forms

the basis for calculating service-level scores in the APES framework.

The detailed references and evidence used to justify the associations

between agroecological practices and the ecosystem services they

support are provided in Table 4, which displays the specific

literature underpinning the matching process.
2.4 Testing the framework on a case study

The APES framework was implemented starting in July 2022 to

evaluate ecosystem services through farm-level agroecological

practices. As an illustrative example, we present here the results

from one case study carried out during the development phase of

the framework. This example is intended solely for demonstrative

purposes, to show how the APES tool can be practically applied to

assess ecosystem services.

The selected case study involved a group of livestock farms

located in Northern Italy, primarily focused on forage-based dairy

production. These farms are characterized by diversified meadow

systems, which include the integration of leguminous forage crops.

This diversification not only supports feed autonomy but also

contributes to soil health, biodiversity, and overall ecosystem

service provision. As such, the case study provides a relevant and

practical example to demonstrate the functionality and applicability

of the APES tool in a real-world farming context.
3 Results and discussion

3.1 Provisioning ecosystem services
provided by the case study

The results (Figure 3) highlight that the selected case study

provides high levels of provisioning ESs in relation to food and

feed production.

Food-animal products and feed and fodder both reached the

maximum score (3), indicating that farmers are highly satisfied with

the productivity and yield of these components. This reflects the

strong focus of these livestock farms on dairy and forage

production, particularly for high-value products l ike

Parmigiano Reggiano.

In terms of genetic resources, the farms scored moderately:

species diversity received a score of 2, suggesting that at least three

different crop or livestock species are being cultivated or raised,

which contributes to system resilience and feed autonomy.
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However, varietal diversity was rated lower (score 1), pointing to the

use of only one variety per crop. This highlights an area where there

is potential to expand genetic diversity, for example by introducing

more varieties of alfalfa or other forage crops.

The farms did not report contributions to other provisioning

services such as fibers and raw materials, cosmetics and medicines,

timber, or energy, all of which received a score of 0. This is

consistent with their specialized production model.
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3.2 Regulating and supporting ecosystem
services provided by the case study
In Table 5, we report the scores assigned to each practice

indicator, based on the data collected in the field.

The case study displays a generally good level of adoption of

agroecological practices across several key areas.
TABLE 2 The indicators for assessing regulating and supporting ecosystem services with relative descriptions.

APES indicators

1
Conservation and no-
tillage systems

The soil is disturbed minimally (no more than 3 – 5 cm deep) and with no inversion (soil ‘cracking’ up to 25 cm is allowed to de-com-
pact the soil). The crop is seeded directly into a mulch or living crop (which is usually mown, rolled or tarped prior to seed), without
any soil disturbance preceding.

2

Use of plant
reproductive material
adapted to local
conditions

(seeds, seedlings, plants, cuttings, etc.) manage stress factors well, do not require large inputs of fertilizers, pesticides and water, and can
be propagated/saved for the following year. This involves peasant/folk seed, cultivars bred in and for organic conditions, heirloom seed,
population varieties, and stress-tolerant cultivars and species - such as neglected and underused crops that could be used as an
alternative to winter wheat (e.g., triticale, oats, spelt) or to maize (e.g., sorghum, millet) for instance.

3 Crop rotation Long and diverse crop rotation, Legume-based temporary grasslands in crop rotations, Pulses in crop rotation

4 Intercropping
Simple crop mixtures (e.g., cereal and pulse), Polycultures with push-pull crops, Permanent soil cover with companion species of the
main crop(s), Using allelopathic crops, Inter-row permanent crops

5 Cover crops
Mixtures of legume-based green manure, Cover crops, Soil fertility management with complex mixtures of green manures, Complex
mixtures of green manures (cover crops), Main crop sown in green manure mulch

6
Soil organic matter
input

Compost tea, Green manure, Composting, Balanced fertilization, Using organic manure - farmyard manure, Recycled crop waste, Wood
chips (or ramial wood chip (RWC), Organic agroindustrial waste, Biochar, Straw Mulching, inoculation with mycorrhiza

7
Water management
practices

Drip irrigation, Mulching, Dryland farming, Proper irrigation scheduling (e.g.,irrigating at night), Buried clay pot irrigation in market
gardening, Drainage; Collection of rainwater, Recycling of greywater, Desalination of irrigation water

8
Ecological infrastructure
and landscape and
habitat management

Surface ponds, Micro-dams, Stone bunds, Terraces, Fog collection, Infiltration trenches, Ponds, Wells, Alley cropping, Contour lines/
keyline design, Hedges, Hedge-row networks, Windbreaks, use of shading trees, etc.

9 Agroforestry

Windbreaks, use of shading trees, etc., Trees and other woody species can produce fruit, timber, firewood, forage, etc., Hedges, wooded
strips, and tree lines, Traditional European agroforestry systems include the ‘bocage’ (hedge-row network) in livestock breeding regions,
grazed traditional orchards, pollard tree rows, and the Mediterranean open forest associating several oak species and grazed by cattle,
sheep and pig (Dehesa/Montado). Silvoarable systems. Silvopastoral systems. Forest farming.

10

Sampling and
monitoring for pests,
disease, soil health and
weeds abundance

Sampling and monitoring for pests and their natural enemies. Regular sampling and monitoring for disease symptoms. Regular physical,
biological, and chemical soil diagnostics. Regular observation of weed abundance and richness.

11
Organic pest and
disease control

Organic Pest and disease control derived from plants and plant extract

12
Rotational or extensive
grazing

Adoption of optimum stocking rate for the seasonal grass production. Transhumance.

13 Mixed stocking
Integration of different livestock species (e.g., cattle, sheep, goats) within the same farm system. Mixed stocking can reduce parasite load,
increase forage use efficiency, and diversify production.

14
Local breeds adapted to
the territory

Choice of livestock breeds and species: rather than opting for the most productive breeds that require many inputs and are not well-
adapted to an efficient conversion of grass and other cellulose-rich feed into milk and meat, the system should be designed with the local
geography and climate zone in mind, and the choice of animal type should be determined in function of its ability to adapt to
agroecological systems. Dual-purpose breeds

15

On farm or local
production of forage,
diversified feeding and
low nitrogen feed (not
soy)

Considering feed management: use of cellulose-rich forage; pasture-fed ruminants, good proportion of pasture-based feed for
monogastrics. Preparing hay/silage/haylage for winter feeding. A minimal percentage of concentrated feed should be given to the
animals, especially during the finishing period for meat animals, or during the lactating period for dairy animals. Using cereals and
pulses from the farm’s own production is a transition practice towards a fully developed agroecological system.

16
Sustainable practices in
the management of
animal manure

Implementation of practices that ensure the environmentally sound management of animal manure, such as appropriate storage,
composting, and timely application to fields. These practices reduce nutrient losses, minimize greenhouse gas emissions, and improve soil
fertility.
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TABLE 3 The Indicators for assessing regulating and supporting ecosystem services with relative scoring details.

APES indicators Scoring

3 - System redesign

(e.g.,
wide-cutter or
dge tillage

No-till

More than 50%

more than 6 years-rotation

>50

10 months a
The soil is covered at least 11 months of the year

nd/or in up to
d

Several strategies are implemented in at least 75% of the
farmland

servation
e farmed land

Water conservation practices often used on more than 50%
of the farmed land

to 30% of the Different ecological infrastructures often present, up to 50%
of the farmed land

e half of the
Often used, in more than one half of the farmed land

on all the farm

ntrol,
Only organic pest control and 50% self-produced

r animals feed
stock unit/ha

>6 months, under 2 Livestock unit/ha

>2 species

the farmer mostly raises low demanding animals adapted to
the local conditions, uses natural drugs and a good level of
preventive methods;

50 fibers - 50
o 50% self-
ncentrate) as

Dietary intake: ruminants 50 fibers - 50 concentrated
feeding (more than 50% of self-produced of fodder and
concentrate) as Monthly mean of feed

ted and
timing and

100% of manure is Composted and spread on farm with
right timing and methods
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0 - Zero integration 1 - input reduction - efficiency 2 - Input substitution

1 Conservation and no-tillage systems
Deep ploughing (more than 30 cm in depth)
or rotavating one or more time per year

Ploughing maximum 30 cm in depth and/or
using power harrow once a year

Reduced tillage up to 5 cm
superficial disc-harrowing,
rotary hoe), strip tillage, ri

2
Use of plant reproductive material
adapted to local conditions

0 local varieties
30% of UAA (Utilized Agricultural Area) is
cultivated with plant reproductive material
adapted to local conditions

30-50%

3 Crop rotation mainly monocrop 2–3 year- rotation 4–5 year rotation

4 Intercropping 0 intercropping on UAA 30% UAA 30–50 UAA

5 Cover crops
The soil is covered with plants less than 6
months of the year on the total farm land

The soil is covered for 6 to 8 months a year
on the total farm land

The soil is covered for 8 to
year

6 Soil organic matter input
No organic matter inputs (the fertility
management is completely based on
synthetic fertilizers)

Rarely used Organic inputs and/or only in a
small part of the farm (up to 30% of used
farmed land)

Moderate use of practice a
one half of the farmed lan

7 Water management practices
No implementation of techniques, practices
and strategies for conserving water,
noticeable inefficient water use in the farm

Water conservation practices used rarely
and/or only in a small part
of the farm (up to 30% of the farmed land
(on land where applicable)

Moderate use of water con
practices, in 31 - 50% of th

8
Ecological infrastructure and landscape
and habitat management

Not implemented at all
Rarely present only in a small part of the
farm (up to 10% of the farmed land)

Moderate presence, in up
farmed land

9 Agroforestry Not implemented at all
Rarely used and/or only in a small part of
the farmed land (less than 25%)

Moderate use, in up to on
farmed land (25 - 50%)

10
Sampling and monitoring for pests,
disease, soil health and weeds abundance

zero monitoring only on main crop on more than 1 crop

11 Organic pest and disease control
Chemicals inputs, not include organic
products

30% Organic pest control, purchased
30% - 50% Organic pest co
purchased

12 Rotational or extensive grazing No grazing on grassland
at least 3 summer months of grazing, under
2 Livestock unit/ha

at least 4 – 6 months a yea
on grassland, under 2 Live

13 Mixed stocking No livestock 1 species 2 species

14 Local breeds adapted to the territory Modern breeds, no local breeds 1 local breeds 2 local breeds

15
On farm or local production of forage,
diversified feeding and low nitrogen feed
(not soy)

No local production of forage
Dietary intake: ruminants 40 fibers - 60
concentrated feeding purchased as Monthly
mean of feed

Dietary intake: ruminants
concentrated feeding (up t
produced of fodder and co
Monthly mean of feed

16
Sustainable practices in the management
of animal manure

manure stocked on sealing plateaux
30% of manure is Composted and spread on
the fields with right timing and methods

50% of manure is Compos
spread on farm with right
methods
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Crop rotation and intercropping received with a high score (2),

indicating the implementation of diverse crop sequences and mixed

cropping systems with use of leguminouse crops These practices are

known to support nitrogen fixation, improve soil fertility, and

reduce nutrient emissions.

Cover crops, water management practices, and sustainable

animal manure management also scored 2, suggesting consistent

efforts to maintain soil cover, conserve water, and recycle nutrients

through well-timed and locally applied manure composting.
Frontiers in Agronomy 08
On the other hand, certain practices such as ecological

infrastructure, agroforestry, wind protection, and fire protection

received a score of 0, indicating that these areas are either not

implemented or largely underutilized. These represent potential

areas for future improvement to enhance landscape connectivity

and climate resilience. Practices such as use of local breeds, on-farm

forage production, and organic pest control achieved a high score

(2), reflecting strong integration of agroecological principles in the

livestock system - particularly in relation to feeding strategies and
FIGURE 2

The Indicators for assessing regulating and supporting ecosystem services.
frontiersin.org
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TABLE 4 Literature review linking practices indicators to regulating and supporting ecosystem services.

Regulating and supporting ecosystem services

Climate

regulation
Pollination

Wind

protection

Fire

protection

Biodiversity at

landscape,

specie and

genetic

dimension

0

(Carvalheiro

et al., 2021;

Tschanz et al.,

2024)

0 0

(Liang et al.,

2024; Jug et al.,

2025)

0 0 0 0

(Shelef et al.,

2017; Li et al.,

2020)

0

(Kocira et al.,

2020; Kebede,

2021)

0 0

(Kocira et al.,

2020; Kebede,

2021)

0

(Kebede,

2021; Hüber

et al., 2022;

Fijen et al.,

2025)

0 0

(Kebede, 2021;

Brandmeier et al.,

2023)

(Smith et al.,

2013; Delgado

et al., 2021)

(Eberle et al.,

2015; Fijen

et al., 2025)

0 0

(Kocira et al.,

2020; Fijen et al.,

2025)

0

(Chen et al.,

2021; Jakhro

et al., 2025)

0 0

(Kocira et al.,

2020; Jakhro

et al., 2025),

0 0 0 0 0

(Continued)
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Agroecological

practices indicators
Increase C sequestration

Reduce C

emissions/

mineralization

Increase N

fixation

Reduce N

emission

Enhance soil

fertility

(biological,

physical,

chemical)

Minimize soil

erosion

Water quantity

and quality

Nutrient

cycling

Pest and disease

control

1
Conservation

Tillage

(Hussain et al., 2021; Khan

and Wang, 2023)

(Yue et al.,

2023; Alasinrin

et al., 2025)

(van Kessel

and Hartley,

2000; St-

Martin and

Bommarco,

2016;

Hartman

et al., 2018;

Singh et al.,

2020)

0

(Singh et al.,

2013; Hartman

et al., 2018;

Singh et al.,

2020)

(Wezel et al.,

2014; Seitz et al.,

2019; Chalise

et al., 2020; Liang

et al., 2024; Jug

et al., 2025)

(Liang et al., 2024;

Jug et al., 2025)

(Hartman

et al., 2018;

Singh et al.,

2020)

(Jasrotia et al., 2023;

Jug et al., 2025)

2

Use of plant

reproductive

material

adapted to

local

conditions

0

(Lazzerini et al.,

2014; Odeku

et al., 2024)

0

(Lazzerini

et al., 2014;

Odeku et al.,

2024)

0
(Shelef et al., 2017;

Li et al., 2020)

(Chivenge et al.,

2015; Shelef et al.,

2017)

(Shelef et al.,

2017; Li et al.,

2020)

(Shelef et al., 2017; Li

et al., 2020)

3 Crop rotation

(Lazzerini et al., 2014; Triberti

et al., 2016; Kumar et al.,

2018; Guillaume et al., 2022;

Liu et al., 2022; Loges et al.,

2024)

(Liu et al.,

2022; Yang

et al., 2024)

(Anglade

et al., 2015;

Kebede, 2021)

(Liu et al.,

2022; Yang

et al., 2023)

(Kocira et al.,

2020; Kebede,

2021; Liu et al.,

2022)

(Garcıá-Ruiz,

2010; Reddy,

2017; Kocira et al.,

2020)

0

(Kocira et al.,

2020; Kebede,

2021)

(Garcıá-Ruiz, 2010;

Wezel et al., 2014;

Reddy, 2017; H. ming

et al., 2019; Kebede,

2021; Belmain et al.,

2022; Altieri et al.,

2024; Bommarco,

2024)

4 Intercropping
(Cong et al., 2015; Li et al.,

2024)

(Maitra et al.,

2023; Yang

et al., 2023)

(van Kessel

and Hartley,

2000; Anglade

et al., 2015;

Kebede, 2021)

(Gui et al.,

2024; Yu

et al., 2025;

Zhang et al.,

2025)

(Wezel et al.,

2014; Kebede,

2021)

(Wezel et al.,

2014; Belmain

et al., 2022;

Drinkwater and

Snapp, 2022)

(Wezel et al.,

2014; Yin et al.,

2020; Drinkwater

and Snapp, 2022)

(Kebede, 2021)

(Wezel et al., 2014;

Reddy, 2017; H. ming

et al., 2019; Kebede,

2021; Belmain et al.,

2022; Drinkwater and

Snapp, 2022; Altieri

et al., 2024;

Bommarco, 2024)

5 Cover crops

(Mazzoncini et al., 2011;

Poeplau and Don, 2015; Seitz

et al., 2019; Seitz et al., 2023)

0

(Büchi et al.,

2015;

Drinkwater

and Snapp,

2022)

(Muhammad

et al., 2019;

Fernandez

Pulido et al.,

2023)

(Drinkwater

and Snapp,

2022)

(Wezel et al.,

2014; Kocira et al.,

2020; Drinkwater

and Snapp, 2022;

Clement et al.,

2024)

(Kocira et al.,

2020; Delgado

et al., 2021)

(Kocira et al.,

2020;

Drinkwater

and Snapp,

2022)

(Kocira et al., 2020;

Altieri et al., 2024;

Bommarco, 2024)

6
Soil organic

matter input

(Triberti et al., 2016;

Kowalska et al., 2020;

Criscuoli et al., 2021; Li et al.,

2022; Panettieri et al., 2022;

Chen et al., 2023; Fontana

et al., 2023; Gao et al., 2023;

Hayatu et al., 2023; Soria

et al., 2023; Xiao et al., 2023)

(Smith, 2008; Li

et al., 2022)

(Lazzerini

et al., 2014;

Gao et al.,

2023)

(Ravichandran

et al., 2022;

FAO, 2024)

(Wezel et al.,

2014; Chalise

et al., 2020;

Martıńez-Mena

et al., 2020;

Ravichandran

et al., 2022)

(Bhadha et al.,

2017;

Ravichandran

et al., 2022)

(Ravichandran

et al., 2022;

FAO, 2024)

(Wezel et al., 2014;

Ravichandran et al.,

2022; Altieri et al.,

2024)

7

Water

management

practices

(Li et al., 2022; Xiao et al.,

2023)
0 0 0 0

(Ravichandran

et al., 2022; FAO,

2024)

(Ravichandran

et al., 2022; FAO,

2024),

(Ravichandran

et al., 2022;

Zhou et al.,

2023; FAO,

2024; Thomas

et al., 2024)

(Manda et al., 2021;

Ravichandran et al.,

2022; Haider et al.,

2023)
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TABLE 4 Continued

Regulating and supporting ecosystem services

Climate

regulation
Pollination

Wind

protection

Fire

protection

Biodiversity at

landscape,

specie and

genetic

dimension

.,

al.,

(Weninger et al.,

2021; Rosenfield

et al., 2022)

(Montgomery

et al., 2020;

Fonseca et al.,

2021)

(Montgomery

et al., 2020;

Weninger

et al., 2021;

Song et al.,

2023)

(Montgomery

et al., 2020;

Oliveira et al.,

2023),

(Montgomery

et al., 2020;

Weninger et al.,

2021; Altieri

et al., 2024)

.,

al.,

(Montgomery

et al., 2020;

Shekmohammed,

2021; Weninger

et al., 2021)

(Varah et al.,

2020; Fijen

et al., 2025)

(van

Ramshorst

et al., 2022;

Barman et al.,

2025)

(Damianidis

et al., 2021;

Spadoni et al.,

2023)

(Udawatta et al.,

2019;

Shekmohammed,

2021)

018;

20),

018)

0
(McCravy,

2018)
0 0 (McCravy, 2018)

;

2; 0

(Ngegba et al.,

2022; Zarifa

and Elmurod,

2025)

0 0

(Ngegba et al.,

2022; Zarifa and

Elmurod, 2025)

9; (Teague and

Kreuter, 2020;

Bassignana et al.,

2022)

(Teague and

Kreuter, 2020;

Bassignana

et al., 2022;

Sands et al.,

2024)

0 0

(Teague and

Kreuter, 2020;

Bassignana et al.,

2022)

0 0 0 0

(Fraser and Rosa

Garcıá, 2018;

Wang et al.,

2021)

-

)

0 0 0 0

(Alderson, 2018;

Velado-Alonso

et al., 2021)

0

(Coffey, 2014;

Franzluebbers

and Martin,

2022)

0 0 0

(Continued)
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10
Agroecological

practices indicators
Increase C sequestration

Reduce C

emissions/

mineralization

Increase N

fixation

Reduce N

emission

Enhance soil

fertility

(biological,

physical,

chemical)

Minimize soil

erosion

Water quantity

and quality

Nutrient

cycling

Pest and diseas

control

8

Ecological

infrastructure,

landscape and

habitat

management

(Montgomery et al., 2020;

Weninger et al., 2021; Biffi

et al., 2022; Holgerson et al.,

2023; Holgerson et al., 2023)

0 0
(Weninger

et al., 2021)

(Weninger

et al., 2021)
(Song et al., 2023)

(Kedziora, 2010;

Weninger et al.,

2021)

(Montgomery

et al., 2020;

Weninger

et al., 2021)

(Reddy, 2017;

Montgomery et a

2020; Weninger e

2021; Vega et al.,

2023)

9 Agroforestry

(Lemaire et al., 2014; Brewer

and Gaudin, 2020;

Montgomery et al., 2020; Biffi

et al., 2022; Carranca et al.,

2022; Zomer et al., 2022;

Yasin et al., 2023)

(Torres et al.,

2017; Helgason

et al., 2021),

(Videira e

Castro et al.,

2019; Kim and

Isaac, 2022)

(Kim and

Isaac, 2022;

Luo et al.,

2022; Shao

et al., 2023),,

(Weninger

et al., 2021)

(Shekmohammed,

2021; Jinger et al.,

2022)

(Shekmohammed,

2021)

(dos Santos

et al., 2018;

Kim and Isaac,

2022)

(Reddy, 2017;

Montgomery et a

2020; Weninger e

2021)

10

Sampling and

monitoring

for pests,

disease, soil

health and

weeds

abundance

0
(Lazzerini et al.,

2014)
0

(Lazzerini

et al., 2014)

(Tahat et al.,

2020)
0

(Tahat et al.,

2020)

(Tahat et al.,

2020)

(McCravy,

Tahat et al., 2

(McCravy, 2

11

Organic

Pesticides

derived from

plants and

plant extract,

biological pest

control

0
(Lazzerini et al.,

2014)
0

(Lazzerini

et al., 2014)

(Ngegba et al.,

2022; Zarifa

and Elmurod,

2025)

(Vega et al., 2023)
(Zarifa and

Elmurod, 2025)

(Ngegba et al.,

2022; Zarifa

and Elmurod,

2025)

(Wezel et al., 201

Belmain et al., 20

Vega et al., 2023)

12

Rotational or

extensive

grazing

(Lemaire et al., 2014; Brewer

and Gaudin, 2020; Brewer

and Gaudin, 2020; Teague

and Kreuter, 2020; Bai and

Cotrufo, 2022; Jin et al., 2022)

0 0 0

(Teague and

Kreuter, 2020;

Bassignana

et al., 2022;

Sands et al.,

2024)

(Pilon et al., 2017;

Teague and

Kreuter, 2020)

(Teague and

Kreuter, 2020;

Bassignana

et al., 2022)

(Rapiya et al., 201

Bassignana et al.,

2022; Sands et al.

2024)

13
Mixed

stocking
0 0 0 0 0 0 0

(Wang et al.,

2021; Zhang

et al., 2022)

(Fraser and Rosa

Garcıá, 2018;

Rinehart, 2018)

14

Local breeds

adapted to the

territory

0 0 0 0 0 0

(Akinmoladun

et al., 2019;

Bassignana et al.,

2022; Tulu et al.,

2023)

(Velado-

Alonso et al.,

2021;

Bassignana

et al., 2022)

(Soares Fioravant

et al., 2020; Velad

Alonso et al., 202

15

On farm or

local

production of

forage,

diversified

feeding and

low nitrogen

feed (not soy)

(Lin et al., 2020; Bai and

Cotrufo, 2022)

(Doltra et al.,

2018; Helgason

et al., 2021)

(Stagnari

et al., 2017)
0

(Stagnari et al.,

2017; Cao

et al., 2024;

Berry et al.,

2025)

0 0

(Coffey, 2014;

Bassignana

et al., 2022)

(Coffey, 2014;

Franzluebbers an

Martin, 2022)
e

l

t

l

t

2

0
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2
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1
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low-input animal health management. However, conservation

tillage and biodiversity management at the landscape level

showed limited implementation, with scores of 0 and 1

respectively, suggesting space for improvements in developing soil

structure, improving carbon sequestration and enhancing habitat

complexity. Figure 4 then shows the aggregated results, representing

the final scores attributed to each ecosystem service evaluated in this

case study.

The results of the regulating and supporting ecosystem services

assessment reflect a moderate level of overall performance, with a

mean score of 0.93 across all ecosystem services. Notable

observations include: The highest-performing ecosystem services

are nitrogen fixation (1.4), carbon sequestration (1.2), and

reduction of carbon and nitrogen emissions (both 1.2), which

align with the good adoption of practices like cover crops, crop

rotation, and appropriate manure management. Soil fertility, pest

and disease control, and nutrient cycling show medium-level scores

(around 1.1 – 1.2), indicating functional but improvable

contributions from farm practices. Climate regulation, wind

protection, and fire protection received very low or zero scores

(0.33 and 0 respectively), highlighting a lack of practices that

contribute directly to climate resilience - such as agroforestry or

shelterbelts. Pollination, water management, and biodiversity each

scored 1.0 or slightly above, suggesting that while some supporting

practices are in place, there’s space to enhance landscape complexity

and ecological infrastructure to better sustain these services.
3.3 The synergistic value of agroecological
practices in ecosystem service provision

The APES framework represents a valuable opportunity to

support farmers and other agri-food system stakeholders in

making visible the ecosystem services delivered by their

management decisions. Rather than assessing outcomes in

isolation, the framework focuses on the practices implemented at

farm level, offering a practical and accessible entry point for

understanding and enhancing agroecosystem performance. By

channeling scientific knowledge into a tool that can be co-used

and co-adapted by farmers, researchers, and advisors, APES

contributes to building a shared language and methodology

around ecosystem services that is grounded in lived farming

realities (Rodrıǵuez-Ortega et al., 2014; Boeraeve et al., 2020).

One of the key strengths of the APES framework is its ability to

capture the synergistic nature of agroecological practices.

Ecosystem services are rarely the result of single interventions;

instead, they emerge from the combination and interaction of

multiple practices embedded within a holistic farming strategy

(Wezel et al., 2014; Nicholls and Altieri, 2018). For example, the

integration of organic fertilization, cover cropping, and crop

diversification not only supports soil fertility and nutrient cycling

but also strengthens resilience to pests and climatic variability

(Schipanski et al., 2014; Mabhaudhi et al., 2022). APES allows

users to trace these connections between practices and ecological

functions, reinforcing the idea that ecosystem service delivery is
T
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cumulative, relational, and context-specific. In this way, APES not

only informs assessments and planning but also supports

agroecological transition pathways, helping to align day-to-day

farming practices with broader sustainability and policy goals. As

the framework continues to evolve, its ability to empower users with

actionable, farm-level insights will be critical for fostering resilient,

multifunctional, and ecologically grounded food systems

(Temesgen and Wu, 2018; Soulé et al., 2023).

While in the introduction we acknowledged common critiques

of the ecosystem services framework, particularly its

anthropocentric orientation and tendency to simplify complex

ecological and social dynamics, it is important to revisit these

issues in light of the APES methodology. By grounding the

assessment of ecosystem services in concrete agroecological

practices, the APES framework seeks to enhance an ecological

understanding of agricultural systems. The practice-based

indicators offer a more operational and accessible entry point for

farmers and advisors, potentially democratizing knowledge and

supporting decision-making rooted in daily agricultural

management. However, this same pragmatism may risk

reinforcing instrumental views of nature if not accompanied by

broader reflection on values, meanings, and long-term systemic

approaches. Moreover, the focus on regulating and supporting

services still privileges those functions that are more easily linked

to agronomic outcomes. To mitigate this, future iterations of APES

could explore ways to integrate more nuanced dimensions, such as

cultural values, traditional knowledge, and non-material benefits,

without compromising usability. This balance remains an ongoing
FIGURE 3

Provisioning ecosystem services (ESs) evaluated in the case study. Scores (0 – 3) are based on the level of service provision for each category.
TABLE 5 Practice indicators scores assigned to the case study.

Indicators APES Score

1 Conservation and no-tillage systems 0

2 Use of plant reproductive material adapted to local conditions 1

3 Crop rotation 2

4 Intercropping 2

5 Cover crops 2

6 Soil organic matter input 1

7 Water management practices 2

8
Ecological infrastructure and landscape and habitat
management

0

9 Agroforestry 0

10
Sampling and monitoring for pests, disease, soil health and
weeds abundance

1

11 Organic pest and disease control 1

12 Rotational or extensive grazing 1

13 Mixed stocking 0

14 Local breeds adapted to the territory 2

15
On farm or local production of forage, diversified feeding and
low nitrogen feed (not soy)

2

16 Sustainable practices in the management of animal manure 2
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issue, but APES represents a step toward reconciling scientific rigor

with contextual relevance in the assessment of ecosystem services.

Agroecological transition and agroecological food system

transformations are very complex paths. Different strategy

options (Röös et al., 2022) and key entry points (Wezel et al.,

2020) domains and principles (Billen et al., 2024) have been

identified: responsible governance, circular and solidarity

economy, diversity, and co-creation and sharing of knowledge,

relationship building and inclusivity.

APES through agroecological practices identification, helps to

support multifunctional agricultural systems, which consider ecological

relationships, resource recycling, and biodiversity management.
3.4 Limitations of the framework and
future prospects

While APES demonstrates strong potential for informing

sustainability assessments and agri-environmental monitoring

schemes, it should currently be understood as a prototype tool.

Its application to a single illustrative case study highlights its

practical relevance and usability, but broader validation across

farming systems, regions, is needed to assess its generalizability

and scalability.

The perception-based indicators for assessing provisioning Ess

are inherently subjective and may be influenced by biases or limited
Frontiers in Agronomy 13
comparability across farms and regions. To address this, future

versions of the APES framework could complement perception-

based indicators with more objective measures, such as yield data,

nutrient content, or resource-use efficiency, when available.

Moreover, socio-cultural ecosystem services were excluded

from the current version of the APES framework due to the

inherent complexity in capturing these dimensions through

standardized and broadly applicable indicators. While for some

practices, such as agroforestry maintained in traditional landscapes,

the link to socio-cultural values is well documented, for many

others the connection is far more nuanced, context-dependent, and

difficult to generalize. This made it challenging to develop evidence-

based indicators that could be applied across diverse farming

systems without oversimplifying or misrepresenting these impacts.
4 Conclusions

This study introduced the APES (Agroecological Practices for

Ecosystem Services) framework as a novel, practice-based tool to

assess 22 ecosystem services in farming systems, grounded in both

scientific literature and participatory input. By linking specific

agroecological practices to provisioning, regulating, and

supporting services, APES makes ecological functions visible and

actionable at farm scale, while remaining adaptable to diverse

agricultural contexts. Its application in a Northern Italian case
FIGURE 4

Regulating and supporting ecosystem services (ESs) assessed through practice-based indicators and implementation scoring. Scores range from 0
(no implementation) to 3 (high implementation intensity).
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study demonstrated its capacity to identify both strengths and gaps

in ecosystem service provision, offering valuable insights for

agroecological transitions. The framework shows strong potential

for broader implementation in agri-environmental monitoring,

sustainability assessments, and policy instruments such as eco-

schemes or payment for ecosystem services. Further research

could test APES across a wider range of farming systems and

socio-ecological contexts, to validate and refine the practice-

service linkages, and develop context-specific weighting systems.
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Arias-Arévalo, P., Martıń-López, B., and Gómez-Baggethun, E. (2017). Exploring
intrinsic, instrumental, and relational values for sustainable management of social-
ecological systems. Ecol. Soc. 22. doi: 10.5751/ES-09812-220443

Badagliacca, G., Testa, G., La Malfa, S. G., Cafaro, V., Lo Presti, E., and Monti, M.
(2024). Organic fertilizers and bio-waste for sustainable soil management to support
crops and control greenhouse gas emissions in mediterranean agroecosystems: A
review. Horticulturae 10. doi: 10.3390/horticulturae10050427

Bai, Y., and Cotrufo, M. F. (2022). Grassland soil carbon sequestration: Current
understanding, challenges, and solutions. Sci. (1979). 377, 603–608. doi: 10.1126/science.abo2380

Balzan, M. V., Sadula, R., and Scalvenzi, L. (2020). Assessing ecosystem services
supplied by agroecosystems in mediterranean Europe: A literature review. Land.
(Basel). 9. doi: 10.3390/LAND9080245

Barman, S., Singh, G., Das, B. M., Varanasi, S. T., and Pachani, S. (2025). Resilience of
Robust Agroforestry Ecosystems. 373–398. doi: 10.1007/978-981-96-2413-3_17
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