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Optimizing nitrogen (N) fertilization is essential for enhancing nitrogen use

efficiency (NUE), maximizing crop yields, and minimizing environmental

impacts. Sensor-based technologies, integrated with variable rate applications,

present a promising approach to site-specific N management. However, their

effectiveness can differ across crops, soils, and topographic properties. This study

compared sensor-based N management with conventional grower practices in

corn and wheat over 17 on-farm site-years. Additionally, we evaluated key site-

specific factors influencing sensor performance on a 57 on-farm trial dataset.

Our results showed that sensor-based N management significantly improved

NUE in corn compared to Grower conventional practices, reducing on average

40 kg N ha-1 without compromising yield. However, in wheat, the differences

were not statistically significant across all trials, suggesting that crop-specific

responses affect sensor effectiveness. Our findings highlight that corn field yield

productivity, its variability, and soil texture were the most influential factors

affecting sensor-based NUE. Sensor-based approach in corn outperformed

grower practices in moderate to high-variability fields. These results suggest

that while sensor-based N management enhances NUE in corn, its effectiveness

in wheat may vary more. This study provides valuable insights into the practical

limitations and site-specific factors influencing the success of sensor-based

technologies, aiding in developing improved decision-support tools for

precision nitrogen management.
KEYWORDS

nitrogen use efficiency, sensor-based N management, precision agriculture, variable
rate technology, site-specific N management
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1 Introduction

The optimal nitrogen (N) rate for crops such as corn (Zea

mays L.) and wheat (Triticum aestivum L.) varies spatially and

temporally, making nitrogen management a complex challenge for

farmers. The optimal rate and crop response to N can differ within a

field, across different fields, and among growing seasons due to

variations in soil properties, rainfall conditions, and crop

requirements (Kravchenko et al., 2005; van Es et al., 2005; Morari

et al., 2021; Sadras et al., 2022). Despite this variability, many

farmers still rely on uniform, traditional N application rate with no

split without accounting for site-specific nutrient needs (Scharf

et al., 2011; Banger et al., 2018). This can lead to suboptimal

fertilizer efficiency, increased environmental risks, and reduced

agronomic and, in some cases, economic performance.

Recent precision agriculture advancements have transformed

nitrogen management by enabling data-driven, site-specific

fertilization strategies. Technologies such as active canopy sensors

and variable rate technology (VRT) allow real-time assessment of

crop nutrient status and facilitate precise N application based on

crop demand (Barker and Sawyer, 2010; Barbosa Júnior et al., 2024).

These innovations offer the potential to increase nitrogen use

efficiency (NUE), enhance yield potential , and reduce

environmental impacts. However, adoption remains limited due

to challenges such as high initial costs, technological complexity,

interoperability issues, and grower reluctance to transition from

conventional practices (Pignatti et al., 2015; Fountas et al., 2020).

Over the past few decades, crop canopy sensors have emerged as

a valuable tool for non-destructive monitoring of crop N content

(Barker and Sawyer, 2010; Cammarano et al., 2011; Basso et al.,

2016). By integrating real-time sensor data with VRT, farmers can

adjust N applications dynamically, addressing field variability more

effectively (Thompson et al., 2015). Studies have demonstrated the

potential of proximal canopy sensors for site-specific N

management in grain crops (Shanahan et al., 2001; Barker and

Sawyer, 2010; Scharf et al., 2011; Basso et al., 2016; Cao et al., 2017),

cotton (Marang et al., 2021; Wang et al., 2021), rice (Lu et al., 2022),

and sugarcane (Li et al., 2022; Soltanikazemi et al., 2022).

Consequently, sensor-based N management has become one of

the most actively researched topics in precision agriculture.

However, there is a lack of research directly comparing sensor-

based technologies in corn and wheat.

Despite their proven ability to assess in-season crop status and

optimize fertilization, sensor-based N management strategies

remain sensitive to within-field site-specific characteristics. Site-

specific factors such as soil texture, organic matter, and soil water

storage capacity can significantly affect Site-specific soil

characteristics, such as organic matter or water storage, can affect

N surpluses (Mittermayer et al., 2021). Additionally, texture and

organic matter content play a crucial role in determining crop N

response (Nyiraneza et al., 2012; Tremblay et al., 2012). This spatial

variation in crop N response and NUE makes VRT more profitable

and efficient (Munnaf et al., 2022). While many studies have

evaluated sensor-based recommendations against grower
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practices, fewer have examined how underlying soil properties

influence sensor performance and the outcomes of VRT strategies

(Bean et al., 2018). By combining agronomic data from multiple on-

farm trials with geostatistical techniques, this study contributes new

insights into the conditions under which sensor-based nitrogen

management is most effective.

Therefore, the objectives of this study were to (i) assess the

agronomic performance of sensor-based nitrogen management

compared to conventional grower practices across multiple on-

farm experiments conducted in corn and wheat; and (ii) identify the

main site-specific drivers of NUE in corn through a geostatistical

analysis combining several years of on-farm experiments; to

identify scenarios where these practices performed the best.
2 Materials and methods

2.1 Field experiments

Crop canopy sensors were evaluated over three years (2021–

2023) through 17 on-farm experiments conducted on commercial

farms across Nebraska, USA (Figure 1). The experiments included 7

corn (Zea mays L.) fields and 10 winter wheat (Triticum aestivum

L.) fields. The predominant soil textures across the study sites were

silt loam, sandy loam, and loamy sand (Figure 1).

The experimental design featured field-length strips, comparing

sensor-based N management (Sensor-based) with the growers’

conventional N practices (Grower). High N reference areas were

established in each site-year by applying a high N rate to make

possible the calculation of the sufficiency index (Figure 1). This

index is needed for N recommendation using the formula proposed

by Holland and Schepers (2010) for corn and also used in wheat

(Stamatiadis et al., 2018).

NAPP = NOPT �
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − SI
DSI  

r

Were NAPP is de N application rate; NOPT is the optimal N rate,

derived from the coefficients of a quadratic regression; SI is the

sufficiency index, calculated as the ratio of the real-time sensed

vegetation index value to a known standard crop reference value;

and DSI is the difference between 1 (the sufficiency index of a fully

fertilized crop) and the sufficiency index corresponding to zero

nitrogen application (i.e., the y-intercept of the quadratic regression).

Data collected for each site-year included grain yield (t ha-1) and

total N rate applied (kg N ha-1), which were used to calculate

nitrogen use efficiency (NUE) as partial factor productivity (kg yield

kg-1 N-1) (Congreves et al., 2021). The number of replicates varied

from 4 to 12 in each trial. Experimental areas ranged from 2.7 ha to

78.2 ha. Field management decisions, including N application

before sensing (N base), were determined by the farmers. All sites

received an N base rate, followed by the establishment of the in-

season strips for the experiment. For corn, N base rates ranged from

16 to 120 kg N ha-1, with an average of 70 kg N ha-1. For wheat, base

N rates ranged from 0 to 75 kg N ha-1, averaging 32 kg N-1 (Table 1).
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2.2 Fertilizer prescriptions

A high-clearance applicator was equipped with an Ag Leader®

Integra in-cab monitor and four OptRx® sensors. A master module

enables connection between the OptRx® sensors, which capture the

normalized difference red edge (NDRE) index, and Ag Leader® in-

cab monitor, computing the recommended N rate. An application

rate module communicates the target rate from the Ag Leader®

monitor to the rate controller. The applicator was equipped with

straight stream drop nozzles to apply UAN fertilizer to the crop, as

it was Sensor-based. This configuration of active sensors with a

high-clearance machine has several benefits. Nitrogen rates are

prescribed in real-time by the system and account for spatial

variability across the field. Application can occur up to the V12

growth stage in corn and Feekes 6 in wheat. Sensing does not rely on

sunlight, as the active sensors provide their own light source,

meaning that prescriptions will not change depending on cloud

coverage or other environmental conditions. The high-clearance

applicator delivered a flat N rate determined by the grower for the

Grower treatment.
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2.3 Treatment performance analysis

To explore the treatment effects on yield (t ha-1), applied N (kg

N ha-1), and NUE (kg grain kg-1 N-1), linear mixed models were

fitted (Pinheiro and Bates, 2000; Pinheiro et al., 2023). The model

fitted for each trial was:

Yij = m + ti + bj + eij

where Yij is the value of the average response variable (yield, N

rate, or NUE) for the i-th treatment in j-th replication, m is a

constant, tj represents the effect of treatment j (Sensor-based or

Grower). The replication effect was considered as random. The

random error term eij was assumed normally distributed with mean

zero and heteroscedastic variances for each treatment or replication

if residuals analysis suggested that. The model selection was based

on the Akaike Information Criterion (AIC) (Sakamoto et al., 1986),

with the model yielding the lowest values being chosen. The models

were estimated by Restricted Maximum Likelihood (REML) using

the function lme from the nlme package (Pinheiro et al., 2023) in R

software version 4.4.2 (R Core Team, 2024).
FIGURE 1

On-farm experiments sites locations conducted in corn and wheat in three years (2021-2023) (top-left), texture triangle of soils in the experiments
obtained from SSURGO (top-right), and treatment layout of one on-farm experiment (bottom).
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The overall treatment effect (across trials) on yield, N, and NUE

for each crop was assessed using bootstrapping. A 95% confidence

interval was estimated from bootstrapped samples of the adjusted

mean differences between treatments (Sensor-based minus Grower),

based on model-fitted means. If the 95% confidence interval did not

include zero, it was considered evidence of a significant treatment

effect, indicating that the treatments differed from each other.

A partial profit analysis was conducted to assess the probability

of the Sensor-based approach outperforming the Grower treatment.

A simulation study was performed under various nitrogen fertilizer

and grain price scenarios. For each observation within each field,

partial profit ($ ha-1) was calculated using the following equation:

Partial   Profit   =   grain   yield � Price   of   grain − Nitrogen   rate

� Price   of   nitrogen

Grain and nitrogen prices ($ kg-1) used in the simulations were

drawn from historical data spanning 2002 to 2024, obtained from

the USDA National Agricultural Statistics Service (USDA, 2025)

and DTN Retail Fertilizer Trends (Quinn, 2022, 2025). For each

trial, a grid was overlaid across the field to divide it into spatial cells.

Each grid cell was 7 meters length and spanned both treatments

(Sensor-based and Grower), ensuring that observations from both

treatments were present within each cell. Within each cell,

observations belonging to the two treatments were used to

calculate the probability that the Sensor-based treatment

outperformed the Grower in terms of partial profit. VR

technology cost was not included in the analysis.
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2.4 Site-specific drivers of NUE

To investigate the site-specific drivers of NUE improvements

between treatments, a separate dataset comprising 57 on-farm corn

experiments was analyzed. NUE was evaluated as a summary metric

combining yield and N rate, calculated as partial factor productivity

of nitrogen (kg grain kg-1 N-1) (Congreves et al., 2021). This analysis

was conducted only for corn, as treatment differences in NUE were

more pronounced in this crop compared to wheat, and the number

of trials and variability in site characteristics were also greater. The

dataset included 7 corn sites from the present study and 50 sites

from a previous study conducted in Nebraska by Project SENSE at

the University of Nebraska between 2015 and 2019. In total, eight

years of data (2015–2019 and 2021–2023) were analyzed. This

dataset included NUE values for both Sensor-based and Grower

treatments, calculated as the partial factor productivity of nitrogen

(kg grain kg-1 N-1) (Congreves et al., 2021; Ferguson et al., 2025;

Thompson et al., 2015). For each site-year, the difference in NUE

between treatments (relative to the Grower) was calculated based on

spatially proximate observations. The dataset was augmented with

site-specific soil characteristics and elevation data.

Auxiliary site-specific data were obtained from publicly

available sources to better characterize treatment performance.

Soil information was retrieved from the SSURGO database, while

elevation data were obtained from the U.S. Geological Survey (2023)

1/3 arc-second digital elevation model (DEM), with an approximate

resolution of 10 meters. From SSURGO, the following soil variables
TABLE 1 Summary of 17 on-farm experiments conducted in Nebraska, USA.

Site Crop Year Area (ha) Longitude Latitude
Number of
replicates

N base (kg N
ha-1)

01 Corn 2021 6.09 -96.77 41.72 11 50

02 Corn 2021 65.06 -100.47 41.35 7 75

03 Corn 2021 12.52 -97.32 41.36 7 71

04 Corn 2021 59.05 -98.63 40.94 10 16

05 Corn 2022 60.44 -100.54 41.36 12 120

06 Corn 2022 28.45 -96.83 40.52 6 82

07 Corn 2023 18.64 -96.83 40.52 4 76

08 Wheat 2021 60.14 -101.31 40.89 8 9

09 Wheat 2021 2.46 -101.75 40.37 5 0

10 Wheat 2021 36.08 -96.82 40.49 4 22

11 Wheat 2022 59.23 -101.40 40.81 7 50

12 Wheat 2022 61.62 -101.40 40.80 7 50

13 Wheat 2022 24.97 -96.83 40.52 9 23

14 Wheat 2023 43.30 -101.29 40.95 8 39

15 Wheat 2023 60.54 -101.27 40.65 9 39

16 Wheat 2023 76.33 -101.27 40.97 11 19

17 Wheat 2023 21.15 -96.82 40.53 12 75
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were extracted for the top 20cm: available water storage, organic

matter content, and the percentages of sand, silt, and clay. From the

DEM, several terrain-derived indices were computed: slope,

topographic position index (TPI), terrain ruggedness index (TRI),

and topographic wetness index (TWI) (Beven and Kirkby, 1979).

Data retrieval and computation were performed using the rstac

(Simoes et al., 2021), gdalcubes (Pondi et al., 2024), soilDB

(Beaudette et al., 2024), and terra (Hijmans, 2024) R packages

(R Core Team, 2024).

The data were summarized by soil type and replication. For

each combination, both NUE and auxiliary variables were

aggregated. Site yield variability and median yield from the

Grower treatment were used to characterize the productivity and

heterogeneity of each field. These variables were standardized

(mean-centered and scaled by standard deviation) and

categorized into three levels: low (< –1), moderate (–1 to 1), and

high (> 1). Slope was also categorized into three classes: low (< 1%),

moderate (1–3%), and high (> 3%). This resulting dataset was used

to investigate the main factors influencing NUE differences between

Sensor-based and Grower treatments.

To explore the relationship between site-specific characteristics

and NUE differences (relative to the Grower), a conditional

inference tree was fitted. Unlike traditional classification or

regression trees, this method uses formal statistical hypothesis

testing for variable selection and stopping criteria (Hothorn et al.,

2006). The resulting tree provides a set of interpretable binary

decisions that reveal how combinations of site-specific variables

influence NUE outcomes under sensor-based nitrogen management

relative to the grower approach.
3 Results and discussion

3.1 Overall treatment performance

For corn, the Sensor-based treatment consistently applied lower

N rates than the Grower treatment. The average N rate for the

Sensor-based treatment was 167 kg ha-1, which was 18.9% lower

than the Grower treatment’s average of 206 kg ha-1. In contrast, for

wheat, the differences between treatments were smaller, with the

Sensor-based treatment applying 105 kg ha-1 and the Grower

treatment applying 111 kg ha-1 (5.4% higher). According to

empirical cumulative distribution, 50% of the observations for

corn (i.e., the interquartile range) for the Grower treatment were

between 181 and 236 kg N ha-1, while for the Sensor-based

treatment, they ranged from 125 to 188 kg N ha-1. These results

suggest that the Sensor-based strategy not only tended to apply less

nitrogen but also showed greater variability in application rates

compared to the Grower-defined approach (Figure 2). For wheat,

50% of the observations ranged from 88 to 123 kg N ha-1 for the

Grower treatment and from 78 to 102 kg N ha-1 for the Sensor-

based technologies. Interestingly, the interquartile range was wider

for the Grower approach (35 kg N ha-1) compared to the Sensor-

based approach (24 kg N ha-1), suggesting that, in contrast to corn,
Frontiers in Agronomy 05
nitrogen application was more variable under the Grower strategy

than under the Sensor-based approach in wheat.

Despite these reductions in N inputs in corn and wheat, there

were no substantial differences in crop yields between the two

treatments. For corn, median yields were 14.3 t ha-1 under the

Sensor-based treatment and 14.5 t ha-1 under the Grower treatment,

representing a difference of 1.6%. Similarly, for wheat, median

yields were 3.8 t ha-1 for Sensor-based and 3.1 t ha-1 for Grower
FIGURE 2

Empirical cumulative distribution functions (ECDFs) of N rate
(kg N ha-1), yield (t ha-1), and nitrogen use efficiency (NUE; kg yield
kg-1 N-1) for two treatments: sensor-based nitrogen management
(Sensor-based) and grower’s usual N management (Grower). The
ECDF curves indicate the proportion of observations (Y axis) below a
given value (X axis), allowing comparison of the overall distribution
between treatments (e.g., a leftward shift means lower values, and a
rightward shift means higher values –N rate, Yield, and NUE–).
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(Figure 2). These differences in yield suggest that reducing N inputs

did not compromise crop productivity. The cumulative relative

frequency curves for yield in both corn and wheat showed

overlapping patterns between treatments. This suggests that yield

performance remained comparable despite the significant

reductions in N application under the Sensor-based treatment

(Figure 2). In corn, 50% of the observations (interquartile range)

fell between 13.2 and 15.7 t ha-1 for the Grower treatment and

between 12.9 and 15.3 t ha-1 for the Sensor-based treatment. In

wheat, the interquartile ranges were 2.8 to 5.3 t ha-1 for the Grower

and 2.4 to 4.9 t ha-1 for the Sensor-based approach, indicating

similar distributions. The interquartile ranges were similar across

treatments for both crops, although relative yield variability

(compared to mean values) appeared greater in wheat than in

corn. This suggests that yield responses in wheat were more variable

regardless of N management strategy.

The NUE was higher under the Sensor-based treatment

compared to the Grower treatment for corn. The mean NUE was

95 kg yield kg-1 N under the Sensor-based treatment, which was

30.9% higher than the Grower treatment’s NUE of 72 kg yield kg-1

N-1. Cumulative frequency distributions further highlight this

trend, with the Sensor-based treatment curves consistently shifted

toward higher NUE values (Figure 2). Conversely, for wheat, NUE
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under the Sensor-based treatment was 42 kg yield kg-1 N compared

to 36 kg yield kg-1 N for the Grower treatment, representing an

improvement of 17% in NUE compared to the Grower. Overall, the

Sensor-based treatment reduced N rates and achieved improved

NUE while maintaining comparable yields. This effect was more

pronounced in corn than in wheat. The interquartile range for NUE

in corn was 58 to 81 kg yield kg-1 N-1 for the Grower treatment and

71 to 101 kg yield kg-1 N-1 for the Sensor-based treatment,

indicating both higher efficiency and greater variability under the

Sensor-based technology (Figure 2). In wheat, the interquartile

ranges were similar between treatments: 23 to 52 for the Grower

and 26 to 55 for the Sensor-based treatment. These results suggest

that improvements in NUE were more substantial and variable in

corn, whereas NUE in wheat was similar between treatments.

The performance of Sensor-based and Grower nitrogen

application strategies varied significantly between crops

(Figure 3). In corn specifically, growers applied higher nitrogen

rates than the Sensor-based treatment in 57.1% of the fields (n = 4).

On average across all corn trials, the Grower applied rate was 40 kg

N ha-1 higher than the Sensor-based rate, with a bootstrap 95% CI

for the difference ranging from -81 kg N ha-1 to -3 kg N ha-1,

showing that Sensor-based approach recommended to apply less N

rate than the Grower based on crop status at the moment of in
FIGURE 3

Mean differences in nitrogen rate (N rate, kg N ha-1), yield (t ha-1), and nitrogen use efficiency (NUE, kg yield kg-1 N-1), between sensor-based
nitrogen (N) management (Sensor-based) and Grower treatment across 17 on-farm experiments conducted in Nebraska, USA, from 2020 to 2023.
Error bars indicate the standard error of the difference within each site-year. *For the overall treatment effect (All), error bars represent the 95%
bootstrap confidence interval for the average difference.
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season fertilization. Despite these differences in application rates,

yield differences between treatments were not statistically

significant in 85.7% of the fields (n = 6). Only one field showed a

statistically significant higher yield for the grower treatment. Across

all corn trials, Sensor-based had an average yield advantage of 98 kg

ha-1 compared to the Grower, though the bootstrap CI (-288 kg ha-1

to 103 kg ha-1) indicated this difference was not significant.

Regarding NUE, the Sensor-based approach outperformed

Grower applications in 71.4% of the fields (n = 5), indicating

higher nitrogen efficiency. The mean difference in NUE (Sensor-

based minus Grower) was 24 kg yield kg-1 N-1 in favor of the

Sensor-based strategy, with a 95% bootstrap CI of 3.7 to 50.1 kg

yield kg-1 N-1. While there were no statistically significant

differences in yield, the Sensor-based approach demonstrated

superior nitrogen use efficiency in corn because of the lower N rates.

For wheat, the average nitrogen rate difference between the

Sensor-based and Grower treatments was 10 kg N ha-1 (Sensor-

based minus Grower), with a 95% bootstrap CI ranging from -21.6

to 1.3 kg N ha-1. This suggests that, across all fields, the Sensor-

based strategy applied nitrogen at rates statistically similar to those

of the Grower approach. However, in 70% of the fields (n = 7),

growers applied significantly more nitrogen than the Sensor-based

treatment (p-value < 0.05). Despite this, growers did not

consistently achieve higher yields. The average yield difference

between treatments was -129 kg ha-1, with a CI of -390 to 35 kg

ha-1. This indicates a non-significant trend toward slightly higher

yields under the Grower approach. Only one out of ten fields (Site-

year 11) showed a statistically significant yield advantage for the

grower, while in two fields (Site-year 08 and 17), no significant yield

differences were observed between treatments. In terms of nitrogen

use efficiency (NUE), four fields showed no difference between

approaches, while the Sensor-based treatment outperformed the

grower in five fields. Only one field (Site-year 10) exhibited higher

NUE under the Grower strategy (Figure 3). On average, there was

no statistically significant difference in NUE across all wheat trials,

with the Sensor-based approach exceeding the Grower by 4.88 kg

grain kg-1 N-1 (95% CI: -3.17 to 12.9 kg grain kg-1 N-1).

These results suggest that for wheat, both approaches yielded

comparable outcomes in terms of nitrogen rates, yield, and NUE.

Conversely, Sensor-based treatments outperformed the Grower

approach in corn, for N rate and NUE. Sensor-based technologies

have been demonstrated to enhance NUE by improving crop

performance and reducing N rates and environmental impacts.

Specifically for corn, research has shown that canopy reflectance

sensors can increase NUE compared to traditional nitrogen

management practices without yield penalty (Shanahan et al.,

2001; Solari et al., 2008; Mulla, 2013).

In wheat, multiple studies have highlighted the benefits of using

sensor-based methods to reduce nitrogen application rates without

significant yield losses when compared to conventional grower

practices (Cao et al., 2017; Stamatiadis et al., 2018). Other

research conducted in India has shown that sensor-based

technologies may support the rational management of nitrogen

fertilizer in wheat under changing climate conditions (Mitra et al.,

2023a, 2023b). In this study, no statistically significant differences
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between treatments for wheat were observed. This lack of significant

differences could be attributed because the farmers involved in

trials, part of On-Farm Experiments (OFE), may already implement

efficient nitrogen management practices, as many of them are

affiliated with university research (Bramley et al., 2022). Although

the overall mean difference was not statistically significant, seven

out of ten site-years showed statistically significant reductions in N

rates, and in five out of ten cases, the NUE sensor-based approaches

were more efficient. Therefore, increasing the number of on-farm

research trials in wheat may be necessary to enhance

statistical power.

The average corn yield was 14 t ha-1(Figure 2), which is higher

than the 5-year national average of 10 t ha-1 (U.S. Department of

Agriculture’s Foreign Agricultural Service, 2025a). For wheat, the

average trial yield was 3.8 t ha-1(Figure 2), which is closer to the

national average of 3.25 t ha-1 (U.S. Department of Agriculture’s

Foreign Agricultural Service, 2025b). This difference in yield

potential and productivity may help explain why sensor-based

technology performed better in corn than in wheat. In the case of

wheat, yield limitations may be due to factors other than nitrogen

rates. Therefore, the benefits of VRT may be less pronounced in

wheat compared to corn, where fewer yield limitations allow for

greater improvements.

Moreover, the lack of differences may stem from field

conditions or rainfall patterns. If the soil fertility across the field

is already above agronomic requirements, precision fertilization has

a reduced impact on yield outcomes (Bongiovanni and Lowenberg-

Deboer, 2004). High baseline soil nitrate levels or limited variability

in soil fertility across fields could also minimize the potential

benefits of precision agriculture approaches (Bundy and

Andraski, 2004; Diacono et al., 2013). Additionally, intense

rainfall events following fertilizer application may lead to

substantial nitrogen losses through leaching, resulting in lower

NUE and reduced yields (Sitthaphanit et al., 2010). The lack of

differences between treatments in wheat may be attributed to the

fact that its nitrogen requirements for achieving maximum yield are

less variable than those of corn (Johnson and Raun, 2003). Thus, the

research partners growers may have already optimized N rates

through previous OFE results, achieving greater efficiency in

wheat production.

In summary, while Sensor-based approaches demonstrated

significant benefits for corn, particularly in enhancing NUE, their

advantages for wheat were less pronounced. The optimal nitrogen

rate depends on yield potential and the contribution of non-

fertilizer sources to crop nitrogen requirements (Johnson and

Raun, 2003). Therefore, variable-rate nitrogen application using

sensor-based methods may have greater importance for corn than

for wheat.
3.2 Partial profitability - sensitivity analysis

A partial profit analysis coupled with a probability analysis with

different input and grain price scenarios can help to show in which

situations sensor-based approaches are beneficial and have more
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chances of success for corn and wheat. The average historical grain

prices from 2002 to 2024 were $0.16 kg-1 for corn and $0.19 kg-1 for

wheat, while the price of UAN32 fertilizer was $1.12 kg-1. Under

this scenario, the probability that the sensor-based approach

outperformed the grower’s practice was 0.59 for corn and 0.53 for

wheat. The average partial profit was $39.60 (95% CI: $32.20–

$47.20) for corn and $-2.55 (95% CI: $-6.75 to $1.69) for wheat.

Therefore, while the adoption of a sensor-based approach may

improve profitability in corn, it may not lead to increased

profitability in wheat under average price scenarios.

Over the three years of the study, the average grain prices were

$0.24 kg-1 for corn and $0.29 ha-1, for wheat, while the average N

fertilizer price was $1.68 kg-1. Under these price conditions, the

average partial profit difference for corn was $59.4 ha-1 (95% CI:

$47.7 – $71.0 ha-1), with a 0.59 probability that the sensor-based

approach outperformed the Grower practice. In contrast, for wheat,

the average profit difference was $-4.36 ha-1 (95% CI: $-10.7; $2.15

ha-1), with a 0.53 probability of the sensor-based approach

outperforming the grower (Figure 4). Therefore, while sensor-

based technology showed a statistically significant improvement

in partial profit for corn, no such advantage was observed for wheat.

For corn, the probability of the sensor-based approach

outperforming the grower’s practice ranged from 0.444 to 0.771,

with 50% of the simulations producing probabilities higher than

0.627 (Figure 4). These results indicate that in most simulations, the

sensor-based approach had a greater than 0.6 probability of being

more profitable than the grower’s method. For wheat, the probability

ranged from 0.481 to 0.756. In this case, 50% of the simulations

showed probabilities lower than 0.545, and 75% were below 0.852.

This suggests that, in general, the probability of the sensor-based

approach outperforming the grower’s method was lower than 0.6 for

wheat (Figure 4) for the yield scenarios explored in our database.

The highest probabilities of the sensor-based approach being

more profitable than the grower’s method were observed under

scenarios with low grain prices and high nitrogen fertilizer prices.

This indicates that VRT may offer increased profitability under
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conditions of high input costs. However, the probabilities were

consistently higher for corn than for wheat, suggesting that the

sensor-based approach is more likely to improve profitability in

corn production. These economic advantages, however, should be

interpreted with caution, as potential profitability does not

automatically ensure widespread adoption. Variable-rate fertilizer

has been available for almost two decades, and evidence shows that

barriers to adoption extend beyond economic considerations. The

cost of application—typically ranging from $15 to $30 ha-1 when

accounting for machinery, prescription maps, and labor—can

influence decisions, but it is often not the decisive factor. For

example, a Nebraska survey reported that lack of information

about agronomic value, shortage of qualified labor, limited time,

the overwhelming number of available technologies, and the

number of service providers were more important constraints

than direct technology costs (Balboa et al., 2024). For many

farmers, upfront investment in sensors and machinery, the

learning curve required to use decision-support tools effectively,

and uncertainty about long-term reliability may further limit

scalability despite profitability potential. Importantly, our

comparative approach between crops highlights that the

contrasting outcomes in corn and wheat reflect not only

agronomic differences but also the need for crop-specific adoption

strategies—an area that remains underexplored in the literature.

Previous works had shown a partial profit analysis comparing

Sensor-based technologies and grower approaches in corn (Scharf

et al., 2011). In this work, the grain price used was $0.2 kg-1 and $1.3

kg-1 for the N fertilizer price. The mean average partial profit

difference reported in the work was $42 ha-1 in favor of Sensor-

based technologies. Scharf et al. (2011) conducted a partial profit

analysis comparing sensor-based technologies and grower practices,

using a grain price of $0.20 kg-1 and a nitrogen fertilizer price of

$1.30 kg-1. They reported an average partial profit increase of

$42 ha-1 in favor of the sensor-based approach.

In the present study, a bootstrap sampling approach was used to

estimate partial profit under the same price conditions. The average
FIGURE 4

Probability of sensor-based nitrogen management achieving higher profit than grower-selected rates across a range of grain and nitrogen fertilizer
prices ($ kg-1) for corn (left) and wheat (right). Triangles are the average prices for the three years in the study (2021, 2022, 2023), while the white
point is the average price for the three years.
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probability of Sensor-based achieving higher profit was 0.58

(Figure 4). The mean partial profit difference was $46.8 ha-1, with

a 95% confidence interval ranging from $3.43 to $89.6 ha-1. This

result supports the conclusion that sensor-based approaches can

improve partial profitability, and the confidence interval includes

the $42 ha-1 value reported by Scharf et al. (2011). Boyer et al.

(2011) showed that VRT may improve partial profit under uniform

application rates, such as those used by growers. However, after

testing different rates and timings and comparing VRT against

uniform applications in wheat, they found no statistically significant

differences in profit between treatments.

An exhaustive economic analysis is beyond the scope of this

paper; a more comprehensive evaluation would be needed to fully

assess the economic benefits of these technologies in both crops. In

this study, we simplified the complex relationship between

environmental, agronomic, and economic factors. However, this

approach can still provide some insight into the economic

implications, even though it does not account for the cost of the

technology or other expenses that farmers may incur if they choose

to adopt it. Future work should explicitly integrate technology costs,

the time and training required to implement VRTs, and regional

differences in farm size and management capacity, since these

factors may influence profitability and adoption. It is important

to note, however, that profitability can vary considerably depending
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on context-specific factors, such as local agronomic conditions,

market prices, and farm management practices.
3.3 Site-specific drivers of NUE in corn

A site-specific decision tree was developed to evaluate the

differences in NUE between Sensor-based and Grower treatments

for corn. The tree was fitted with data from 57 corn trials. NUE may

be higher at sites where lower N rates were applied, even when yield

reductions were significant. The decision tree was based on NUE, as

yield values were not negatively impacted, and higher variations

occurred in N rates. Therefore, differences in NUE between

treatments are attributed to lower N rates rather than reduced

yields. The most important variables to explain the differences in

NUE were yield average, yield spatial variability, and clay content in

the first 20 cm depth.

The decision tree results suggest that, in areas with low spatial

yield variability, the benefits of adopting a sensor-based approach

may be limited (Figure 5). In contrast, in areas with moderate to

high yield variability (CV higher than 1.11%), the difference in NUE

tends to be greater in favor of the sensor-based approach over the

grower strategy. This indicates that lower N rates may be

recommended in those environments. These findings align with
FIGURE 5

Partitional tree illustrating the influence of soil and topographic variables on the relative difference in NUE between sensor-based and grower N
management (Sensor – Grower), normalized by grower NUE. The response variable is expressed as the relative change in NUE, with positive values
indicating improved efficiency from the sensor-based approach. Topographic Wetness Index (TWI).
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previous research showing that within-field variability in soil

fertility or yield can influence the potential advantages of VRT

(Tisseyre and McBratney, 2008; Diacono et al., 2013).

Under low yield variability conditions, silt content also emerges

as an important factor influencing NUE differences. When silt

content exceeds 39%, the relative improvement in NUE from the

sensor-based approach (compared to the Grower strategy) is

reduced, compared to sites with silt content below this threshold

(Figure 5). This pattern likely reflects soil texture trade-offs: fields

with higher silt and lower sand retain more water, allowing grower

practices with higher N rates to better match crop demand. Prior

studies have also shown that when the N-rich strip appears visually

similar to the surrounding crop at the time of side-dress, a sensor-

based variable rate strategy may not be necessary (Kitchen et al.,

2010). This scenario often occurs in well-fertilized plots with high

NDVI values, where within-field NDVI variability decreases rather

than increases its values (Silvestri et al., 2024).

Moreover, nitrate dynamics are influenced by precipitation and

soil water retention capacity (van Es et al., 2005; Raza and Farmaha,

2022), further emphasizing the role of soil type in determining N

requirements. In wet conditions, particularly in years with

abundant spring rainfall, fine-textured soils such as clay loam are

more susceptible to precipitation and drainage effects. As a result,

these areas may require higher N fertilizer rates to achieve optimal

yields (van Es et al., 2005). In short, corn generally responds more

strongly to added N in clay-rich soils than in medium-textured soils

(Tremblay et al., 2012; Li et al., 2023).

Under moderate and high yield variability, average yield also

influences sensor-based performance. In low-yield areas (yield

values lower than 11 t ha-1), slope and soil clay content are key

factors. In areas with steep slopes, the performance of sensor-based

recommendations is further modified by clay content. The sensor-

based approach outperformed grower strategies in these areas when

clay content exceeded 23% (Figure 5). This interaction reflects two

mechanisms: clayey soils often mineralize less N and drain poorly,

while slopes reduce infiltration and increase lateral water loss (Huat

et al., 2006). Together, these conditions make N management more

challenging, where VRT can provide efficiency gains.

In contrast, in high-productivity areas where the average yield is

moderate to high (yield values higher than 11.9 t ha-1), sensor-based

performance is primarily influenced by clay content and TWI.

When clay content exceeds 25%, the advantages of VRT are

reduced, possibly because the higher N rates typically applied by

growers in these zones may be justified (Figure 5). Lower TWI

values may limit mineralization and N availability, while higher

TWI may enhance nutrient accumulation (Kumar et al., 2022).

Overall, the repeated influence of soil texture can be summarized as

follows: clay-rich soils tend to reduce mineralization and drainage,

increasing crop dependence on fertilizer N, whereas sandy or mixed

soils allow greater responsiveness to sensor-based adjustments.

These results align with previous studies reporting higher optimal

N requirements in claypan soils compared to loess or alluvial soils

(Ping et al., 2008; Kitchen et al., 2010; Shahandeh et al., 2011).
Frontiers in Agronomy 10
Soil nitrate availability is closely tied to both precipitation and

soil moisture dynamics (van Es et al., 2005), reinforcing the

importance of soil type in determining N response. Integrating

sensor-based in-season nutrient management with soil testing at

planting and split N applications may offer an effective strategy to

improve NUE (Sharma and Bali, 2017). This highlights the

importance of tailoring N management strategies to soil and

environmental conditions. In rainy years, clay loam soils are

particularly sensitive to excess water, and only under such

conditions can higher N rates be justified for fine-textured areas

of a field. These results further confirm that corn response to

applied N is significantly greater in fine-textured than in

medium-textured soils.
3.4 Smart farming for climate-adaptive N
management

While precision agriculture emphasizes management practices

that address within-field variability—doing the right things, in the

right places, with the right intensity—smart farming goes further by

generating and applying knowledge through advanced technologies

(Zinke-Wehlmann and Charvát, 2021). The integration of sensors,

digital technologies, and field-level applications is a key component of

smart farming (Finger, 2023). Sensor-based technologies offer valuable

tools for N management. When combined with diverse data sources

such as weather or environmental conditions, VRT technologies can

unlock the full potential of digital innovation and smart farming

(Dubuis et al., 2019; McNunn et al., 2019; Finger, 2023). Research has

shown that coupling sensor data with soil, weather information, and

machine learning algorithms can improve the accuracy of N

recommendations (Ransom et al., 2019). Moreover, by integrating

these technologies with crop growth models, farmers can optimize

their decisions and N management (Bosche et al., 2025). Therefore,

integrating smart technologies, such as weather forecasting, remote

sensing, and machine learning, can support the development of

climate-adaptive nutrient strategies.

Weather patterns have become increasingly variable, with more

frequent extreme rainfall events (Easterling et al., 2000). Adapting

N applications to real-time crop and environmental conditions can

enhance both the quality and quantity of crop production

(Blumenthal et al., 2008). Moreover, VRT can improve within-

field profitability while supporting sustainability goals

(Muth, 2014).

Real-time adjustments to N applications help avoid under- or over-

application during abnormal weather events (e.g., excessive spring

rainfall or drought), thereby enhancing crop resilience to

environmental stress (Finger, 2023). As variable weather becomes

more common, smart farming and VRT offer strategies to improve

NUE across diverse scenarios. Higher NUE not only reduces N

leaching during wet years and over application during dry years, but

also lowers greenhouse gas emissions, achieving the same or higher

yields with reduced environmental impact (Sehy et al., 2003;
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Pampolino et al., 2007; Finger et al., 2019). In this context, split-N

applications or in-season real-time adjustments offer a practical means

to mitigate risks posed by erratic rainfall or temperature fluctuations.
4 Conclusion

This study evaluated the effectiveness of sensor-based N

management compared to conventional grower practices in corn and

wheat across 57 on-farm trials. In wheat, sensor-based

recommendations did not significantly improve N rates, yield, or

nitrogen use efficiency (NUE) relative to grower strategies, indicating

limited benefit in that crop under the tested conditions. In contrast, for

corn, the sensor-based approach outperformed grower practices by

recommending lower N rates (-40 kg N ha-1) without compromising

yield, thereby increasing NUE. Sensor-based approaches may be more

beneficial under low grain price scenarios and high N fertilizer prices,

with greater benefits observed in corn than in wheat.

Our findings highlight that the benefits of VRT are highly site-

specific. Sensor-based N management was most effective in corn

fields characterized by moderate to high yield spatial variability,

where the approach better matched N supply to heterogeneous crop

demand. Key soil and landscape parameters, including clay content,

slope, and TWI, further influenced NUE outcomes. Unlike most

previous studies, which were limited to experimental stations, or

limited to one crop, our work is based on OFE, enhancing the

robustness and practical relevance of the results. Furthermore, the

integration of geostatistical analysis and decision tree modeling

provides new insights into the drivers of NUE variability and VRT,

beyond what has typically been reported.

These insights reinforce the importance of integrating sensor-based

recommendations with soil texture, topography, and moisture-related

indicators in decision-support tools. Such integration could

significantly enhance the performance of precision N management

strategies, particularly in corn. Moreover, sensor-based approaches

may be especially advantageous under economic scenarios involving

low grain prices or high N fertilizer costs. Overall, tailoring N

management to both crop type and site-specific conditions is

essential to maximizing NUE, minimizing environmental impacts,

and improving long-term agricultural sustainability.

In the context of increasing climate variability, sensor-based N

management offers a flexible and adaptive strategy that contributes

to climate-resilient crop production. By responding to within-field

variability and real-time plant needs, this approach helps mitigate

the risks associated with environmental stresses such as excessive

rainfall, drought, and temperature extremes. Moreover, by reducing

unnecessary N inputs and minimizing losses to the environment,

sensor-based management supports both productivity and

sustainability objectives, positioning it as a key component of

smart agriculture systems designed for resilient food production.

To facilitate the adoption of sensor-based technologies,

preliminary field characterization to identify suitable candidate

areas—along with a thorough economic evaluation—may be a

critical first step. Future research should explore the development

of automated calibration processes that leverage field history and
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soil characteristics. Additionally, enhancing sensing algorithms by

incorporating soil texture, topographic data, and economic

information could further improve the effectiveness of sensor-

based technologies in both wheat and corn.
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