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Introduction: Cocoa plants tend to accumulate significant amounts of cadmium

(Cd) in their beans and derived products due to their high affinity for Cd, which

can pose challenges for commercialization. Research on the variations in Cd

absorption capability among cocoa genotypes is still limited.

Aims: This study assessed physiological traits, soil pH, soil electrical conductivity

(EC), macronutrient concentrations, Cd bioaccumulation, and biomass

distribution in seven cocoa genotypes (CCN-51, EET-103, IMC-67, POUND-12,

EET-399, EET-95 and EET-400) grown in greenhouse.

Methods: The genotypes were arranged in a randomized block design with three

replicates, assessing variables such as chlorophyll content, leaf gas exchange, pH,

soil EC, macronutrient concentration, Cd uptake and transfer, Cd

bioaccumulation, and dry root and shoot biomass.

Results and discussion: Results showed no significant differences in chlorophyll

content and gas exchange between genotypes, although EET-103 exhibited a

higher transpiration rate. A significant reduction in gas exchange occurred 80

days after sowing, associated with decreases in chlorophyll content and stomatal

conductance. The soil displayed a strongly acidic pH (≤5.5) and high EC (6 dS m-

1) across all genotypes, with no significant inter-genotype differences observed.

Cadmium accumulation was nine times higher in the shoot than in the roots, with

EET-95 showing a reducedCd uptake capacity, and EET-399 demonstrating

limited Cd transfer from root toshoot.

Conclusion: The genotype with the highest Cd absorption and shoot

accumulation was CCN-51. Conversely, POUND-12 had the lowest Cd levels in

both shoot and root, suggesting its potential as a reference genotype to limit Cd

entry to aboveground tissues, especially in soils with elevated Cd concentrations.
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Introduction

Cadmium (Cd) is a trace element found in the earth’s crust and

is considered a natural pollutant in agricultural soils. In the aqueous

phase of the soil, Cd is easily absorbed by plants and

bioaccumulated in different tissues, which makes it easier for it to

enter the food chain (Zhao et al., 2020). The soil-to-plant transfer

rate of Cd in cocoa cultivation is greater than 1 (Oliva et al., 2020),

which leads to bean Cd concentration above 10 mg kg⁻¹, which is a

serious concern for chocolate production (Argüello et al., 2019).

Consumed Cd is harmful is known to cause serious health issues,

such as cardiovascular disease, bone disorders, renal dysfunction,

and DNA damage and, consequently, cause cancer (Davidova

et al., 2024).

The European Union (EU) has set a maximum permissible limit

of 0.80 mg kg⁻¹ of Cd in cocoa by-products to reduce risks to its

citizens (Florida Rofner, 2021). However, countries like the Russian

Federation, New Zealand, and Australia have established more

stringent restrictions of 0.50 mg kg⁻¹ of Cd in chocolate products

(Meter et al., 2019). Currently, in Ecuador, Peru, and Colombia

there is no set limit for Cd in cocoa beans, although high levels have

been found in cocoa derivatives (Argüello et al., 2019; Bravo et al.,

2014; Chávez et al., 2015; Florida et al., 2018; Mite et al., 2010).

Ecuador’s El Oro, Manabı,́ and Esmeraldas provinces are the most

affected by high levels of Cd contamination in cocoa-growing soils,

reaching critical values ≥ 2 mg kg⁻¹ (Argüello et al., 2019; Mite et al.,

2010). Ecuador’s coastal regions rely heavily on cocoa for high-

value chocolate production, but increased Cd contents could hinder

global trade, especially under EU rules (Morales-Rodriguez

et al., 2025).

Cocoa plants are affected by heavy metals like Cd, which disrupt

various biological functions such as metabolism, leaf gas exchange,

chlorophyll synthesis, cell division, electron transfer rate, and

photochemical efficiency in the light reactions of photosynthesis

(Haider et al., 2021; Borjas-Ventura et al., 2022; Vera Pinargote

et al., 2025). Plants lacking Cd tolerance experience higher toxicity,

leading to decreased leaf water content, reduced stomatal

conductance (gs), and increased reactive oxygen species

production, necrosis, and cell damage. CCN-51 seedlings exposed

to different Cd concentration showed altered mineral nutrient

absorption, chlorophyll content, photosynthetic apparatus damage

and reduced quantum yield, and the expression of the psbA gene

was also disrupted, biomembrane rupture occurring in root and leaf

cells (Pereira de Araújo et al., 2017).

It has been recently reported that the cultivation of the BN-34

genotype grafted onto the CCN-51 rootstock shows a high tolerance

to Cd, which was associated with a high activity of ascorbate

peroxidase, a protein that removes free radicals from plant cells,

suggesting that some combinations of cocoa scions and rootstocks

may be used to mitigate Cd toxicity (Almeida et al., 2023). Also, the

EET-62 genotype showed strong tolerance to Cd content at 6 and 12

mg kg⁻¹; while PA-46 and IMC-67 genotypes had lower Cd

accumulation, suggesting their potential use to limit Cd buildup

in cocoa tissues (Galvis et al., 2023). Juvenile cocoa plants grown in

soils with high Cd levels or combined Mn + Cd levels exhibit
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impaired photosynthesis, oxidative stress, metabolic alterations, and

increased Cd absorption, transport, and accumulation in roots and

leaves (Barroso et al., 2023).

Genetic differences in Cd tolerance were also noted among

cocoa rootstocks, with the EET-103 genotype exhibiting lower Cd

extraction and accumulation capacity compared to CCN-51 (Reyes-

Perez et al., 2023a). Genetic variations in cocoa hybrids during

seedling growth exhibit differences in Cd partitioning, biomass

accumulation, and photosynthetic efficiency, suggesting that cocoa

responses to Cd stress are primarily determined by genetic

variations (Borjas-Ventura et al., 2022; Vera Pinargote et al.,

2025). Previous research findings highlight the role played by

genetic enhancement programs in obtaining genotypes that

accumulate less Cd and achieve better physiological performance,

growth, and development of cocoa plants. Agronomic strategies aim

to reduce Cd transfer rates by applying organic and inorganic

amendments to precipitate or adsorb Cd, decreasing its

bioavailability in soil solution, and leveraging interspecific

variations in Cd phytoextraction and accumulation among cocoa

genotypes (Meter et al., 2019; Engbersen et al., 2019).

However, limited documentation exists on the Cd absorption

capacity of commercial cocoa genotypes from Ecuador. We

hypothesize that: 1. The genotypic variation among the cocoa

genotypes studied will result in significant differences in

physiological and agronomic characteristics, and 2. there will be

significant differences among the genotypes of cocoa in Cd

absorption, transfer, and bioaccumulation. Therefore, this study

aimed to evaluate the physiological characteristics (SPAD values,

gas exchange, macronutrient concentrations in the shoot, and Cd

bioaccumulation) and biomass distribution in seedlings of seven

cocoa genotypes (CCN-51, EET-103, IMC-67, POUND-12, EET-

399, EET-95, and EET-400) cultivated in greenhouse conditions.
Materials and methods

Study location

This research was conducted in the greenhouse and laboratory

of the Soil and Water Management Department at the Pichilingue

Tropical Experimental Station (EETP), part of the National

Institute of Agricultural Research (INIAP). The station is located

at 79°27′W longitude and 1°06′S latitude, at an altitude of 75 meters

above sea level.
Genotypes

The study included the following cocoa genotypes: IMC-67 and

POUND-12 (from the Iquitos genetic group), EET-399 and EET-

400 (Curaray group), EET-103 and EET-95 (National group), and

CCN-51 (CCN-51 gentotype, a hybrid of IMC-67 × ICS-95)

(Motamayor et al., 2008; Morillo et al., 2023; Thomas et al.,

2024). The first four genotypes are resistant to machete sickness

(Ceratocystis cacaofunesta) and are recommended by INIAP for use
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as rootstocks (Suárez Capello et al., 1993; Vera Barahona et al.,

1984); whereas, EET 103 is tolerant to C. cacaofunesta and

recommended for cultivation in the province of Manabı ́.
Additionally, EET-95 is tolerant to C. cacaofunesta (Quiroz Vera,

2000). Although the CCN-51 clone is susceptible to this disease, it

remains the most widely used rootstock by propagators and was

therefore selected as the control for this study.
Physical and chemical characteristics of
the soil

The clay loam soil had the following chemical characteristics:

ammonium (NH4;): 22 mg kg⁻¹; phosphorus (P): 23 mg kg⁻¹;
potassium (K): 0.49 meq 100 mL⁻¹; calcium (Ca): 19 meq 100

mL⁻¹; magnesium (Mg): 2.8 meq 100 mL⁻¹; sulfur (S): 6 mg kg⁻¹;
zinc (Zn): 8.2 mg kg⁻¹; Cd: 1.53 mg kg⁻¹; pH: 6.2; and electrical

conductivity: 0.31 dS m⁻¹.
Experimental design

The study involved seven cocoa genotypes (treatments)

arranged in a randomized block design with three replicates. Each

experimental unit consisted of four plants, resulting in a total of 84

plants. The experiment lasted 120 days, comprising 90 days of plant

growth, management, and evaluation under greenhouse conditions,

followed by 30 days of laboratory analyses.
Experimental management

Soil for the experiment was collected from Rıó Negro Parish,

Santa Rosa canton, El Oro province. It was dried in a greenhouse,

disaggregated using a glass roller, and sieved through a 2 mmmesh.

Polyethylene bags (5 × 8”) were filled with 700 g of prepared soil.

The plants were propagated from seeds obtained through

assisted pollination to ensure genetic purity. Ripe fruits were

harvested, and seeds were removed, cleaned of their testa, and

soaked in deionized water for 24 hours. Seeds were then planted

individually in pots, positioned vertically with the narrower tip

facing upward. Before planting, soil moisture was adjusted to field

capacity using deionized water, which was maintained through

periodic irrigation.
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The seedlings were grown in a greenhouse covered with a 65%

polyshade screen, providing an average light intensity of 210 ± 30

mmol m⁻² s⁻¹ for 12 hours of natural light daily. Greenhouse

temperatures ranged from 23.3 to 33.5 °C, with relative humidity

levels between 52% and 82%.

Fertilization was based on soil analysis and the nutritional

requirements of cocoa during the nursery stage, tailored for

containers with 700 g of soil (Table 1). Nutrients were applied as

follows: Nitrogen (N) and S were divided into three applications at

21, 42, and 63 days after sowing (DAS). K, Mg, and Ca were applied

in two fractions at 42 and 63 DAS, while P was applied as a single

dose at planting. The fertilizers used were Urea (46% N),

diammonium phosphate (18% N, 46% P), potassium chloride

(60% K), ammonium sulfate (24% S, 21% N), magnesium sulfate

(27% MgO, 16% S), and calcium nitrate (15% N, 26% CaO). All

fertilizers, except phosphorus, were dissolved in water and applied

as a soil drench at 20 mL per plant.
Variables evaluated

pH and EC of the soil
Soil samples were collected individually for each plant after

removing the casings. Each sample was weighed (20 g) on an

analytical balance (A&D Weighing, model HR200, Japan) and

placed into a plastic cup. Then, 50 mL of deionized water was

added to create a 1:2.5 P:V ratio. The mixture was stirred for 5

minutes and left to settle for 1 hour (Henrıq́uez et al., 1998). pH

readings were recorded using a potentiometer (HACH model

SensION™ MM340, Germany), and EC was measured with a

conductivity meter (HACH model SensION™ EC71, Germany).

Chlorophyll index
The chlorophyll content was assessed using a SPAD-502 Plus

chlorophyll meter (Konica Minolta, Inc., Tokyo, Japan). SPAD

values are directly proportional to the total chlorophyll content in

leaves (da Cunha et al., 2015). Measurements were taken every two

weeks from 40 to 80 DAS between 9:00 a.m. and 1:00 p.m., on the

same leaves used for gas exchange measurements.

Leaf gas exchange
Gas exchange parameters were measured at 40 and 80 DAS

between 9:00 a.m. and 1:00 p.m. on six plants per treatment (n = 6).

Measurements were performed with an infrared gas analyzer
TABLE 1 The nutritional requirements of cocoa determined by soil analysis and fertilization at the nursery stage are shown.

Fertilizers dose (g kg of soil-1) Applications (DAS)

N P2O5 S MgO CaO Urea (NH4)2SO4 Ca(NO3)2 DAP MgSO4; KCl

1.02 2.58 0.41 — — — 1.71 — 5.62 — — 21

0.68 — 0.41 0.20 — — 1.24 1.65 — 0.71 1.40 42

1.38 — 0.41 0.20 0.42 1.48 1.24 1.65 — 0.71 1.40 63
Nutritional plan used in the development of cocoa genotypes.
DAP, diammonium phosphate; DAS, days after sowing; KCl, Potassium chloride.
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(CIRAS 2, PP Systems, Hitchin, UK) to determine gs, A, E, water use

efficiency (WUE = A/E), and intercellular CO2 concentration (Ci).

These measurements were taken from the mid-section of leaf No. 4,

considered a fully expanded, healthy adult leaf. Experimental

conditions included: ambient CO2 concentration (Ca) of 415 ± 10

μmol mol−1, 21% O2, temperature of 28 ± 1 °C, a photon flux

density (PFD) of 1000 μmol m-2 s−1 to saturate photosynthesis, and

a leaf-air water vapor gradient (DPV) of 1.0–1.5 kPa.

Dried shoot and root biomass
Plants harvested at 90 DAS were rinsed with tap water and

sequentially immersed in hydrochloric acid (3%), distilled water,

magnesium sulfate (0.001 mol L⁻¹), and deionized water. The plants
were then sectioned into shoot (leaves and stems) and roots. Each

section was placed into labeled kraft paper sleeves and dried in an

oven (Memmert, GmbH 450, Germany) at 65 °C for 72 hours. The

dry biomass was weighed on an analytical balance (A&DWeighing,

model HR200, Japan).

Macronutrient concentration in the shoot
N concentration was determined using the Kjeldahl method

(KjeltecTM 8400 TecatorTM Line Foss, Jinan, China) (Carrillo

Zenteno et al., 2019). K, Ca, and Mg concentrations were

analyzed using an atomic absorption spectrophotometer (AA-

6800, Kyoto, Japan). S and P concentrations were quantified via

the colorimetric method (Spercord 210 Plus, Jena, Germany)

(Remache et al., 2017).

Determination of Cd in tissues
Dried plant tissues were ground using a Willey-type mill (IKA,

model A11 basic, USA). To prevent contamination, the mill was

cleaned with absorbent towels, diluted aqua regia (10%), and

deionized water before each use. Cd was extracted through nitric-

perchloric acid mineralization (8 mL HNO3 and 2 mL HClO4;;

Carrillo, 2003). Cd concentrations were measured with an atomic

absorption spectrophotometer (Perkin Elmer, model AAnalyst 800,

Japan) equipped with a graphite furnace, at a wavelength (l) of

228.8 nm.

Cd content in root and shoots
The Cd content in roots and shoots was calculated using the

following formula:

Cd content (mg) = Biomass (g) x Cd mg g−1
Cd extraction capacity
The efficiencies of Cd absorption (1) and translocation (2) were

determined using equations described by Wang et al. (2007):
Fron
1. Absorption efficiency (mg g-1) = Total Cd content in the plant
Root dry mass .

2. Translocation efficiency = Cd content in stem and leaves
Cd content in roots .
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Statistical analysis

Data were tested for normality and homogeneity of variance

using the Shapiro-Wilk and Bartlett tests, respectively. An analysis

of variance (ANOVA) followed by a Tukey’s test was conducted at a

0.05 significance level. Statistical analyses were performed using

Minitab version 19, and graphs were created using SigmaPlot 12

(Systat Software, San Jose, CA, USA).
Results

There were no significant differences in soil pH and EC among

the genotypes. However, all genotypes exhibited strongly acidic soil

pH values (≤5.5) and high EC levels (6 dS m⁻¹) (Figure 1).
Chlorophyll concentrations, measured at 40, 55, and 80 DAS,

showed no statistically significant differences between genotypes

(Figure 2). Nevertheless, a significant reduction in SPAD units,

amounting to 31.5%, was observed at 80 DAS.ç

In terms of leaf gas exchange, no significant differences were

found between genotypes at 40 and 80 DAS, except for

transpiration, which was statistically significant at 80 DAS. The
FIGURE 1

pH (A) and EC (B) values of the soil in which the seven cocoa
genotypes were grown under greenhouse conditions. The vertical
bars represent the mean ± SE (n = 6). Different letters above the
bars indicate significant differences between treatments.
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EET-103 genotype showed the highest E at 0.39 mmol m⁻² s⁻¹
(Figure 3). At 80 DAS, a reduction of 94% in A, 37% in E, 45% in gs,

and 71% in WUE was observed, while Ci increased by 61%.

There were no significant differences between cocoa genotypes

in the production of dry biomass in shoots and roots (Figure 4).

However, for aerial dry matter, IMC-67 produced 5%more biomass

than CCN-51, while the clones POUND-12, EET-103, EET-399,

EET-95, and EET-400 produced 36%, 27%, 22%, 25%, and 19% less

biomass than CCN-51, respectively.

Similarly, in root dry weight, IMC-67 exhibited 5% higher biomass

compared to CCN-51. In contrast, the POUND-12 and EET-400

genotypes produced 29% less biomass than CCN-51, followed by

EET-103 (14% less), EET-399 (10% less), and EET-95 (5% less).

Macronutrient concentrations in the shoot (Figure 5) showed

statistically significant differences only for N, P, and S. Among the

genotypes, the highest concentrations were observed in CCN-51 for

N (6.1 dag kg⁻¹), EET-399 for P (0.54 dag kg⁻¹), and IMC-67 for S

(0.61 dag kg⁻¹).
Cocoa genotypes did not exhibit significant differences in Cd

absorption and translocation efficiencies or Cd content in shoots,

except for root Cd accumulation, which was statistically significant

(Figure 6). Among the genotypes, EET-95, POUND-12, and EET-

399 absorbed 26%, 24%, and 22% less Cd, respectively, compared to

CCN-51, the control and the genotype with the highest Cd

absorption (Figure 6A). Cadmium uptake efficiency ranged from
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68.7 to 79.7 μg Cd g-1 of dry root matter, with the lowest value

found in EET-95 and the highest average in CCN-51, respectively.

In Cd translocation, values ranged from 5.8 to 9.5, with the

lowest average obtained in EET-399 and the highest in CCN-51,

respectively. In terms of Cd translocation efficiency from roots to

shoots, EET-399, EET-103, and EET-95 exhibited 39%, 23%, and

17% lower translocation rates, respectively, than CCN-51

(Figure 6B) . Addi t ional ly , the POUND-12 genotype

bioaccumulated 49% less Cd in the shoot compared to CCN-51,

followed by EET-399 (39%) and EET-400 (32%).
Discussion

The study revealed no significant differences among the

evaluated cocoa genotypes in physiological variables or biomass

distribution, thereby rejecting Hypothesis 1. In contrast, significant

genetic differences were evident in Cd absorption efficiency,

translocation, and content, supporting Hypothesis 2. Notably,

POUND-12 genotype producing the least biomass and exhibited

reduced Cd accumulation in shoots. This genetic effect in Cd

bioaccumulation aligns with findings by Galvis et al. (2023) and

Reyes-Pérez et al. (2023a), who identified similar trends in

genotypes with lower biomass production, such as PA-46 and

EET-103, respectively.
FIGURE 2

Chlorophyll concentration was evaluated in the seven cocoa genotypes used as standards at 40, 55, and 80 DAS. The vertical bars represent the
mean ± SE (n = 6). Different letters above the bars indicate significant differences between treatments, as determined by the Tukey test (p < 0.05).
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At the end of the experiment, chlorophyll reduction correlated

with decreased leaf gas exchange. This was likely due to salt stress

induced by high soil salinity (6 dS m⁻¹). A similar response was
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reported by Reyes-Pérez et al. (2023a) under high EC conditions (5

dS m⁻¹), which led to reduced chlorophyll (90 DAS), and gas

exchange (80 DAS), along with reddish-brown leaf margins. This

leaf margin color was also observed in our study. Comparable

reductions in A, gs, E have also been observed in juvenile cocoa

plants under water stress and Cd stress (Ortiz-Álvarez et al., 2023;

Pereira de Araújo et al., 2017).

Among physiological parameters, only E at 80 DAS showed

significant genetic variation, with EET-103 exhibiting the highest

transpiration rate (0.39 mmol m⁻² s⁻¹). In fact, most cocoa

genotypes showed low E due to small gs, probably in response to

the salt stress experienced by the cocoa seedlings. Higher

transpiration values were reported in cocoa genotypes by Reyes-

Pérez et al. (2023a). The physiological performance of the genotypes

that were evaluated in this study is not documented in the literature

under the same conditions. However, the greater transpiration in

IMC-67 observed by Ortiz-Álvarez et al. (2023) under water stress,

linked to higher Cd translocation, was not corroborated under the

present study. The physiological traits of 18 cocoa genotypes under

irrigation effects, found higher gas exchange performance (A, gs and

E) in genotypes such as CP-41, CP-43, and CCN-51 (Araújo

et al., 2024).
FIGURE 4

Production of dry biomass in shoots (A) and roots (B) of seven
cocoa genotypes grown under greenhouse conditions. The vertical
bars represent the mean ± SE (n = 6). Different letters above the
bars indicate significant differences between treatments based on
Tukey’s test (p < 0.05).
FIGURE 3

Photosynthesis rate (A), transpiration (B), stomatal conductance (C),
intercellular CO2 concentration (D) and water use efficiency (E)
measured in the leaves of seven cocoa genotypes under
greenhouse conditions at 40 DAS (dark green bars) and 80 DAS
(bright green bars). The vertical bars represent the mean ± SE (n =
6). Different letters above the bars indicate significant differences
between treatments, as determined by the Tukey test (p < 0.05).
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Dry biomass is a key indicator of plant growth, directly linked to

water content and the synthesis of primary metabolites (Huang

et al., 2020). In this study, the IMC-67 and CCN-51 genotypes

demonstrated the highest accumulation of dry biomass in both

shoot and root compared to the other genotypes evaluated (EET-95,

EET-399, EET-103, EET-400, and POUND-12). These findings are

consistent with those reported by Reyes-Pérez et al. (2023a, 2023b),

who observed that CCN-51 produces greater biomass than

domestic cocoa genotypes like EET-103 and EET-801.

However, contrasting results were noted in the work of Borjas-

Ventura et al. (2022), where POUND-7 outperformed CCN-51 in

shoot biomass production. This variation highlights the influence of

environmental adaptability and genetic plasticity on biomass

outcomes. Studies by Héctor Ardisana et al (2018) and Palacio-

López and Rodrıǵuez-López (2007) suggest that biomass variation

among genotypes is often driven by their ability to adapt to specific

climatic conditions, which, in turn, affects the expression of

phenotypic traits such as leaf plasticity.

Although this study was conducted with juvenile plants, the Cd

content in the shoot may be related to the findings of Lewis et al.
Frontiers in Agronomy 07
(2018), who observed a 2:1 relationship between Cd concentrations

in the leaves (2.15 mg kg−1) and beans with controls (1 mg kg−1) in

adult plants of 100 cocoa genotypes from eight genetic groups. This

relationship was supported by a significant correlation coefficient (r

= 0.61; P < 0.05). Furcal-Beriguete and Torres-Morales (2020)

reported a similar pattern, with Cd concentrations of 3.44 mg

kg−1 in leaves and 2.31 mg kg−1 in beans, showing a correlation

coefficient of r = 0.90. Therefore, regardless of the plant’s age,

genetic load, or edaphoclimatic conditions, it is considered that the

beans accumulate less than 50% of the Cd found in the leaves.

Ortiz-Álvarez et al. (2023) found that increases in dry matter,

biomass output, leaf area or proliferation, and Cd bioaccumulation

in terms of content are all linked to Cd accumulation under

greenhouse conditions. These authors also showed that when

transpiration increases, there is greater Cd accumulation because

sap flow carries more Cd to the leaves and shoot (Sterckeman,

2025), but it is diluted in terms of concentration (Ortiz-Álvarez

et al., 2023). These explanations are reinforced by the results

reported in POUND-12, IMC-67, and CCN-51. The first

genotype had lower dry matter and Cd content, and the other
FIGURE 5

Concentrations of nitrogen (A), phosphorus (B), potassium (C), sulfur (D), magnesium (E), and calcium (F) in the stems of seven cocoa genotypes.
The vertical bars represent the mean ± SE (n = 6). Different letters above the bars indicate significant differences between treatments after the Tukey
test (p < 0.05).
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two clones were superior in terms of shoot dry matter production

and Cd bioaccumulation. In cacao seedlings, was found in CCN-51

had a greater capacity to produce dry matter and absorb nutrients

and Cd (Arias-Contreras et al., 2024).

In the present study, there were differences in root Cd

bioaccumulation, with the highest accumulation found in the roots

of EET-399, IMC-67, and CCN-51 and the lowest allocation in

POUND-12. Similarly, significant variations in Cd bioaccumulation

were observed in the roots of young plants cultivated in greenhouses;

the PA-121 x IMC-67 progeny exhibited the highest accumulation

(Fernandez-Paz et al., 2021). Growing in a greenhouse with soil Cd

concentrations of 12 mg kg−1, PA-121 was shown to have the

maximum Cd allocation in root tissues at 30 and 60 DDS, in

comparison to the genotypes ETT-61, EET-62, IMC-60, IMC-67,

PA-150, PA-46, SCC-85, and SCC-86 (Galvis et al., 2023).

All cocoa genotypes had Cd translocation > 1, but EET-399,

compared to the other clones (EET-103, IMC-67, EET-95, CCN-51,

EET-400, and POUND-12) had the lowest translocation. This result

is consistent with the higher Cd accumulation in the roots of this

genotype, showing that it restricts Cd translocation to the aerial

parts by capturing it in the root system. Reyes-Perez et al. (2023a)
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also detected a similar phenomenon: the EET-103 clone had higher

Cd accumulation in the roots and lower Cd translocation to the

shoots, compared to CCN-51, which obtained the opposite

response. Also, were found a genotypic variations in Cd

accumulation in the roots of five fine aroma cocoa genotypes,

detecting the highest amounts of Cd (156.75 mg kg⁻¹) and lower

translocation to the leaves in the INDES-38 genotype (Meléndez-

Mori et al., 2023).

It was also observed that the Cd content in the shoot was nine

times higher than that in the root. Similarly, Castro et al. (2015)

found the highest accumulations of Cd in the offspring of two cocoa

progenies (CCN-10 x SCA-6 and Catongo x Catongo) at the

juvenile stage. In contrast, Oliva et al. (2020) reported that in

mature trees, the leaves accumulate 123 times more Cd than the

roots. However, other studies involving juvenile plants (Calva

Jiménez et al., 2022) and adult trees (Llatance et al., 2018) found

that the roots accumulated 4.84 and 3.36 times more Cd than the

leaves, respectively. These findings demonstrate that Cd

accumulation in cocoa plants varies between organs, influenced

by age, genotype, and environmental conditions that affect Cd

migration from one organ to another.
FIGURE 6

Absorption (A) and translocation of Cd (B), Cd contents in the shoot (C) and root (D), of seven cocoa genotypes grown under greenhouse
conditions. The vertical bars represent the mean ± SE (n = 6). Different letters above the bars indicate significant differences between treatments
after the Tukey test (p < 0.05).
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Of the seven genotypes studied, CCN-51 exhibited the highest

absorption and accumulation of Cd in the offspring. In Ecuador,

this genotype is widely used as a rootstock, covering 75% of the

planted area (Latin American Center for Rural Development

(RISMIP), 2023). These findings support the results of Reyes-

Pérez et al. (2023a), who reported that the EET-103 genotype

accumulates less Cd than CCN-51. Additionally, due to its

resistance to machete sickness, EET-103 was recommended as

a standard.

The POUND-12 genotype exhibited the lowest Cd content in both

shoot and root. Due to its resistance toC. cacaofunesta, it is proposed as

a key genetic rootstock strategy to mitigate Cd in soils with high metal

concentrations. Additionally, EET-399 and EET-400 are viable

alternatives, as they demonstrate low Cd accumulation, resistance to

C. cacaofunesta (Suárez Capello et al., 1993), and, according to Jaimez

et al. (2021), tolerance to water stress.

In contrast, Arévalo-Hernández et al. (2021) in Peru reported

results that differ from the present study, finding that CCN-51, with a

Cd concentration of 1.56 mg kg⁻¹, accumulated less Cd in the shoots

compared to EET-400 (18.56 mg kg⁻¹). Despite its susceptibility to root
diseases, CCN-51 was included in a list of 11 genotypes recommended

as rootstocks for Cd mitigation, alongside AYP-22, PAS-105, UGU-

126, ICT-1026, ICT-1087, ICT-1189, ICT-1292, PH-17, ICS-39, and

TSH-565. Furthermore, Borjas-Ventura et al. (2022) found in the

Central Jungle of Peru that CCN-51 bioaccumulates more Cd in the

shoots compared to genotypes like ICS-95, ICS-60, VRAE-99, and

POUND-7. These latter genotypes were recommended as standard due

to their low Cd accumulation and partial resistance to Verticillium

(Braga and Silva, 1989; End et al., 2021).

The highest N concentration in the shoot was detected in CCN-51,

consistent with the findings of Reyes-Pérez et al. (2023a), who also

reported that CCN-51 exhibited the highest N concentration in the

shoot compared to the EET-103 genotype. Similarly, under field

conditions, Carrillo et al. (2010) found that CCN-51 accumulated

more leaf N compared to national genotypes such as EET-95 and

EET-103.
Conclusions

Genetic variation was observed in the extraction and accumulation

capacity of Cd in cocoa rootstocks. These results suggest that genotypes

with limited Cd absorption could serve as an agronomic strategy for

producing cocoa beans in soils contaminated with this metal. In leaf gas

exchange, significant differences were found only in transpiration at 80

DAS, with the EET-103 genotype showing the highest average at 0.39

mmol m⁻² s⁻¹. Overall, at 80 DAS, a reduction in A, E, gs, and WUE

was observed, whileCi increased, which were associated to a decrease in

chlorophyll content. In this study, the CCN-51 genotype exhibited

greater Cd absorption and bioaccumulation in the shoot, while also

showing the highest leaf N concentration. On the other hand, EET-95

showed lower Cd absorption. The POUND-12, EET-400, and EET-399

genotypes, with their low Cd extraction and accumulation capacity and

resistance to C. cacaofunesta, are proposed as suitable candidates for

use as cocoa rootstocks and for introduction into genetic improvement
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programs aimed at developing Cd-excluding genotypes. The primary

research constraint, however, was the use of cocoa seedlings with

limited root volume and a brief exposure to Cd. This could have an

impact on the results when extending these findings to mature, fruitful

plants in the field. Thus, we think thatmore research in this area in field

settings on plantations is very important.
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