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A global synthesis of genotypic
variation in crop greenhouse
gas emissions under variable
nitrogen fertilisation
Conor Walthall 1*, Nicholas T. Girkin2, Zoltan Kevei3

and Alice S. A. Johnston1*

1Cranfield Environment Centre, Cranfield University, Bedford, United Kingdom, 2School of
Biosciences, University of Nottingham, Loughborough, United Kingdom, 3Centre for Soil, Agrifood
and Biosciences, Cranfield University, Bedford, United Kingdom
Targeted crop selection offers a promising potential pathway to reduce

greenhouse gas (GHG) emissions from global croplands. Yet, the influence of

crop genotypes on GHG emissions remains poorly studied, limiting our ability to

understand its global potential. To address this challenge, we conducted a global

synthesis of GHG and crop yield data from 42 field experiments across 180

genotypes of major cereal (predominantly rice) and oilseed crops (soybeans and

canola) and nitrogen (N) fertilisation rates (40kg ha-1 to 390kg ha-1) (n =390). To

test the influence of genotype, we removed measurements from genotypes with

fewer than three independent replicates (n = 97) and apply linear mixed-effects

models to control for study and latitude effects. Across a range of environmental

and experimental conditions, we analysed the influence of N application rate on

crop nitrous oxide (N2O) and methane (CH4) emissions, alongside yield. We

found significant differences in N2O-N cumulative fluxes between crop types and

mean annual precipitation ranges. When expressed per unit of crop yield, N2O-N

and CH4-C cumulative fluxes revealed a significant difference between N

application rate groups (a = < 50, b = 50-100, c = 100-150, d = 150-200, e =

200-250, f = 250-300, g = > 300), with a positive yield response to N fertilisation.

While yield-scaled N2O-N cumulative fluxes declined with N application rate,

yield-scaled CH4-C cumulative fluxes increased; however, all CH4

measurements were derived from rice systems. Regression relationships

between cumulative N2O, CH4, crop yield and N application rate were

consistent with previous global syntheses, showing that N2O and CH4

emissions increased exponentially with N application, while crop yield
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fagro.2025.1669002/full
https://www.frontiersin.org/articles/10.3389/fagro.2025.1669002/full
https://www.frontiersin.org/articles/10.3389/fagro.2025.1669002/full
https://www.frontiersin.org/articles/10.3389/fagro.2025.1669002/full
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fagro.2025.1669002&domain=pdf&date_stamp=2025-09-24
mailto:conor.walthall@cranfield.ac.uk
mailto:a.s.johnston@cranfield.ac.uk
https://doi.org/10.3389/fagro.2025.1669002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/agronomy#editorial-board
https://www.frontiersin.org/journals/agronomy#editorial-board
https://doi.org/10.3389/fagro.2025.1669002
https://www.frontiersin.org/journals/agronomy


Walthall et al. 10.3389/fagro.2025.1669002

Frontiers in Agronomy
exhibited a quadratic response. Our results indicate that N application rate was the

primary driver of N2O emissions and crop yield, while genotypic differences

significantly influenced CH4 emissions. These findings underscore the

importance of integrating genotype selection with nitrogen management to

improve GHG mitigation while optimising crop productivity.
KEYWORDS

nitrous oxide, methane, climate changemitigation, nitrogen fertilisation, greenhouse gas
emissions, genotypic variation
Introduction

Agricultural intensification to meet global food demand has

made farming one of the largest contributors to anthropogenic

greenhouse gas (GHG) emissions (Lynch et al., 2021; Tilman et al.,

2011), contributing approximately 58% of global non-carbon

dioxide (CO2) GHG emissions. GHGs such as nitrous oxide

(N2O) and methane (CH4) further have global warming

potentials 273 and 81 times greater than CO2, respectively over a

20-year time period (Beach et al., 2008; IPCC, 2023). Agricultural

GHG emissions exacerbate climate-related environmental

problems, including biodiversity loss, eutrophication and

reductions in soil carbon stocks (Johnson et al., 2014; Vitousek

et al., 1997). Several cost-effective and sustainable agricultural

mitigation opportunities and practices are accessible for

agriculture compared to other sectors (Lai et al., 2022; Smith,

2012; Vergé et al., 2007; Zutshi and Creed, 2015).

Nitrogen (N) fertilisation remains a cornerstone of yield

maximisation in modern cropping systems but is also a major

source of N2O emissions (Guo et al., 2022; Sun and Huang, 2012).

Projections suggest that N fertiliser use could triple by 2050

(Khampuang et al., 2021) and so there is an urgent need to

improve Nitrogen Use Efficiency (NUE) in crops to mitigate the

negative effects of N application (Zhang et al., 2015). Previous meta-

analyses have identified optimal N application rates for key global

crops such as wheat, rice, and maize in the range of 130 to 200 kg N

ha-¹, emphasising not only rate optimisation but also soil, climate,

and genotype selections as complementary mitigation strategies

(Guo et al., 2022). A promising strategy for reducing agricultural

GHG emissions is the selective breeding for crop genotypes that

exhibit higher NUE, enabling lower fertiliser inputs while

maintaining high yield (Shcherbak et al., 2014; Swarbreck et al.,

2019). Empirical studies have shown that crop genotypes can

significantly vary in their N2O and CH4 emissions due to

physiological and morphological characteristics such as

transpiration rate, xylem vessel diameter, and root architecture

(Borah and Baruah, 2016; Chen et al., 2021). Modern wheat

genotypes have demonstrated lower N2O emissions, potentially
02
due to physiologically more efficient N uptake rather than

observable shifts in plant morphology (Chen et al., 2021). Other

traits such as flag-leaf senescence and nitrogen accumulation at

anthesis have also been linked to NUE (Gaju et al., 2011).

Optimal N fertilisation management can play an important role

in NUE for oilseed rape genotypes (Berry et al., 2010). Whilst a large

portion of these studies show a significant difference in N2O and

CH4 emissions between genotypes, the resulting data and

conclusions are frequently limited due to a limited number of

genotypes used or low levels of replication (Chen et al., 2021;

Gogoi and Baruah, 2012). Many studies which observe GHG

emissions between different crop varieties investigate other factors

which may be affected by the crop variety such as water

management, further complicating direct comparisons (Ma et al.,

2012; Phungern et al., 2023; Vo et al., 2024).

Genotypic variation can influence soil nitrification and

denitrification by actively changing soil properties, such as N

availability (through N uptake) and pH change via root

exudation, respiration and NUE capacity (Philippot et al., 2013).

Different genotypes can also be more or less effective at transporting

N2O from the soil via root uptake and releasing into the atmosphere

(Baruah et al., 2010; Verma et al., 2006). The varieties with a n

optimal root architecture will have greater NUE and have a reduced

quantity of N2O byproduct. Plants can also produce N2O directly

via N assimilation (Smart and Bloom, 2001), and different

genotypes can have variable N2O production during nitrogen

assimilation (Oszvald et al., 2022). Genotypic variation can also

influence plant-mediated transfer of CH4 from the soil to the

atmosphere due to differences in aerenchyma, root exudates and

root oxygen (Aulakh et al., 2000; Girkin et al., 2018, 2020).

Optimisation of agricultural management practices through

selective breeding for crop genotypes with optimised NUE,

sustained crop yields and low GHG emissions would assist in

achieving a more sustainable agricultural produce (Ceccarelli and

Grando, 2020).

Various studies have reported genotypic variation in crop GHG

emissions, but their findings are limited by narrow genotypic

comparisons and inconsistent experimental replications, often
frontiersin.org
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focusing on a small number of genotypes within a single

environment (Gogoi and Baruah, 2012; Chen et al., 2021;

Phungern et al., 2023). To uncover the role of genotypic variation

in GHG emissions from crops, especially under variable N

fertilisation, a broader data synthesis is needed. While the concept

that genotype impacts on GHG emissions are context-dependent

and most pronounced at intermediate or suboptimal N rates is

established in the literature. Here we provide the first global

synthesis quantifying the magnitude and consistency of the

genotypic effect on GHG emissions across studies.
Methods

Literature search and data collection

We conducted a systematic literature review using the Scopus

database following PRISMA guidelines (Haddaway et al., 2022). We

searched for peer-reviewed journal articles published up to April

2024 using the following keywords: (wheat OR rice OR barley OR

oat OR linseed OR “oil seed rape” OR maize OR corn) AND

(genotype OR genotype OR variety OR varieties) AND (“nitrous

oxide”ORN2O) ANDNOT (livestock OR cattle). These crops were

selected due to their high importance for global food systems and

crop rotation systems. From 221 initially identified records, 42

studies met the inclusion criteria (Supplementary Figure 1),

reporting GHG emissions from at least two genotypes of the

same crop species under field conditions and provided sufficient

data to quantify cumulative N2O or CH4 fluxes. See Supplementary

Table 2 for a summary of the 42 studies included.
Frontiers in Agronomy 03
Many studies primary focus was not genotypic variation in

greenhouse gas emissions and instead their primary focus was on

specific management interventions. These interventions were not

considered due to insufficient information across studies. A

significant proportion of our compiled dataset came from studies

focused on rice systems (35 of 42 studies) and there was a limited

number of studies that included more than one crop

(Supplementary Table 2). Most sources also studied a limited

number of genotypes (< 3). This data sparsity limited our

genotype analysis as many genotypes across several studies would

be optimal for robust analyses. Many studies were conducted over

multiple years however, providing replication of genotypes

within studies.
Data extraction and standardisation

From each of the 42 studies identified, we extracted relevant

metadata and experimental data including: crop species, genotype

names, N fertiliser application rates, mean annual precipitation

(MAP, mm), mean annual temperature (MAT,°C), measurement

techniques, cumulative and daily GHG fluxes (N2O-N, CH4-C, and

CO2 where available), study duration, and crop yield (where

reported). Data were extracted directly from tables, text, figures

(via WebPlotDigitizer), or Supplementary Materials. Where

necessary, units were standardised to kg ha-¹ for cumulative

emissions. Cumulative N2O-N fluxes were derived by converting

N2O mass to nitrogen mass using a factor of 14/44.01, and CH4-C

fluxes were converted using 12/16 from CH4 mass to carbon mass

(IPCC, 2023). For cases where only cumulative N2O-N or CH4-C
FIGURE 1

Distribution of studies reporting crop genotypic variation effects on GHG emissions, compiled in this study, showing a bias towards Asia and rice
(crop type indicated by symbol colour).
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were reported, average daily fluxes were back-calculated based on

the reported measurement period. The compiled dataset included

391 data entries across 180 unique genotypes. Most data

entries were for rice (n=319), followed by wheat (n=27), maize

(n=20), canola (n=18) and soybean (n=3). Geographically, most

data entries were from studies conducted in China (n=171),

followed by Vietnam (n=80), India (n=75), Canada (n=18),

Indonesia (n=16), USA (n=12), Japan (n=11) and Brazil (n=4)

(Figure 1). Four data entries were removed as obvious outliers as

they were associated with atypical treatments (e.g. chemical nitrate

transport inhibitors) that distorted emission outcomes (Iqbal

et al., 2023).

Study locations were restricted, with 23 from China, 9 from

India, 3 from the USA, 3 from Japan and 1 from Vietnam, Brazil,

Canada and Indonesia (Figure 1). This sampling bias reflects the

high proportion of studies focusing on rice systems, as 90% of global

rice production is conducted within Asian countries, which make

up the majority of the results in our study (Fukagawa and Ziska,

2019). The majority of studies in our dataset used static chambers

for GHG measurements (n=41) and few studies employed

automated systems (n=1). Static chambers may underestimate

episodic fluxes due to limited temporal coverage.
Data analysis

All analyses were performed in R 4.2.2 (R Core Team, 2024).

Descriptive statistics and one-way ANOVAs were used to compare

N2O-N cumulative and CH4-C cumulative fluxes across crop type,

measurement method, chamber type, and N fertilisation, MAT and
Frontiers in Agronomy 04
MAP groups categorised using terciles to assess potential climatic

and management effects. One-way ANOVA’s and Tukey’s T-tests

for pairwise comparisons were used to assess the significance of

study factors on GHG emissions (p < 0.05). General linear models

were applied to test the form and significance of N application rate

on crop yield, N2O and CH4 emissions across all available

measurements in the compiled dataset. To test the influence of

genotype, measurements from genotypes with fewer than three

independent replicates were excluded to ensure model robustness,

resulting in 20 genotypes across 97 observations. To evaluate

whether the linear mixed-effects models (LMMs) presented in

Table 1 were constrained by dataset size due to the exclusion of

genotypes with fewer than three replicates, we tested additional

models. These included LMMs with genotypes having ≥2 replicates,

multilevel LMMs incorporating genotype as a random effect, and

meta-regressions using all available genotypes with constant

variance assumptions due to the absence of standard error data.

Model performance was assessed using marginal (R²m) and

conditional (R²c) R-squared values, with results reported in

Supplementary Table 1. The threshold of three replicates per

genotype was selected to reduce the risk of overfitting in mixed

models. We fitted LMMs using the “lme4” package, with crop

genotype and N application rate as fixed effects, and Latitude and

Study as random intercepts to account for geographical and

experimental heterogeneity. Model selection was based on an

increased goodness of fit of the LMMs to the data according to

the Akaike Information Criterion (AIC) where DAIC was < -2 for

each additional degree of freedom.
Results

Environmental and experimental drivers of
N2O emissions

Note that flux data were log-transformed prior to analysis to

normalize residuals and stabilize variance. Back-transformed values

approximate relative changes (fold differences) rather than absolute

changes, which should be considered during interpretation. N2O-N

cumulative fluxes varied significantly among the crops (Figure 2A).

Rice exhibited more variable fluxes, while soybean showed the

lowest, and maize and wheat exhibited the highest fluxes,

respectively. N2O-N cumulative fluxes measured in field

conditions were significantly higher than those from pot

experiments (Figure 2B), indicating that pot studies may

underestimate field-scale N2O emissions, possibly due to

constrained root growth in pots or altered microclimate effects.

There was no statistically significant difference in N2O-N

cumulative fluxes between open-system and closed-system

chambers, suggesting that chamber design does not bias overall

emission estimates in our dataset (Figure 2C). No significant

difference was observed across MAT categories (<10°C, 10–20°C,

>20°C), indicating that temperature alone may not be a strong

forecaster of N2O-N cumulative fluxes (Figure 2D). However, N2O-

N cumulative fluxes were significantly influenced by MAP groups,
TABLE 1 Summary of linear mixed effect model results, testing the
influence of N application rate and genotype on N2O emissions, CH4

emissions and crop yield as fixed effects.

N2O emissions (kg ha-1)
(N=47)

Df R2m R2c AIC DAICdf

Null 4 0 0.654 61.61 0

+ N Application Rate 5 0.720 0.807 33.93 -27.69

+ Genotype 18 0.827 0.890 52.54 NS

CH4 emissions (kg ha-1) (N=57)

Null 4 0 0.565 524.07 0

+ N Application Rate 5 0.095 0.459 526.95 NS

+ Genotype 19 0.788 0.809 390.51 -8.35

Crop Yield (N=49)

Null 4 0 0.442 826.06 0

+ N Application Rate 5 0.030 0.476 822.91 -3.16*

+ Genotype 16 0.703 0.725 646.05 -16.08
Latitude and study were used as random effects. The final models for all variables are
presented in Supplementary Table 3. NS indicates that the specific term was not selected
(DAICdf >-2). *indicates that the specific term is no longer significant when the second fixed
effect was accounted for.
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particularly between moderate precipitation conditions (500–1000

mm) compared to dry regions (<500 mm) and wetter regions

(>1000 mm) (Figure 2E), suggesting that moderate moisture

levels may support microbial activity leading to greater N2O

emissions. Surprisingly, no significant difference was observed

among N application rate groups (<100, 100–200, >200 kg ha-¹),

suggesting that the relationship between N input and emissions may

be nonlinear or masked by crop-specific or environmental

interactions (Figure 2F).
Yield and emissions efficiency relative to
nitrogen application rates

Crop yield and yield-adjusted GHG emissions were explored

across different N application rate groups (Figure 3). Crop yield
Frontiers in Agronomy 05
enhanced significantly with increasing nitrogen fertilisation,

although no increase was observed between 100–200 and >200 kg

N ha-¹ (Figure 3A). The <100 kg N ha-¹ group produced the lowest

yields, suggesting a yield-limiting nitrogen deficit in many low-

input trials. No significant difference was observed for CH4-C

cumulative fluxes across N application rates (Figure 3B), similar

to N2O-N cumulative flux responses (Figure 2F). Yield-scaled N2O

fluxes (Figure 3C) and CH4 emissions (Figure 3D), however, did

show a significant response to N application rates. Yield-scaled N2O

emissions decreased significantly with increasing N fertiliser input

(Figure 3B). The <100 kg N ha-¹ group exhibited the highest

emissions per unit of yield compared to sharply lower values in

the 100–200 and >200 kg N ha-¹ groups. Conversely, yield-scaled

CH4 emissions increased significantly with N application rate,

although no measurements were available for the low (<100 kg

ha-1) N application group (Figure 3D).
FIGURE 2

Boxplots showing variation in log-transformed cumulative N2O-N fluxes across (A) crop types, (B) experimental setting (field vs. pot), (C) chamber
type (closed system chamber (CSC) vs. open system chamber (OSC)), (D) mean annual temperature (MAT), (E) mean annual precipitation (MAP), and
(F) nitrogen fertiliser application rate. Anova and t-test p values indicate significance levels between groups, and boxes represent interquartile ranges,
horizontal lines indicate medians and symbols denote individual data points. Flux data was log-transformed to normalise residuals and stabilise
variance.
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Relationships between crop yield, GHG
emissions and nitrogen application

Regression analyses examining the relationships between N

fertilisation rate with N2O emissions, crop yield, and CH4

emissions revealed different N responses (Figure 4). N2O

emissions increased exponentially with nitrogen application rate,

showing a strong nonlinear relationship (Figure 4A, adjusted

R²=0.284, p < 0.0001). Crop yield exhibited a curvilinear response

to nitrogen input (Figure 4B, R²=0.158, p < 0.0001), peaking around

180–200 kg N ha-¹. Below this threshold, yields increased steeply

with added N, while beyond this threshold yield gains diminished or

plateaued. CH4 emissions also increased with nitrogen application,
Frontiers in Agronomy 06
though the relationship was weaker than for N2O and yield

(Figure 4C, adjusted R²=0.159, p < 0.0001).
Influence of N application and genotypic
variation on GHG emissions and crop yield

Twenty genotypes, with at least three replicates each, were

recorded in our dataset (N=97). We applied LMMs to the filtered

genotype dataset, with latitude and study as random effects, and

tested null models against models with N application rate and

genotype as fixed effects (Table 1). When this dataset was further

filtered to include available measurements for N2O emissions and
FIGURE 3

Boxplots showing (A) log-transformed crop yield (kg ha-¹), (B) cumulative CH4-C emissions, (C) cumulative N2O-N emissions per unit yield, and (D)
cumulative CH4-C emissions per unit yield, across nitrogen application rate groups. Anova p values indicate significance levels between groups, and
boxes represent interquartile ranges, horizontal lines indicate medians and symbols denote individual data points. Flux data was log-transformed to
normalise residuals and stabilise variance.
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crop yield with N application rate measurements, n=47, n=57 and

n=49 measurements were available to fit the N2O, CH4 and crop

yield models, respectively. Selected models, based on goodness of fit

and model parsimony, included N application rate for N2O and

crop yield, and genotype effect for CH4 and crop yield (Table 1). All

models showed good explanatory power of the fixed effects

(R²m=0.720, R²m=0.788, R²m=0.703). However, while N

application rate explained much of the variation in N2O

emissions (DAICdf=–27.69), genotype variation had a much

greater explanatory power for CH4 (DAICdf=–8.35) and crop

yields (DAICdf=–16.08, Table 1).

Observed and predicted values from the best-fitting LMMs for

N2O emissions and crop yield are compared in Figure 5.

Comparison of the LMMs in Table 1 with alternative models,

including those with genotypes having ≥2 replicates, multilevel

LMMs with genotype as a random effect, and meta-regressions,
Frontiers in Agronomy 07
did not indicate a consistent improvement in explanatory power for

N2O emissions (Supplementary Table 1). For N2O, the original

model with ≥3 replicates yielded the highest conditional R-squared,

suggesting robust capture of variance by fixed and random effects.

In contrast, the explanatory power for CH4 flux improved with

dataset size, with the LMM including genotypes with ≥2 replicates

achieving higher marginal R-squared, indicating a stronger

influence of genotype when more data were included. For crop

yield, the original models maintained high explanatory power, with

minimal gains from alternative approaches. Meta-regressions,

limited by constant variance assumptions, provided limited

additional insight due to convergence issues for N2O and yield.

The observed clustering of many genotypes near the x-axis and

below the 1:1 line for N2O predictions (Figure 5A) suggests the

model tended to underpredict higher N2O values, particularly in

genotypes or contexts with elevated emissions. In comparison,
FIGURE 4

Regression relationships between nitrogen application rate (kg ha-¹) and: (A) N2O emissions, (B) crop yield (t ha-¹), and (C) CH4 emissions. Each
panel shows fitted regressions with 95% confidence intervals (grey shading). Statistical parameters from the model fits are shown in each panel.
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predictions for CH4 (Figure 5B) and crop yield (Figure 5C) were

more tightly aligned along the 1:1 line and together with Table 1

suggests that genotypic differences meaningfully capture variability

in both response variables.
Discussion

Our global synthesis highlights the complexity of factors

influencing N2O and CH4 emissions from widely grown cereal

and oilseed cropping systems, particularly under variable N

fertilisation regimes. While environmental variables such as MAP

and experimental setting explained a substantial portion of the

variability in cumulative N2O fluxes (Figure 2), N application rate

effects were more apparent when fluxes were scaled by crop yield
Frontiers in Agronomy 08
(Figure 3). Across crops, N2O emissions increased exponentially

with N fertiliser rate and this trend is consistent with previous meta-

analysis studies examining the response of N2O emissions to N

fertiliser rate (Guo et al., 2022; Shcherbak et al., 2014). Crop yield

followed a saturation curve, and CH4 emissions showed a weaker

but significant positive trend with increasing nitrogen inputs

(Figure 4). Given the prevalence of rice systems in our dataset,

however, these patterns likely reflect conditions typical of flooded

paddy cultivation. Across genotypes with sufficient replication, we

found that while genotype has a pronounced effect on CH4

emissions and crop yield, the role of genotypes in explaining N2O

emissions is comparatively limited, with emissions primarily driven

by fertiliser rate and contextual factors (Figure 5) (Hansen et al.,

2019). Genotype had a strong effect on CH4 but not N2O, likely

because CH4 flux is strongly plant-mediated via root aerenchyma
FIGURE 5

Predicted vs observed (A) N2O emissions, (B) CH4 emissions and (C) crop yield for the best fitting LMMs identified in Table 1. Dashed lines represent
a perfect 1:1 fit, and marginal and conditional R2 values are shown. Random effects in the models were latitude and study for all variables, with (A) N
application rate, (B) N application rate and genotype and (C) genotype selected as fixed effects. Symbol colour represents different genotypes.
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development, radial oxygen loss, and exudates, which vary

markedly between genotypes. By contrast, N2O emissions are

more tightly coupled to soil microbial processes (nitrification/

denitrification) and strongly masked by environmental drivers

(moisture, N input), thereby obscuring genotype effects. Research

shows stronger genotype effects on N2O only under controlled or

single-site studies, suggesting environment × genotype interactions

are key (Chen et al., 2021; Peyrard et al., 2016). These biases in our

dataset (overrepresentation of rice and temperate regions) likely

amplify genotype effects on CH4 in flooded systems while limiting

detection of N2O effects in uplands. Our findings reinforce the need

for mitigation strategies in global croplands that integrate genetic,

environmental, and management dimensions, and the need to

address several research gaps for more comprehensive analyses

of genotypic effects on crop GHG emissions, including an

improved understanding of the underlying physiological and

microbial mechanisms.

Several plausible mechanisms may underlie the influence of

crop genotype on N2O emissions (Baggs et al., 2023). Genotypic

differences in root morphology and architecture can influence N

uptake, soil aeration, and microbial habitat conditions, thereby

regulating the balance between nitrification and denitrification.

Root exudates and rhizosphere pH modification may also alter

microbial community composition and activity, further

contributing to variation in fluxes (de Klein and Di, 2018).

Differences in nitrogen assimilation efficiency and senescence

traits may additionally affect the timing and magnitude of N2O

release (Wingler and Soualiou, 2025). Future research should

investigate these mechanisms in interdisciplinary studies

combining plant physiology and soil microbial ecology (Philippot

et al., 2009).
Environmental and experimental context
effects

Cumulative N2O emissions varied widely across crop types and

experimental settings (Figure 2), with rice exhibiting lower

emissions than maize or wheat, consistent with differences in

aeration, soil moisture, and denitrification potential between

flooded and upland systems. In contrast to rice systems, oilseed

studies in our dataset reported either neutral or slightly positive

CH4 fluxes. This is consistent with evidence that nitrogen

fertilisation can suppress methane oxidation, thereby reducing the

soil sink capacity (Sun et al., 2016). Such dynamics highlight the

need for broader research beyond rice, particularly in upland

systems where methane oxidation plays a larger role in net fluxes.

The absence of a clear temperature effect but significant differences

across precipitation categories suggests that water availability may

be a more direct driver of microbial N2O production than

temperature in these systems, which could be further influenced

by approximately 80% of our dataset consisting of genotypes grown

in flooded rice paddies. Prior studies have suggested that soil

moisture is a key driver of N2O production predominantly

through control of nitrification and denitrification (Butterbach-
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Bahl et al., 2013; C. Wang et al., 2021), however these studies have

also emphasised how temperature influences N2O production.

Additionally, the higher emissions observed under field

conditions compared to pot studies should be considered when

pot trial datasets are used to estimate field-scale GHG dynamics.

Interestingly, differences in N2O-N emissions across N

application groups were not statistically significant (Figure 2F),

but more significant relationships were detected by weighting fluxes

by crop yield (Figure 3). Regression models demonstrate a non-

linear, exponential increase in N2O with increasing N input

(Figure 4A), a finding that aligns with prior meta-analyses (Guo

et al., 2022; Shcherbak et al., 2014). This non-linearity is often

amplified under wet soil conditions where denitrification

dominates, leading to higher N2O fluxes (Girkin and Cooper,

2022; Stehfest and Bouwman, 2006). Such environmental

modulation may also obscure genotype-level effects, suggesting

that genotyped-based mitigation of GHG emissions will be most

effective when combined with optimised N management strategies.
Trade-offs between yield and GHG
emissions

Crop yield increased with nitrogen input as expected

(Figure 3A), but diminishing returns were evident beyond ~200

kg N ha-¹ (Figure 4B), consistent with known saturation effects

(Singh, 2024; Biswas and Ma, 2016; Sun et al., 2020). Importantly,

emissions per unit yield, an indicator of NUE, declined significantly

with moderate N inputs (Figures 3C, D), suggesting an emissions-

efficiency threshold in the 100–200 kg N ha-¹ range. This result

supports repeated calls to optimise, rather than maximise, N

application rates to balance productivity with environmental

sustainability (McLellan et al., 2018).

A disproportionate acceleration of N2O emissions as N fertiliser

rate exceeded crop uptake capacity was observed (Figure 4A) and

this was likely due to increased nitrification and denitrification

activity as the excess N fertiliser acts as a substrate for these

processes (Long et al., 2021; Ma et al., 2023). A similar response

of CH4 emissions suggests nitrogen-induced shifts in soil redox

conditions or crop-mediated CH4 dynamics, particularly in

anaerobic cropping systems like rice (Figure 4C). The curvilinear

response of crop yield to N application rate in Figure 4B reflects

diminishing returns at high N inputs and indicate over-fertilisation

in some systems, a finding which is consistent with what has already

been described previously (Hu et al., 2022; Song et al., 2022).
Genotypic effects on GHG emissions and
yield

Our LMMs revealed contrasting roles of species genotypes in

explaining N2O emissions, CH4 emissions and crop yield. For N2O

emissions, inclusion of genotype effects in the model did not

significantly improve fit (DAIC=-18.6), and explained variance was

largely captured by nitrogen input and study-level random effects
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(Figure 5A). This suggests that genotype might influence N2O

emissions, however, those effects are obscured by environmental

variability and methodological heterogeneity across the investigated

studies. This can be seen when comparing separate datasets from

individual studies which suggested that N2O emissions were affected

directly by genotypic variation (Chen et al., 2021; Ma et al., 2012),

primarily due to different genotype’s effects on soil organic carbon, the

soil microbial community and a crop’s NUE (Chen et al., 2021; Gogoi

and Baruah, 2012; Manco et al., 2024). On the contrary, others

suggested that N2O emissions were not influenced by the genotypic

variation (Phungern et al., 2023; Z.-H. Wang et al., 2021) but instead

were primarily affected by other factors such as nitrogen application

rate, water management or tillage type (Feng et al., 2021; Oo et al., 2018;

Zhao et al., 2024). By contrast, we found genotype to have a large effect

on CH4 emissions (Figure 5B) and crop yield (Figure 5C). Genotypic

effect on CH4 can occur for several reasons, including varying root

biomass and root radial oxygen loss (Qi et al., 2024) as well as special

genotypes which develop larger aerenchyma tissues which facilitate

CH4 transport from the soil to the atmosphere (Kludze et al., 1993).

Many of the analysed datasets used for this study concluded that

genotypic variation indeed does have an effect on CH4 emissions (Ding

et al., 2022; Kou et al., 2018; Satpathy et al., 1998). Selecting genotypes

for improved crop yield has been discussed extensively within the

literature (Bailey-Serres et al., 2019; Stella et al., 2023), with greater

resistance to disease and pests as well as greater NUE being cited as key

factors for greater crop yield (Gaju et al., 2011; Tooker and

Frank, 2012).
Implications for climate-smart breeding
and future research needs

Taken together, our study demonstrates that N2O emissions are

primarily driven by N input rate, while CH4 emissions are more

genotype-driven. This highlights the importance of yield-weighted

emissions as a breeding metric to balance mitigation with

productivity. Breeding for low-emission genotypes may benefit

from prioritising yield-weighted emissions as selection criteria,

particularly under moderate N inputs where genotypic

differentiation is more pronounced (Chen et al., 2021; Das and

Kim, 2024). At present, we also largely lack an integrated and

mechanistic understanding of all the processes by which plants

regulate the soil environment, and thus the production and

emissions of CH4 and N2O (Cooper et al., 2024; Snyder et al., 2009).

Future work should prioritise standardised, multi-genotype field

trials of various crops that control for environmental confounders,

and thus support development of new tools and models to better

elucidate pathways and processed. Such experimental designs would

improve detection of subtle genotypic effects on GHG emissions and

facilitate integration of GHG emissions related traits into

conventional or precision breeding pipelines. Such studies will also

enhance global synthesis studies, by resolving critical data gaps and

sampling biases that are present within this study, such as crop

variety, location bias and crop treatment.
Frontiers in Agronomy 10
Limitations

A key limitation is the reliance on static chamber measurements

in most studies, which may miss episodic N2O events and

underestimate total fluxes. Future work should prioritize

automated chambers for higher-resolution data, standardised trial

protocols, harmonised GHG reporting and increased multi-crop

coverage. Furthermore, our dataset reflects the current evidence

base, with a heavy bias toward rice systems (35 of 42 studies) and

temperate climates, limiting generalizability to other crops and

regions. This overrepresentation likely amplifies detected

genotype effects on CH4 (prevalent in flooded rice systems) while

constraining insights into N2O in upland systems. Findings are thus

most robust for rice and temperate zones, underscoring the urgent

need for broader crop coverage and multi-location trials.
Conclusion

This global synthesis provides evidence that N application rates

are primary drivers for N2O, with an exponential increase in

emissions and a critical inflection point where emissions rise

sharply with greater N inputs. A limited direct effect of genotype

was found on absolute N2O emissions, whereas genotype was a

significant explanatory variable for CH4 emissions and crop yield.

Focus on yield-weighted emissions rather than absolute emissions is

key to developing genotypes that mitigate GHGs while optimizing

productivity. For CH4, water management and soil carbon (not

studied here) are major drivers alongside genotype. The biases in

the current dataset, particularly the overrepresentation of rice and

temperate climate studies, underscore a critical need for globally

coordinated research efforts, such as multi-location trials with a

standardized set of diverse genotypes, to provide robust, balanced

data for more definitive conclusions.
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