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Targeted crop selection offers a promising potential pathway to reduce
greenhouse gas (GHG) emissions from global croplands. Yet, the influence of
crop genotypes on GHG emissions remains poorly studied, limiting our ability to
understand its global potential. To address this challenge, we conducted a global
synthesis of GHG and crop yield data from 42 field experiments across 180
genotypes of major cereal (predominantly rice) and oilseed crops (soybeans and
canola) and nitrogen (N) fertilisation rates (40kg ha™ to 390kg ha™) (n =390). To
test the influence of genotype, we removed measurements from genotypes with
fewer than three independent replicates (n = 97) and apply linear mixed-effects
models to control for study and latitude effects. Across a range of environmental
and experimental conditions, we analysed the influence of N application rate on
crop nitrous oxide (N,O) and methane (CH4) emissions, alongside yield. We
found significant differences in N,O-N cumulative fluxes between crop types and
mean annual precipitation ranges. When expressed per unit of crop yield, N,O-N
and CH4-C cumulative fluxes revealed a significant difference between N
application rate groups (a = < 50, b = 50-100, ¢ = 100-150, d = 150-200, e =
200-250, f = 250-300, g = > 300), with a positive yield response to N fertilisation.
While yield-scaled N,O-N cumulative fluxes declined with N application rate,
yield-scaled CH4-C cumulative fluxes increased; however, all CH4
measurements were derived from rice systems. Regression relationships
between cumulative N,O, CH4, crop yield and N application rate were
consistent with previous global syntheses, showing that N,O and CH,4
emissions increased exponentially with N application, while crop yield
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exhibited a quadratic response. Our results indicate that N application rate was the
primary driver of N,O emissions and crop yield, while genotypic differences
significantly influenced CH4 emissions. These findings underscore the
importance of integrating genotype selection with nitrogen management to
improve GHG mitigation while optimising crop productivity.

KEYWORDS

nitrous oxide, methane, climate change mitigation, nitrogen fertilisation, greenhouse gas
emissions, genotypic variation

Introduction

Agricultural intensification to meet global food demand has
made farming one of the largest contributors to anthropogenic
greenhouse gas (GHG) emissions (Lynch et al.,, 2021; Tilman et al,
2011), contributing approximately 58% of global non-carbon
dioxide (CO,) GHG emissions. GHGs such as nitrous oxide
(N,0O) and methane (CH,) further have global warming
potentials 273 and 81 times greater than CO,, respectively over a
20-year time period (Beach et al., 2008; IPCC, 2023). Agricultural
GHG emissions exacerbate climate-related environmental
problems, including biodiversity loss, eutrophication and
reductions in soil carbon stocks (Johnson et al., 2014; Vitousek
et al, 1997). Several cost-effective and sustainable agricultural
mitigation opportunities and practices are accessible for
agriculture compared to other sectors (Lai et al., 2022; Smith,
2012; Verge et al., 2007; Zutshi and Creed, 2015).

Nitrogen (N) fertilisation remains a cornerstone of yield
maximisation in modern cropping systems but is also a major
source of N,O emissions (Guo et al., 2022; Sun and Huang, 2012).
Projections suggest that N fertiliser use could triple by 2050
(Khampuang et al, 2021) and so there is an urgent need to
improve Nitrogen Use Efficiency (NUE) in crops to mitigate the
negative effects of N application (Zhang et al., 2015). Previous meta-
analyses have identified optimal N application rates for key global
crops such as wheat, rice, and maize in the range of 130 to 200 kg N
ha, emphasising not only rate optimisation but also soil, climate,
and genotype selections as complementary mitigation strategies
(Guo et al,, 2022). A promising strategy for reducing agricultural
GHG emissions is the selective breeding for crop genotypes that
exhibit higher NUE, enabling lower fertiliser inputs while
maintaining high yield (Shcherbak et al., 2014; Swarbreck et al,
2019). Empirical studies have shown that crop genotypes can
significantly vary in their N,O and CH, emissions due to
physiological and morphological characteristics such as
transpiration rate, xylem vessel diameter, and root architecture
(Borah and Baruah, 2016; Chen et al., 2021). Modern wheat
genotypes have demonstrated lower N,O emissions, potentially
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due to physiologically more efficient N uptake rather than
observable shifts in plant morphology (Chen et al., 2021). Other
traits such as flag-leaf senescence and nitrogen accumulation at
anthesis have also been linked to NUE (Gaju et al,, 2011).

Optimal N fertilisation management can play an important role
in NUE for oilseed rape genotypes (Berry et al., 2010). Whilst a large
portion of these studies show a significant difference in N,O and
CH, emissions between genotypes, the resulting data and
conclusions are frequently limited due to a limited number of
genotypes used or low levels of replication (Chen et al, 2021;
Gogoi and Baruah, 2012). Many studies which observe GHG
emissions between different crop varieties investigate other factors
which may be affected by the crop variety such as water
management, further complicating direct comparisons (Ma et al,
2012; Phungern et al., 2023; Vo et al., 2024).

Genotypic variation can influence soil nitrification and
denitrification by actively changing soil properties, such as N
availability (through N uptake) and pH change via root
exudation, respiration and NUE capacity (Philippot et al., 2013).
Different genotypes can also be more or less effective at transporting
N,O from the soil via root uptake and releasing into the atmosphere
(Baruah et al., 2010; Verma et al., 2006). The varieties with a n
optimal root architecture will have greater NUE and have a reduced
quantity of N,O byproduct. Plants can also produce N,O directly
via N assimilation (Smart and Bloom, 2001), and different
genotypes can have variable N,O production during nitrogen
assimilation (Oszvald et al., 2022). Genotypic variation can also
influence plant-mediated transfer of CH, from the soil to the
atmosphere due to differences in aerenchyma, root exudates and
root oxygen (Aulakh et al, 2000; Girkin et al., 2018, 2020).
Optimisation of agricultural management practices through
selective breeding for crop genotypes with optimised NUE,
sustained crop yields and low GHG emissions would assist in
achieving a more sustainable agricultural produce (Ceccarelli and
Grando, 2020).

Various studies have reported genotypic variation in crop GHG
emissions, but their findings are limited by narrow genotypic
comparisons and inconsistent experimental replications, often
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focusing on a small number of genotypes within a single
environment (Gogoi and Baruah, 2012; Chen et al., 2021;
Phungern et al., 2023). To uncover the role of genotypic variation
in GHG emissions from crops, especially under variable N
fertilisation, a broader data synthesis is needed. While the concept
that genotype impacts on GHG emissions are context-dependent
and most pronounced at intermediate or suboptimal N rates is
established in the literature. Here we provide the first global
synthesis quantifying the magnitude and consistency of the
genotypic effect on GHG emissions across studies.

Methods
Literature search and data collection

We conducted a systematic literature review using the Scopus
database following PRISMA guidelines (Haddaway et al., 2022). We
searched for peer-reviewed journal articles published up to April
2024 using the following keywords: (wheat OR rice OR barley OR
oat OR linseed OR “oil seed rape” OR maize OR corn) AND
(genotype OR genotype OR variety OR varieties) AND (“nitrous
oxide” ORN20) AND NOT (livestock OR cattle). These crops were
selected due to their high importance for global food systems and
crop rotation systems. From 221 initially identified records, 42
studies met the inclusion criteria (Supplementary Figure 1),
reporting GHG emissions from at least two genotypes of the
same crop species under field conditions and provided sufficient
data to quantify cumulative N,O or CH, fluxes. See Supplementary
Table 2 for a summary of the 42 studies included.

10.3389/fagro.2025.1669002

Many studies primary focus was not genotypic variation in
greenhouse gas emissions and instead their primary focus was on
specific management interventions. These interventions were not
considered due to insufficient information across studies. A
significant proportion of our compiled dataset came from studies
focused on rice systems (35 of 42 studies) and there was a limited
number of studies that included more than one crop
(Supplementary Table 2). Most sources also studied a limited
number of genotypes (< 3). This data sparsity limited our
genotype analysis as many genotypes across several studies would
be optimal for robust analyses. Many studies were conducted over
multiple years however, providing replication of genotypes
within studies.

Data extraction and standardisation

From each of the 42 studies identified, we extracted relevant
metadata and experimental data including: crop species, genotype
names, N fertiliser application rates, mean annual precipitation
(MAP, mm), mean annual temperature (MAT,°C), measurement
techniques, cumulative and daily GHG fluxes (N,O-N, CH,-C, and
CO, where available), study duration, and crop yield (where
reported). Data were extracted directly from tables, text, figures
(via WebPlotDigitizer), or Supplementary Materials. Where
necessary, units were standardised to kg ha™ for cumulative
emissions. Cumulative N,O-N fluxes were derived by converting
N,O mass to nitrogen mass using a factor of 14/44.01, and CH,4-C
fluxes were converted using 12/16 from CH, mass to carbon mass
(IPCC, 2023). For cases where only cumulative N,O-N or CH,4-C
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FIGURE 1

Distribution of studies reporting crop genotypic variation effects on GHG emissions, compiled in this study, showing a bias towards Asia and rice

(crop type indicated by symbol colour).
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were reported, average daily fluxes were back-calculated based on
the reported measurement period. The compiled dataset included
391 data entries across 180 unique genotypes. Most data
entries were for rice (n=319), followed by wheat (n=27), maize
(n=20), canola (n=18) and soybean (n=3). Geographically, most
data entries were from studies conducted in China (n=171),
followed by Vietnam (n=80), India (n=75), Canada (n=18),
Indonesia (n=16), USA (n=12), Japan (n=11) and Brazil (n=4)
(Figure 1). Four data entries were removed as obvious outliers as
they were associated with atypical treatments (e.g. chemical nitrate
transport inhibitors) that distorted emission outcomes (Igbal
et al., 2023).

Study locations were restricted, with 23 from China, 9 from
India, 3 from the USA, 3 from Japan and 1 from Vietnam, Brazil,
Canada and Indonesia (Figure 1). This sampling bias reflects the
high proportion of studies focusing on rice systems, as 90% of global
rice production is conducted within Asian countries, which make
up the majority of the results in our study (Fukagawa and Ziska,
2019). The majority of studies in our dataset used static chambers
for GHG measurements (n=41) and few studies employed
automated systems (n=1). Static chambers may underestimate
episodic fluxes due to limited temporal coverage.

Data analysis

All analyses were performed in R 4.2.2 (R Core Team, 2024).
Descriptive statistics and one-way ANOVAs were used to compare
N,O-N cumulative and CH4-C cumulative fluxes across crop type,
measurement method, chamber type, and N fertilisation, MAT and

TABLE 1 Summary of linear mixed effect model results, testing the
influence of N application rate and genotype on N,O emissions, CH,
emissions and crop yield as fixed effects.

N,O emissions (kg ha™)

(N=47) o

Null 4 0 0654 6161 | 0

+ N Application Rate 5 0720 | 0.807 3393 | -27.69
+ Genotype 18 | 0827 | 0.890 5254 | NS
CH,4 emissions (kg ha™) (N=57)

Null 4 0 0.565 = 524.07 0

+ N Application Rate 5 0.095 | 0.459 52695 NS

+ Genotype 19 | 0788  0.809 390.51 @ -8.35
Crop Yield (N=49)

Null 4 0 0442 82606 0

+ N Application Rate 5 0.030 0476 82291  -3.16*
+ Genotype 16 0703 | 0725 64605 -16.08

Latitude and study were used as random effects. The final models for all variables are
presented in Supplementary Table 3. NS indicates that the specific term was not selected
(AAIC >-2). *indicates that the specific term is no longer significant when the second fixed
effect was accounted for.
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MAP groups categorised using terciles to assess potential climatic
and management effects. One-way ANOVA’s and Tukey’s T-tests
for pairwise comparisons were used to assess the significance of
study factors on GHG emissions (p < 0.05). General linear models
were applied to test the form and significance of N application rate
on crop yield, N,O and CH, emissions across all available
measurements in the compiled dataset. To test the influence of
genotype, measurements from genotypes with fewer than three
independent replicates were excluded to ensure model robustness,
resulting in 20 genotypes across 97 observations. To evaluate
whether the linear mixed-effects models (LMMs) presented in
Table 1 were constrained by dataset size due to the exclusion of
genotypes with fewer than three replicates, we tested additional
models. These included LMMs with genotypes having >2 replicates,
multilevel LMMs incorporating genotype as a random eftect, and
meta-regressions using all available genotypes with constant
variance assumptions due to the absence of standard error data.
Model performance was assessed using marginal (R’m) and
conditional (R*c) R-squared values, with results reported in
Supplementary Table 1. The threshold of three replicates per
genotype was selected to reduce the risk of overfitting in mixed
models. We fitted LMMs using the “Ime4” package, with crop
genotype and N application rate as fixed effects, and Latitude and
Study as random intercepts to account for geographical and
experimental heterogeneity. Model selection was based on an
increased goodness of fit of the LMMs to the data according to
the Akaike Information Criterion (AIC) where AAIC was < -2 for
each additional degree of freedom.

Results

Environmental and experimental drivers of
N>O emissions

Note that flux data were log-transformed prior to analysis to
normalize residuals and stabilize variance. Back-transformed values
approximate relative changes (fold differences) rather than absolute
changes, which should be considered during interpretation. N,O-N
cumulative fluxes varied significantly among the crops (Figure 2A).
Rice exhibited more variable fluxes, while soybean showed the
lowest, and maize and wheat exhibited the highest fluxes,
respectively. N,O-N cumulative fluxes measured in field
conditions were significantly higher than those from pot
experiments (Figure 2B), indicating that pot studies may
underestimate field-scale N,O emissions, possibly due to
constrained root growth in pots or altered microclimate effects.
There was no statistically significant difference in N,O-N
cumulative fluxes between open-system and closed-system
chambers, suggesting that chamber design does not bias overall
emission estimates in our dataset (Figure 2C). No significant
difference was observed across MAT categories (<10°C, 10-20°C,
>20°C), indicating that temperature alone may not be a strong
forecaster of N,O-N cumulative fluxes (Figure 2D). However, N,O-
N cumulative fluxes were significantly influenced by MAP groups,
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variance

particularly between moderate precipitation conditions (500-1000
mm) compared to dry regions (<500 mm) and wetter regions
(>1000 mm) (Figure 2E), suggesting that moderate moisture
levels may support microbial activity leading to greater N,O
emissions. Surprisingly, no significant difference was observed
among N application rate groups (<100, 100-200, >200 kg ha™),
suggesting that the relationship between N input and emissions may
be nonlinear or masked by crop-specific or environmental
interactions (Figure 2F).

Yield and emissions efficiency relative to
nitrogen application rates

Crop yield and yield-adjusted GHG emissions were explored
across different N application rate groups (Figure 3). Crop yield
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enhanced significantly with increasing nitrogen fertilisation,
although no increase was observed between 100-200 and >200 kg
N ha™ (Figure 3A). The <100 kg N ha™ group produced the lowest
yields, suggesting a yield-limiting nitrogen deficit in many low-
input trials. No significant difference was observed for CH,-C
cumulative fluxes across N application rates (Figure 3B), similar
to N,O-N cumulative flux responses (Figure 2F). Yield-scaled N,O
fluxes (Figure 3C) and CH,4 emissions (Figure 3D), however, did
show a significant response to N application rates. Yield-scaled N,O
emissions decreased significantly with increasing N fertiliser input
(Figure 3B). The <100 kg N ha™ group exhibited the highest
emissions per unit of yield compared to sharply lower values in
the 100-200 and >200 kg N ha™ groups. Conversely, yield-scaled
CH, emissions increased significantly with N application rate,
although no measurements were available for the low (<100 kg
ha™) N application group (Figure 3D).
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Relationships between crop yield, GHG
emissions and nitrogen application

Regression analyses examining the relationships between N
fertilisation rate with N,O emissions, crop yield, and CH,
emissions revealed different N responses (Figure 4). N,O
emissions increased exponentially with nitrogen application rate,
showing a strong nonlinear relationship (Figure 4A, adjusted
R?=0.284, p < 0.0001). Crop vyield exhibited a curvilinear response
to nitrogen input (Figure 4B, R*>=0.158, p < 0.0001), peaking around
180-200 kg N ha™. Below this threshold, yields increased steeply
with added N, while beyond this threshold yield gains diminished or
plateaued. CH, emissions also increased with nitrogen application,
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though the relationship was weaker than for N,O and yield
(Figure 4C, adjusted R*=0.159, p < 0.0001).

Influence of N application and genotypic
variation on GHG emissions and crop yield

Twenty genotypes, with at least three replicates each, were
recorded in our dataset (N=97). We applied LMMs to the filtered
genotype dataset, with latitude and study as random effects, and
tested null models against models with N application rate and
genotype as fixed effects (Table 1). When this dataset was further
filtered to include available measurements for N,O emissions and
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crop yield with N application rate measurements, n=47, n=57 and
n=49 measurements were available to fit the N,O, CH, and crop
yield models, respectively. Selected models, based on goodness of fit
and model parsimony, included N application rate for N,O and
crop vield, and genotype effect for CH, and crop yield (Table 1). All
models showed good explanatory power of the fixed effects
(R?,=0.720, R?,=0.788, R?,=0.703). However, while N
application rate explained much of the variation in N,O
emissions (AAIC4=-27.69), genotype variation had a much
greater explanatory power for CH; (AAIC4=-8.35) and crop
yields (AAIC4=-16.08, Table 1).

Observed and predicted values from the best-fitting LMMs for
N,O emissions and crop yield are compared in Figure 5.
Comparison of the LMMs in Table 1 with alternative models,
including those with genotypes having >2 replicates, multilevel
LMMs with genotype as a random effect, and meta-regressions,
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did not indicate a consistent improvement in explanatory power for
N,O emissions (Supplementary Table 1). For N,O, the original
model with >3 replicates yielded the highest conditional R-squared,
suggesting robust capture of variance by fixed and random effects.
In contrast, the explanatory power for CH, flux improved with
dataset size, with the LMM including genotypes with >2 replicates
achieving higher marginal R-squared, indicating a stronger
influence of genotype when more data were included. For crop
yield, the original models maintained high explanatory power, with
minimal gains from alternative approaches. Meta-regressions,
limited by constant variance assumptions, provided limited
additional insight due to convergence issues for N,O and yield.
The observed clustering of many genotypes near the x-axis and
below the 1:1 line for N,O predictions (Figure 5A) suggests the
model tended to underpredict higher N,O values, particularly in
genotypes or contexts with elevated emissions. In comparison,
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FIGURE 5

Predicted vs observed (A) N,O emissions, (B) CH,4 emissions and (C) crop yield for the best fitting LMMs identified in Table 1. Dashed lines represent
a perfect 1:1 fit, and marginal and conditional R? values are shown. Random effects in the models were latitude and study for all variables, with (A) N
application rate, (B) N application rate and genotype and (C) genotype selected as fixed effects. Symbol colour represents different genotypes.

predictions for CH, (Figure 5B) and crop yield (Figure 5C) were
more tightly aligned along the 1:1 line and together with Table 1
suggests that genotypic differences meaningfully capture variability
in both response variables.

Discussion

Our global synthesis highlights the complexity of factors
influencing N,O and CH, emissions from widely grown cereal
and oilseed cropping systems, particularly under variable N
fertilisation regimes. While environmental variables such as MAP
and experimental setting explained a substantial portion of the
variability in cumulative N,O fluxes (Figure 2), N application rate
effects were more apparent when fluxes were scaled by crop yield
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(Figure 3). Across crops, N,O emissions increased exponentially
with N fertiliser rate and this trend is consistent with previous meta-
analysis studies examining the response of N,O emissions to N
fertiliser rate (Guo et al., 2022; Shcherbak et al.,, 2014). Crop yield
followed a saturation curve, and CH, emissions showed a weaker
but significant positive trend with increasing nitrogen inputs
(Figure 4). Given the prevalence of rice systems in our dataset,
however, these patterns likely reflect conditions typical of flooded
paddy cultivation. Across genotypes with sufficient replication, we
found that while genotype has a pronounced effect on CH,
emissions and crop yield, the role of genotypes in explaining N,O
emissions is comparatively limited, with emissions primarily driven
by fertiliser rate and contextual factors (Figure 5) (Hansen et al,
2019). Genotype had a strong effect on CH, but not N,O, likely
because CH, flux is strongly plant-mediated via root aerenchyma
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development, radial oxygen loss, and exudates, which vary
markedly between genotypes. By contrast, N,O emissions are
more tightly coupled to soil microbial processes (nitrification/
denitrification) and strongly masked by environmental drivers
(moisture, N input), thereby obscuring genotype effects. Research
shows stronger genotype effects on N,O only under controlled or
single-site studies, suggesting environment x genotype interactions
are key (Chen et al,, 2021; Peyrard et al., 2016). These biases in our
dataset (overrepresentation of rice and temperate regions) likely
amplify genotype effects on CH, in flooded systems while limiting
detection of N,O effects in uplands. Our findings reinforce the need
for mitigation strategies in global croplands that integrate genetic,
environmental, and management dimensions, and the need to
address several research gaps for more comprehensive analyses
of genotypic effects on crop GHG emissions, including an
improved understanding of the underlying physiological and
microbial mechanisms.

Several plausible mechanisms may underlie the influence of
crop genotype on N,O emissions (Baggs et al., 2023). Genotypic
differences in root morphology and architecture can influence N
uptake, soil aeration, and microbial habitat conditions, thereby
regulating the balance between nitrification and denitrification.
Root exudates and rhizosphere pH modification may also alter
microbial community composition and activity, further
contributing to variation in fluxes (de Klein and Di, 2018).
Differences in nitrogen assimilation efficiency and senescence
traits may additionally affect the timing and magnitude of N,O
release (Wingler and Soualiou, 2025). Future research should
investigate these mechanisms in interdisciplinary studies
combining plant physiology and soil microbial ecology (Philippot
et al., 2009).

Environmental and experimental context
effects

Cumulative N,O emissions varied widely across crop types and
experimental settings (Figure 2), with rice exhibiting lower
emissions than maize or wheat, consistent with differences in
aeration, soil moisture, and denitrification potential between
flooded and upland systems. In contrast to rice systems, oilseed
studies in our dataset reported either neutral or slightly positive
CH, fluxes. This is consistent with evidence that nitrogen
fertilisation can suppress methane oxidation, thereby reducing the
soil sink capacity (Sun et al., 2016). Such dynamics highlight the
need for broader research beyond rice, particularly in upland
systems where methane oxidation plays a larger role in net fluxes.
The absence of a clear temperature effect but significant differences
across precipitation categories suggests that water availability may
be a more direct driver of microbial N,O production than
temperature in these systems, which could be further influenced
by approximately 80% of our dataset consisting of genotypes grown
in flooded rice paddies. Prior studies have suggested that soil
moisture is a key driver of N,O production predominantly
through control of nitrification and denitrification (Butterbach-
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Bahl et al., 2013; C. Wang et al., 2021), however these studies have
also emphasised how temperature influences N,O production.
Additionally, the higher emissions observed under field
conditions compared to pot studies should be considered when
pot trial datasets are used to estimate field-scale GHG dynamics.
Interestingly, differences in N,O-N emissions across N
application groups were not statistically significant (Figure 2F),
but more significant relationships were detected by weighting fluxes
by crop yield (Figure 3). Regression models demonstrate a non-
linear, exponential increase in N,O with increasing N input
(Figure 4A), a finding that aligns with prior meta-analyses (Guo
et al., 2022; Shcherbak et al., 2014). This non-linearity is often
amplified under wet soil conditions where denitrification
dominates, leading to higher N,O fluxes (Girkin and Cooper,
2022; Stehfest and Bouwman, 2006). Such environmental
modulation may also obscure genotype-level effects, suggesting
that genotyped-based mitigation of GHG emissions will be most
effective when combined with optimised N management strategies.

Trade-offs between yield and GHG
emissions

Crop yield increased with nitrogen input as expected
(Figure 3A), but diminishing returns were evident beyond ~200
kg N ha™ (Figure 4B), consistent with known saturation effects
(Singh, 2024; Biswas and Ma, 2016; Sun et al., 2020). Importantly,
emissions per unit yield, an indicator of NUE, declined significantly
with moderate N inputs (Figures 3C, D), suggesting an emissions-
efficiency threshold in the 100-200 kg N ha™ range. This result
supports repeated calls to optimise, rather than maximise, N
application rates to balance productivity with environmental
sustainability (McLellan et al.,, 2018).

A disproportionate acceleration of N,O emissions as N fertiliser
rate exceeded crop uptake capacity was observed (Figure 4A) and
this was likely due to increased nitrification and denitrification
activity as the excess N fertiliser acts as a substrate for these
processes (Long et al., 2021; Ma et al., 2023). A similar response
of CH, emissions suggests nitrogen-induced shifts in soil redox
conditions or crop-mediated CH, dynamics, particularly in
anaerobic cropping systems like rice (Figure 4C). The curvilinear
response of crop yield to N application rate in Figure 4B reflects
diminishing returns at high N inputs and indicate over-fertilisation
in some systems, a finding which is consistent with what has already
been described previously (Hu et al., 2022; Song et al., 2022).

Genotypic effects on GHG emissions and
yield

Our LMMs revealed contrasting roles of species genotypes in
explaining N,O emissions, CH, emissions and crop yield. For N,O
emissions, inclusion of genotype effects in the model did not
significantly improve fit (AAIC=-18.6), and explained variance was
largely captured by nitrogen input and study-level random effects
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(Figure 5A). This suggests that genotype might influence N,O
emissions, however, those effects are obscured by environmental
variability and methodological heterogeneity across the investigated
studies. This can be seen when comparing separate datasets from
individual studies which suggested that N,O emissions were affected
directly by genotypic variation (Chen et al, 2021; Ma et al, 2012),
primarily due to different genotype’s effects on soil organic carbon, the
soil microbial community and a crop’s NUE (Chen et al.,, 2021; Gogoi
and Baruah, 2012; Manco et al, 2024). On the contrary, others
suggested that N,O emissions were not influenced by the genotypic
variation (Phungern et al., 2023; Z.-H. Wang et al., 2021) but instead
were primarily affected by other factors such as nitrogen application
rate, water management or tillage type (Feng et al., 2021; Oo et al., 2018;
Zhao et al,, 2024). By contrast, we found genotype to have a large effect
on CH, emissions (Figure 5B) and crop yield (Figure 5C). Genotypic
effect on CH, can occur for several reasons, including varying root
biomass and root radial oxygen loss (Qi et al.,, 2024) as well as special
genotypes which develop larger aerenchyma tissues which facilitate
CH, transport from the soil to the atmosphere (Kludze et al., 1993).
Many of the analysed datasets used for this study concluded that
genotypic variation indeed does have an effect on CH, emissions (Ding
et al,, 2022; Kou et al,, 2018; Satpathy et al,, 1998). Selecting genotypes
for improved crop yield has been discussed extensively within the
literature (Bailey-Serres et al., 2019; Stella et al, 2023), with greater
resistance to disease and pests as well as greater NUE being cited as key
factors for greater crop yield (Gaju et al., 2011; Tooker and
Frank, 2012).

Implications for climate-smart breeding
and future research needs

Taken together, our study demonstrates that N,O emissions are
primarily driven by N input rate, while CH, emissions are more
genotype-driven. This highlights the importance of yield-weighted
emissions as a breeding metric to balance mitigation with
productivity. Breeding for low-emission genotypes may benefit
from prioritising yield-weighted emissions as selection criteria,
particularly under moderate N inputs where genotypic
differentiation is more pronounced (Chen et al., 2021; Das and
Kim, 2024). At present, we also largely lack an integrated and
mechanistic understanding of all the processes by which plants
regulate the soil environment, and thus the production and
emissions of CH, and N,O (Cooper et al., 2024; Snyder et al., 2009).

Future work should prioritise standardised, multi-genotype field
trials of various crops that control for environmental confounders,
and thus support development of new tools and models to better
elucidate pathways and processed. Such experimental designs would
improve detection of subtle genotypic effects on GHG emissions and
facilitate integration of GHG emissions related traits into
conventional or precision breeding pipelines. Such studies will also
enhance global synthesis studies, by resolving critical data gaps and
sampling biases that are present within this study, such as crop
variety, location bias and crop treatment.
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Limitations

A key limitation is the reliance on static chamber measurements
in most studies, which may miss episodic N,O events and
underestimate total fluxes. Future work should prioritize
automated chambers for higher-resolution data, standardised trial
protocols, harmonised GHG reporting and increased multi-crop
coverage. Furthermore, our dataset reflects the current evidence
base, with a heavy bias toward rice systems (35 of 42 studies) and
temperate climates, limiting generalizability to other crops and
regions. This overrepresentation likely amplifies detected
genotype effects on CH, (prevalent in flooded rice systems) while
constraining insights into N,O in upland systems. Findings are thus
most robust for rice and temperate zones, underscoring the urgent
need for broader crop coverage and multi-location trials.

Conclusion

This global synthesis provides evidence that N application rates
are primary drivers for N,O, with an exponential increase in
emissions and a critical inflection point where emissions rise
sharply with greater N inputs. A limited direct effect of genotype
was found on absolute N,O emissions, whereas genotype was a
significant explanatory variable for CH, emissions and crop yield.
Focus on yield-weighted emissions rather than absolute emissions is
key to developing genotypes that mitigate GHGs while optimizing
productivity. For CH,, water management and soil carbon (not
studied here) are major drivers alongside genotype. The biases in
the current dataset, particularly the overrepresentation of rice and
temperate climate studies, underscore a critical need for globally
coordinated research efforts, such as multi-location trials with a
standardized set of diverse genotypes, to provide robust, balanced
data for more definitive conclusions.
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