

OPEN ACCESS

EDITED BY

Venkatesh Paramesha, Central Coastal Agricultural Research Institute (ICAR), India

REVIEWED BY
Jacob D.,
Kerala Agricultural University, India
Nyatwere Mganga,
University of Dar es Salaam, Tanzania
Praveen Kumar M. B.,
University of Agricultural Sciences, India

*CORRESPONDENCE
Prabhat Tiwari

prabhatbhu033@gmail.com
Asha Ram
ashusirvi84@gmail.com

RECEIVED 29 July 2025 ACCEPTED 16 October 2025 PUBLISHED 30 October 2025

CITATION

Deshmukh PP, Tiwari P, Dobriyal MJ, Yadav RP, Handa AK, Kumar N, Ram A, Dev I, Yadav A, Anuragi H, Shukla AK, Shekhawat V, K. A and Behera S (2025) Effects of tree planting geometry on lentil nutritional quality, tree biomass, and economic returns in *Melia dubia*-based agroforestry system in Bundelkhand region of India. *Front. Agron.* 7:1675259. doi: 10.3389/fagro.2025.1675259

COPVRIGHT

© 2025 Deshmukh, Tiwari, Dobriyal, Yadav, Handa, Kumar, Ram, Dev, Yadav, Anuragi, Shukla, Shekhawat, K. and Behera. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Effects of tree planting geometry on lentil nutritional quality, tree biomass, and economic returns in *Melia dubia*-based agroforestry system in Bundelkhand region of India

Pradyumna Prataprao Deshmukh¹, Prabhat Tiwari^{2*}, Manmohan J. Dobriyal², Ram Prakash Yadav², A. K. Handa³, Naresh Kumar³, Asha Ram^{3*}, Inder Dev⁴, Ashok Yadav³, Hirdayesh Anuragi³, A. K. Shukla⁵, Varsha Shekhawat², Anuvarna K.⁶ and Subhaprada Behera⁷

¹College of Forestry, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Maharashtra, India, ²College of Horticulture and Forestry, Rani Lakshmi Bai Central Agricultural University Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India, ³ICAR- Central Agroforestry Research Institute, Jhansi, Uttar Pradesh, India, ⁴Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India, ⁵College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India, ⁶College of Forestry, Kerala Agricultural University, Thrissur, Kerala, India, ⁷ICFRE- Bamboo and Rattan Centre, Aizawl, Mizoram, India

Introduction: Low farm productivity, declining soil fertility, and climatic stress in the semi-arid Bundelkhand region demand sustainable land-use strategies. Integrating *Melia dubia* with lentil-based systems offers potential to enhance soil fertility, resource efficiency, and profitability. However, limited studies have examined how tree spacing influences lentil seed quality, litterfall nutrient dynamics, and carbon sequestration in *M. dubia*-based agroforestry.

Methods: A field experiment was conducted during the 2023–24 Rabi season at the Forestry Research Farm, Rani Lakshmi Bai Central Agricultural University, Jhansi, India. The study employed a split-plot design with three M. dubia spacings (5 \times 5 m, 5 \times 4 m, and 5 \times 3 m) and two lentil varieties (IPL 316 and L 4727), along with a sole crop control, replicated thrice. Observations included lentil nutrient composition, litterfall quantity and nutrient content, tree growth, biomass, carbon storage, and economic returns. Statistical analysis was performed using OPSTAT software.

Results: Tree spacing significantly affected lentil nutrient composition, litterfall production, and system productivity. The 5 \times 4 m spacing recorded the highest lentil seed protein (26.21%) and nitrogen (4.19%) contents, whereas phosphorus and calcium were maximum under 5 \times 3 m spacing (0.45% and 0.58%, respectively). Variety IPL 316 exhibited superior nutrient profiles with higher nitrogen, potassium, calcium, copper, and zinc concentrations compared to L 4727. Denser plantations (5 \times 3 m) produced maximum litterfall (1.19 Mg ha⁻¹), with peak nutrient release during January–February, indicating efficient nutrient recycling. Phosphorus and potassium concentrations in litter were also higher under closer spacings. Photosynthetically active radiation (PAR) decreased with increasing tree density, ranging from 652.85 μ mol m⁻² s⁻¹ in sole lentil to 135.26

 μ mol m⁻² s⁻¹ under 5 × 3 m spacing. The 5 × 3 m spacing achieved the highest total biomass (42.7 Mg ha⁻¹), carbon stock (21.32 Mg ha⁻¹), and CO₂ sequestration potential (78.37 Mg ha⁻¹). Economically, the same spacing yielded maximum gross returns (US\$ 4227 ha⁻¹), net returns (US\$ 2783 ha⁻¹), and benefit—cost ratio (2.92).

Conclusion: In conclusion, closer planting geometry of M. dubia (5 \times 3 m) enhanced biomass, carbon storage, and profitability without compromising lentil quality. The integration of lentil under M. dubia optimized resource use, nutrient cycling, and carbon sequestration, demonstrating its suitability for sustainable and climate-resilient agroforestry in Bundelkhand.

KEYWORDS

agroforestry, biomass, carbon sequestration, litterfall, net returns, protein content

Introduction

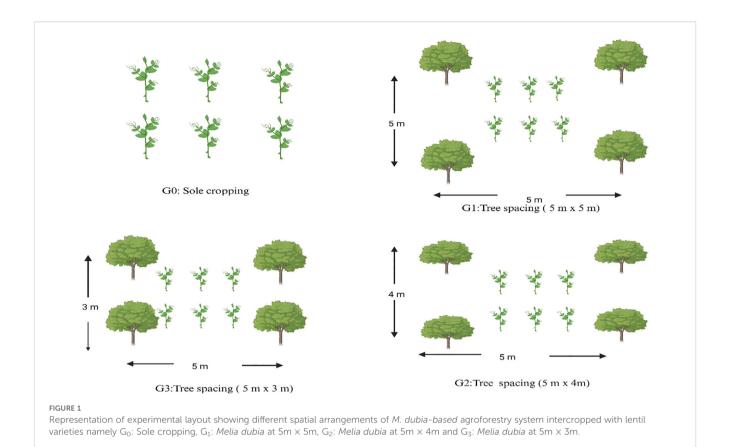
Forests are highly significant to mankind as they make a substantial contribution to enhancing the environment, economy, and society. In a developing country like India, there is a significant need for timber, fuel wood, and tree fodder. This demand is primarily fulfilled by trees located outside of forest areas on agricultural lands (Chakravarty et al., 2019). Forests have a crucial role in preserving ecological balance, serving as habitats for numerous plant and animal species, and safeguarding the soil against water and wind erosion (Liu, 2025; Ponyane et al., 2025). Climate change has recently provided a boost to forests and trees. Around 27 percent of India's population continues to depend on forests for their sustenance through numerous ways (Pandey et al., 2016). The country has a total forest and tree cover of 25.17 percent (Forest Survey of India, 2023). To enhance the extent of forest and tree cover, it is imperative to undertake operations like as reforestation, enrichment planting, and agroforestry (Gupta et al., 2020; Jinger et al., 2023; Singhal et al., 2024).

Agroforestry, which involves the incorporation of trees into agricultural landscapes, has been demonstrated to be a practical and self-sustaining land use system in this area (Ghosh et al., 2014; Gautam et al., 2025). The incorporation of rapidly growing trees on degraded soil in the area can exploit the economic benefits of trees for the rural community (Palsaniya et al., 2010; Jinger et al., 2021; Selvan et al., 2023). It is often considered as a financially viable strategy for mitigating climate change (Lasco et al., 2014; Jinger et al., 2022a). Agroforestry systems capture carbon in both soil and woody biomass. The carbon storage capacity in most agroforestry systems varies based on tree species (Nair et al., 2009; Saleem et al., 2023) and management approaches (Nair, 2012). Agroforestry has been implemented globally for decades, predominantly in tropical and subtropical regions. This is a fledgling concept and technique that combines crop production with the conservation of natural resources, addressing environmental and human needs simultaneously (Kreitzman et al., 2022; Jinger et al., 2022b; Vikas and Ranjan, 2024). Currently, agroforestry fulfils roughly 50 percent of the fuelwood requirement, two-thirds of the small timber demand, 60 percent of the raw materials necessary for paper pulp, 70–80 percent of the plywood industry's needs, and 9–11 percent of the green fodder demand (Dev et al., 2017). Recently, the total area of agroforestry in India has been reported as approximately 28.427 million hectares, representing 8.65 percent of the nation's total geographical area (Arunachalam et al., 2022). The Bundelkhand region in central India is located in the semi-arid tropical zone. The region's vulnerability to climate change and resource scarcity results in poor crop yields and elevated production risks (Sharma, 2023; Deshmukh et al., 2025). The region experiences a shortage of fodder and fuelwood due to intense biotic pressure on forests, community lands, and a decline in vegetation cover.

Malabar Neem (Melia dubia) is a most promising agroforestry tree which grows in deciduous forests around 600 - 1,800 meters above mean sea level. Cultivating M. dubia in an agroforestry system provides an alternative source for the supply of pulp wood and fodder (Chauhan et al., 2018; Akhilraj et al., 2023; Jinger et al., 2024). Spacing in the M. dubia in an agroforestry system may differ according to the utility of wood. For pulpwood production, closer spacing of 2 m \times 2 m and 3 m \times 2 m is usually recommended, whereas for plywood production, wider spacing of 5 m \times 5 m and 5 m \times 4 m can be used. For timber purposes, wider spacing of 6 m \times 6 m and 8 m × 8 m can be used for M. dubia-based agroforestry (Sirohi et al., 2018). Melia dubia undergoes complete leaf shedding in the winter season. Trees assimilate nutrients for growth and development, with certain amounts of these nutrients translocating into various tree components, from which a substantial quantity is returned to the soil through litterfall (Zheng et al., 2022). Litterfall is a critical element of the nutrient cycle that influences soil health by contributing to soil organic matter, facilitating nutrient exchange, replenishing nutrients, conserving biodiversity, and supporting other ecosystem activities (Awasthi et al., 2022; Jinger et al., 2025). The quantity of nutrients released to the soil via leaf litter

is reliant upon tree spacing, litter quality, and specific nutrient concentrations (Elias et al., 2020; Wang et al., 2021). The supplementary nutrients may enhance soil fertility, and nutrient return data can serve as an indicator to predict the relationship between tree species and nutrient recycling in agroforestry systems, thereby improving productivity and ensuring long-term sustainability (Lal, 2025).

Intercropping pulses with commercial tree species during the early phases of establishment is advantageous as it allows legumes to restore soil fertility and provides farmers with extra income (Ghosh et al., 2007; Kumar et al., 2023; Akchaya et al., 2025). Although shade diminishes the productivity of field crops, it paradoxically improves seed quality (Pohlmann et al., 2024). The nitrogen-fixing capacity of legumes renders them extremely appropriate for integration into low-input cropping systems. India is the world's top producer, consumer, and importer of pulses, accounting for 25% of global production, 27% of global consumption, and 14% of global imports (Ketali et al, 2024). While pulses are cultivated during both the Kharif and Rabi seasons, those grown in the Rabi season make up over 60% of the total production (Bhat et al., 2022). Winter legumes like Lens culinaris, with flat, lens-shaped seeds, require little water. The plants are usually short and produce selfpollinating flowers (Semba et al., 2021). Lentil seeds are rich in carbohydrates, protein, energy, fat, fibre, phosphorus, zinc, iron, vitamins, carotene, and antioxidants (Riaz et al., 2024). Lentils are mostly grown as a rainfed crop, requiring cool temperatures during the growth phase and warmer conditions for maturity (Venugopalan et al., 2021). The Bundelkhand region in Uttar Pradesh and Madhya Pradesh is distinguished for its lentil production, accounting for approximately 25% of the national total (Malik et al., 2022). Although agroforestry has been widely promoted as a sustainable land-use practice in semi-arid regions, lentil-based systems in Bundelkhand have received little scientific attention. Most studies in the region have focused on cereal-based or oilseed-based agroforestry models, while lentil; a protein-rich pulse well suited to marginal lands has been underrepresented. Consequently, there is inadequate understanding of how tree spacing and crop variety influence productivity, quality attributes, and carbon sequestration in Melia dubia-based agroforestry systems. Despite the recognized potential of M. dubia, its influence on litterfall nutrient return, carbon sequestration, and intercrop performance under different spacing regimes in semi-arid Bundelkhand remains underexplored. The current study was designed with objectives considering the potential of M. dubia as a commercially significant fast-growing agroforestry tree species and the suitability of lentil cultivation in the semi-arid regions of Bundelkhand viz. to assess how different spacings of M. dubia affect lentil quality, tree growth, litterfall dynamics in Bundelkhand's semi-arid conditions along with quantification of biomass and carbon sequestration, and determine the economic viability of the agroforestry system.


Materials and methods

Experimental site

The experiment was carried out in *Rabi* 2023 in field H-12 in the *M. dubia* plantation located at the Forestry Research Farm, Bhojla, under the Rani Lakshmi Bai Central Agricultural University, Jhansi (U.P.). The experimental site is situated at an elevation of 284 meters above sea level, positioned at 25.517457° N latitude and 78.561147° E longitude. Jhansi exhibits an annual average temperature of 25.80°C and an average precipitation of approximately 870 mm (Ram et al., 2025). The soil at the experimental site is classified as sandy loam in texture with a pH of 6.9, low in organic carbon content (0.45%), available nitrogen (182 kg ha⁻¹), available phosphorus (9.3 kg ha⁻¹), and available potassium (176 kg ha⁻¹).

Experimental details

The research employed a split-plot design using M. dubia arranged at 5m \times 5m (G₁), 5m \times 4m (G₂), and 5m \times 3m (G₃) as main plots (Figure 1). Three spacings of M. dubia were evaluated against sole cropping (G₀). During the experimental period, two lentil varieties were employed as the subplots, namely V_1 (IPL 316) and V_2 (L 4727), and replicated three times under M. dubia (Figure 2). These two varieties are low-water-requiring and are recommended for use in the Bundelkhand region. Lentil was sown at a spacing of 30 cm × 10 cm and a seed rate of 40 kg ha⁻¹. For M. dubia, no additional fertilization, irrigation, or pest control was applied during the experimental period beyond the standard plantation practices followed at the research farm. For Lens culinaris, recommended agronomic practices were followed for sowing and weeding, chemical fertilizers, and irrigation were applied. Fertilizer was applied to the lentil crop at the rate of 20 kg N ha⁻¹, 40 kg P₂₅ ha⁻¹, 20 kg K₂O ha⁻¹, and 20 kg S ha⁻¹ at the time of sowing. Intercultural operations were conducted when necessary, and the lentil crop was harvested in March. M. dubia was planted in July 2020, and the trees were three years old at the time of the lentil intercropping experiment conducted during Rabi 2023. Litterfall, tree growth, biomass, and carbon sequestration data were recorded over a continuous threeyear period (2020-2023), beginning from the year of plantation establishment. However, the lentil intercropping experiment, including crop quality analysis, was conducted only during Rabi 2023 under the established *M. dubia* stand. For estimation of litterfall and its nutrient concentrations, the months were treated as subplots. Tree growth and biomass parameters were estimated under different treatments using a Randomized Block Design, with observations recorded at two intervals i.e. before sowing and after harvesting of lentil in order to assess the seasonal influence of intercrop management on tree performance.

Nutrient analysis of lentil

Reliable sampling is crucial for acquiring dependable plant analysis outcomes. For nutrient quality analysis, three replications were maintained by compositing seeds obtained from nine randomly selected lentil plants at harvest in each treatment plot. Mechanical grinding of the seeds was conducted and utilized for chemical analysis according to the standard methodology (Jackson, 1973; AOAC, 1990). To determine the total nitrogen in the litterfall, a specified weight of the sample was digested in strong sulfuric acid (H₂SO₄). The sample was digested in a diacid mixture of HNO₃ and HClO₄ in a 3:1 ratio for the measurement of other nutrients. Nitrogen (N) in the digest was quantified using distillation utilizing a Kjeldahl apparatus with a boric acid indicator solution. The phosphorus (P) level in the digest was quantified using the vanadomolybdate phosphoric yellow colour method within a nitric acid medium. The concentrations of potassium (K) and calcium (Ca) in the digest were measured using a flame photometer. The amounts of iron (Fe), copper (Cu), and zinc (Zn) were determined using an atomic absorption spectrophotometer.

Litterfall analysis

Leaf litter was collected from the trees from the onset of litterfall in November until the trees were entirely devoid of leaves in

February across a three-year growth period. Three replications were employed for each treatment. Four metal litter traps measuring 1 m \times 1 m \times 10 cm were placed in each replication for each spacing. Leaf litterfall was obtained from these traps in paper bags during the leaf-shedding phase of M. dubia at biweekly intervals, and the quantities from two intervals were combined to get monthly litterfall values. The freshly weighed samples included a representative 50 g from each replication for subsequent analysis. The typical samples were subjected to oven drying at 70° C until a constant weight was achieved to determine the dry weight of litterfall (Mg ha⁻¹). Subsequently, the dried samples were crushed with an electric grinder equipped with stainless steel blades and sieved through a 2 mm mesh. The concentration of several nutrients was assessed according to the standard protocol on a monthly basis. The identical procedures employed for estimating nutrient contents in litterfall were also used for nutritional analysis in lentil seeds. The data were statistically analyzed using a split-plot design, with tree spacings as the main plot and months as the subplots.

PAR

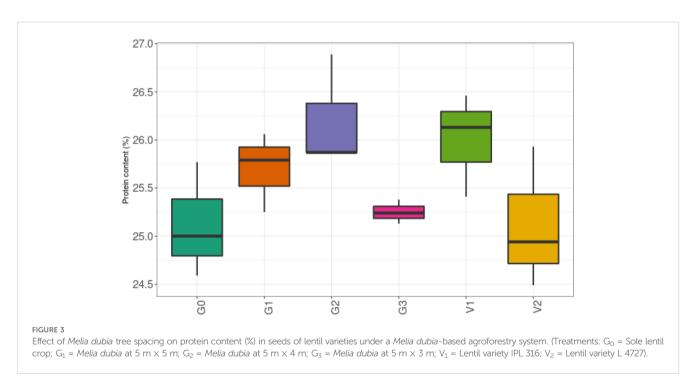
The data for PAR was taken with the help of the Lux meter two times a week in three slots, *i.e.*, morning, afternoon, and evening. The Lux reading was converted into (μ mol m⁻² s⁻¹) by the following formula, PAR= Lux \times 0.0185 μ mol m⁻² s⁻¹.

FIGURE 2
View of M. dubia plantation before sowing of lentil (a) and during the lentil crop growth period (b).

Tree growth, biomass, and carbon assessment

Tree height (m) was recorded using a Ravi Altimeter for each tree before sowing and after harvesting the intercrops. Girth at breast height (GBH) was measured at 1.37 meters above the ground using a measuring tape. Crown spread was assessed in both the north-south and east-west directions using ground-based measurements, both for trees under agroforestry systems and those in pure stands. Biomass estimation was performed by calculating above-ground biomass (AGB) using the pan-tropical allometric equation developed by Chave et al. (2014): AGB = $0.0673 \times (WD \times DBH^2 \times H)^{0.975}$, where wood density (WD) of 3-year-old M. dubia was 0.468 g cm⁻³ as reported by Saravanan et al (2014). Below-ground biomass (BGB) was estimated by multiplying AGB by a root-to-shoot ratio of 0.26 (Ravindranath and Ostwald, 2008), and total biomass was the sum of AGB and BGB. Carbon storage was determined by multiplying the total biomass by a carbon fraction of 0.5, based on the assumption that 50 percent of dry biomass constitutes carbon (MacDicken, 1997). Subsequently, the carbon dioxide (CO₂) sequestration potential was calculated by multiplying the carbon stock by a conversion factor of 3.67 (Howard et al., 2014), representing the molecular weight ratio of CO_2 to carbon.

Economic analysis


The costs related to the cultivation of lentil and *M. dubia* trees were evaluated based on the net cultivated area per hectare. The labour and mechanical power necessary for operations, including ploughing, harrowing, weeding, and harvesting, together with the costs associated with seeds and farmyard manure, were computed on a per-hectare basis utilizing the prevailing rates at the experimental farm. Returns were calculated on a per-hectare basis, considering the market selling prices of the cultivated crops. The total returns from *M. dubia* were assessed by evaluating the above-ground volume. Net returns were calculated by deducting total costs from gross returns and reported in US dollars. Net returns were calculated using formula of Bhatia et al. (2024).

Net Returns (US\$ ha $^{-1}$) = Gross Returns (US\$ ha $^{-1}$) – Cost of Cultivation (US\$ ha $^{-1}$)

TABLE 1 Effect of M. dubia tree spacing on nutrient content in the seeds of lentil varieties.

Treatments	N (%)	P (%)	K (%)	Ca (%)	Fe (mg 100 g ⁻¹)	Cu (mg 100 g ⁻¹)	Zn (mg 100 g ⁻¹)		
Tree spacings									
G ₀	4.02	0.41	0.70	0.42	6.3	2.42	3.62		
G_1	4.11	0.42	0.77	0.45	6.75	2.50	3.93		
G_2	4.19	0.43	0.77	0.47	6.8	2.55	3.98		
G ₃	4.04	0.45	0.75	0.44	6.73	2.56	3.93		
CD _{0.05}	0.11	0.02	0.03	0.02	0.12	0.06	0.21		
Lentil varieties	Lentil varieties								
V_1	4.16	0.42	0.79	0.46	6.71	2.59	3.92		
V ₂	4.02	0.44	0.71	0.43	6.58	2.42	3.81		
CD _{0.05}	0.09	0.01	0.02	0.01	NS	0.05	0.06		
Interaction									
CD _{0.05}	NS	NS	NS	NS	NS	NS	NS		

 G_0 , Sole lentil crop; G_1 , Melia dubia at 5 m × 5 m; G_2 , Melia dubia at 5 m × 4 m; G_3 , Melia dubia at 5 m × 3 m; V_1 , Lentil variety IPL 316; V_2 , Lentil variety L 4727. NS, Non-significant at $p \le 0.05$.

Similarly, Benefit Cost Ratio of the gross returns per dollar invested was calculated as

B: C Ratio = Gross returns (US\$ ha⁻¹)/Cost of Cultivation (US\$ ha⁻¹).

Statistical analysis

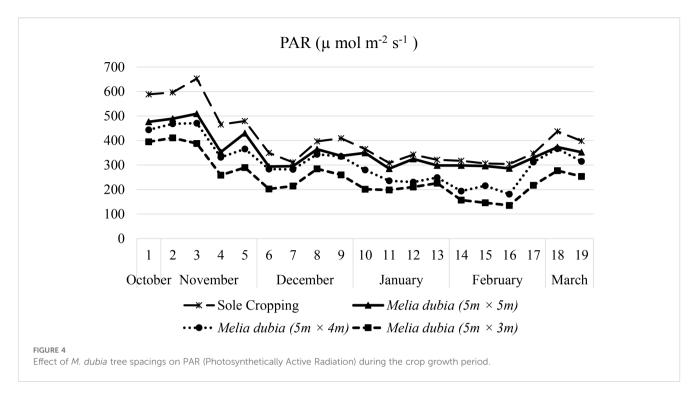
Data on lentil nutritional quality, litterfall characteristics, and economic returns were analysed using analysis of variance (ANOVA) for a split-plot design, with tree spacings (G_0 – G_3) as main plots and lentil varieties (V_1 and V_2) as sub-plots. Data on tree growth, biomass, and carbon sequestration were analysed using a

Completely Randomized Block Design (CRBD). The significance of differences was tested at the 5% probability level using OPSTAT statistical software.

Results and discussions

Nutrient contents in lentil seed

The nutrient content of lentil seed was significantly influenced by tree spacings and varieties was recorded and is presented in


TABLE 2 Production and nutrient concentrations in leaf litterfall of M. dubia plantations under different spacings.

Treatments	Litterfall (Mg ha ⁻¹ month ⁻¹)	N (%)	P (%)	K (%)	Ca (%)	Fe (mg 100g ⁻¹)	Cu (mg 100g ⁻¹)	Zn (mg 100g ⁻¹)	
Tree spacings									
G_1	0.99	0.89	0.15	0.77	0.51	98.3	3.29	10.98	
G ₂	1.07	0.9	0.16	0.8	0.54	99.45	3.41	11.12	
G ₃	1.19	0.91	0.17	0.8	0.58	99.56	3.49	11.26	
CD _{0.05}	0.02	NS	0.01	0.02	0.02	NS	0.06	NS	
Months	Months								
November	0.93	0.90	0.14	0.77	0.51	87.99	2.62	10.74	
December	1.05	0.92	0.18	0.8	0.56	88.09	2.75	11.02	
January	1.13	0.92	0.16	0.83	0.58	115.59	5.31	11.44	
February	1.21	0.88	0.15	0.76	0.53	104.74	2.90	11.28	
CD _{0.05}	0.03	0.02	0.01	0.02	0.02	2.3	0.07	0.29	
Interaction									
CD _{0.05}	NS	NS	NS	NS	NS	NS	NS	NS	

 G_0 , Sole lentil crop; G_1 , Melia dubia at 5 m × 5 m; G_2 , Melia dubia at 5 m × 4 m; G_3 , Melia dubia at 5 m × 3 m; V_1 , Lentil variety IPL 316; V_2 , Lentil variety L 4727. NS, Non-significant at $p \le 0.05$.

Table 1. Among different tree spacings, $5m \times 4m$ (G₂) recorded significantly higher nutrients, viz. protein content (Figure 3), nitrogen, and calcium, i.e., 26.21%, 4.19%, and 0.47% which was at par with $5m \times 5m$ (G₁) (25.7%, 4.11%, and 0.45%). Iron and Zinc were also significantly higher in $5m \times 4m$ (G₂) (6.8 mg $100g^{-}$ 1 , 3.98 mg $100g^{-1}$), which was at par with $5m \times 5m$ (G₁) (6.75 mg $100g^{-1}$, 3.93 mg $100g^{-1}$) and 5m × 3m (G₃) (6.73 mg $100g^{-1}$, 3.93 mg 100g⁻¹), respectively. Phosphorus was significantly higher in $5m \times 3m (G_3) (0.45\%)$, which was at par with $5m \times 4m (G_2) (0.43)$. The potassium was significantly higher in $5m \times 5m$ (G₁) (0.77%) and $5m \times 4m$ (G₂) (0.77%), which was at par with $5m \times 3m$ (G₃) (0.75%). The copper content was significantly higher in $5m \times 3m$ (G_3) (2.56 mg $100g^{-1}$), which was at par with $5m \times 4m$ (G_2) (2.55) mg $100g^{-1}$) and $5m \times 5m$ (G₁) (2.5 mg $100g^{-1}$). The lentil variety IPL 316 (V₁) exhibited the most significant nutrient content among the tested varieties. viz. protein content, nitrogen, potassium, calcium, copper, and zinc, i.e., 26.01%, 4.16%, 0.79%, 0.46%, 2.59 mg 100g⁻¹, 3.92 mg 100g⁻¹) respectively. The phosphorus content was significantly higher in L 4727 (V2), viz., 0.44%. There was no significant difference of lentil varieties on iron content in lentil seeds. The nutrient composition of lentil seeds is significantly affected by tree spacing and genetic potential in agroforestry systems, as it influences the microclimate, resource availability, and plant competition (Amassaghrou et al., 2023). The elevated phosphorus concentrations observed in high density Melia dubia plots may be attributed to nutrient sourcing from deeper soil layers facilitated by extensive root systems, which enhance vertical nutrient translocation. The favourable C:N ratio in lentils, coupled with their nitrogen-fixing ability, likely contributed to improved soil fertility and enhanced biomass

accumulation of M. dubia under intercropped conditions. This symbiotic nitrogen input may have supported tree growth in denser spacings by alleviating competition for soil nitrogen. In agroforestry systems, wider spacings generally provide superior light availability, less root competition, and enhanced access to soil nutrients for the intercrop, thus improving nutrient uptake and accumulation in seeds (Keprate et al., 2024). Conversely, reduced spacings may result in shade and underground competition, thus diminishing nutrient availability to plants and consequently decreasing seed nutritional content. Consequently, altering tree spacing is essential for improving intercrop yield and raising the nutritional quality of seeds, impacting both food security and the sustainability of soil fertility (Kumar et al., 2023). The relation between tree spacing and lentil variety is crucial in shaping the ultimate seed nutritional composition, and improving productivity in agroforestry systems. Zaki et al. (2017) reported that protein content and other quality parameters of pea seed were enhanced under Sesbania sesban-based alley cropping as compared to pea sole cropping. Painkra et al. (2023) revealed the enhancement of quality parameters of intercrops under peachbased agroforestry in the Chhattisgarh region. Dhewa et al. (2017) also observed an increase in protein content and other nutrients of green gram under Tectona grandis as compared with sole cropping of green gram. Sharma et al. (2023) studied the biochemical analysis, which demonstrated that the levels of total soluble protein were significantly elevated in the seeds of soybean cultivated under Aonla compared to the sole crop. Qiao et al. (2020) reported the increase in protein content of wheat under apricot based agroforestry, but the nutrients like nitrogen and phosphorus were reduced.

Litterfall and its nutrient concentration

Significant variations were observed in the litterfall and its nutrient concentrations under different tree spacings (Table 2). The significantly higher leaf litterfall was observed in $5m \times 3m$ (G₃) (1.19 Mg ha⁻¹), which was followed by tree spacing $5m \times 4m$ (G₂) $(1.07 \text{ Mg ha}^{-1})$ and $5m \times 5m (G_1) (0.99 \text{ Mg ha}^{-1})$. There was no significant effect of tree spacing on nutrient content in nitrogen, iron, and zinc. Phosphorus content was significantly higher in 5m × 3m (G₃) (0.17%), which was at par with 5m \times 4m (G₂) (0.16%). Potassium content was significantly higher in $5m \times 3m$ (G₃) (0.8%) and $5m \times 4m$ (G₂) (0.8%), while calcium and copper were found significantly higher in 5m \times 3m (G₃) (0.58%, 3.49 mg $100g^{-1}$). Among the four months, the significantly higher leaf litterfall was observed in February (1.21 Mg ha⁻¹), whereas the lowest was observed in November (0.93 Mg ha⁻¹). The nitrogen content was significantly higher in December (0.92%) and January (0.92%), which was at par with November (0.9%). Phosphorus content was significantly higher in December (0.18%), whereas potassium, iron, and copper content were significantly higher in January (0.83%, 115.59 mg 100g⁻¹, 5.31 mg 100g⁻¹). Calcium was having significant differences among different months and was highest in January (0.58%) which was at par with December (0.56%), while zinc was significantly higher in January (11.44 mg 100g⁻¹) which was at par with February (11.28 mg 100g-1). Litterfall and its nutrient composition are profoundly affected by tree spacing and seasonal variations in agroforestry systems, as space influences canopy structure, leaf density, and therefore the volume of biomass deposited into the soil (Bhardwaj et al., 2024). The higher litterfall observed under closer M. dubia spacing may arise from intensified competition and accelerated nutrient translocation, leading to increased leaf turnover. However, leaves shed in these conditions are often lower in nutrient concentration, suggesting that quantity of litterfall may not always correspond to nutrient quality. The quantity and timing of litterfall are directly affected by tree spacing; closer spacings lead to denser canopies and increased litterfall during peak months, whereas wider spacings may decrease total litterfall. The nutrient-dense litter, especially regarding nitrogen (N), phosphorus (P), and potassium (K), is essential for restoring soil fertility and facilitating intercrop development (Fahad et al., 2022). Therefore, regulating tree spacing is crucial for enhancing biomass production and sustaining balanced nutrient input into the soil via litterfall, thereby ensuring the agroforestry system's sustainability. In M. dubia-based agroforestry systems, litterfall generally reaches its peak during the dry season, typically from December to March, when leaf senescence is most apparent due to moisture stress and physiological cycles. Gupta et al. (2010) found the higher leaf litter production in the Albizia lebbeck-based agroforestry system without any pruning regimes, with more addition of nutrients. Kumar et al. (2021) revealed that the highest litterfall was noted in closer spacing than wider spacing, along with different nutrient concentrations in leaf litterfall in Eucalyptus tereticornis-based agroforestry. Gawali (2014) found that litterfall was significantly higher in closer spacing of 4m x 4 m than wider spacings in Ceiba pentandra-based agroforestry. Singh et al. (2007); Singh (2009), and Singh et al. (2024) studied the litterfall content, nutrient concentrations in different spacings and different months of Poplar-based agroforestry in Punjab, wherein the highest litterfall was observed in closer spacing. Singh et al. (2023) reported a pattern of nutrient dynamics through

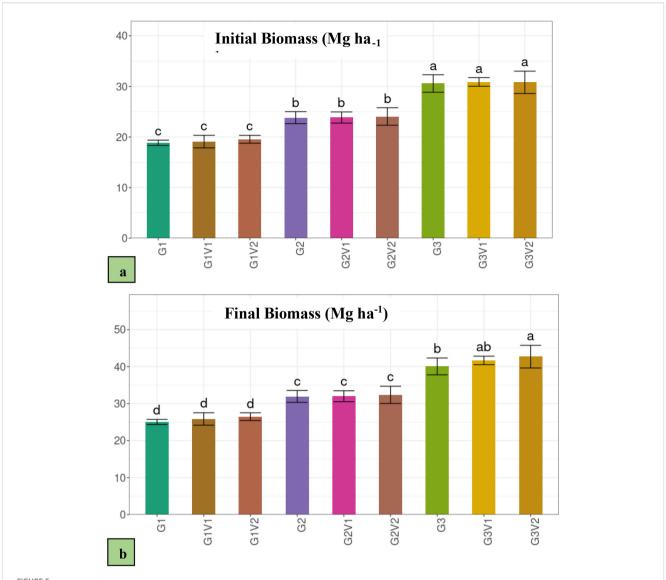
litterfall in *M. composita* plantation with different espacements under agroforestry, with the highest litterfall in closer spacing in December month with the highest nutrient contents.

Photosynthetically active radiation

The data in Figure 4 showed clear variations in the photosynthetically active radiation (PAR) received by the crop across several agroforestry system treatments. The photosynthetically active radiation (PAR) values varied between 304.09 and 652.85 μ mol m⁻² s⁻¹ in the G₀ (Lens culinaris sole cropping) and between 135.26 and 509.22 µ mol m⁻² s⁻¹ in the intercropped treatments (G1, G2, and G3) during the October 2023 to March 2024 crop growth period. A decrease in light availability resulting from the presence of M. dubia trees was consistently seen in the intercropped treatments, as evidenced by lower PAR values compared to the sole cropping. Among tree spacings, 5 m \times 3 m (G₃) exhibited the lowest PAR values, with values ranging from 135.26 to 410.68 μ mol m⁻² s⁻¹. The results emphasise the shading impact caused by M. dubia trees in the agroforestry system, leading to decreased light availability for the intercropped lentil crop. The diminishing pattern in PAR values as tree density increases highlights the need to take into account light availability during the establishment of agroforestry systems that include lentil or comparable pulse crops. Reduced PAR values under denser tree spacing not only limit photosynthesis but also alter the red:far-red phytochrome ratio, a key light quality signal regulating crop morphology and resource allocation under shaded environments (Smith, 2000). This change in light quality may explain variations in seed nutrient quality and growth responses of lentil under M. dubia spacing regimes. To achieve a satisfactory balance between tree benefits and agricultural yield in such environments, it is essential to optimize tree spacing and canopy management (Handiso et al., 2024). The shading caused by M. dubia leaves reduces the intensity of light, which in turn becomes a limiting factor in the decrease in yield of intercrops cultivated under M. dubia. Because of the shadowed conditions prevalent under block plantation, the data on PAR were higher in open conditions than under M. dubia. Gill et al. (2009) reported similar findings in the case of M. dubia, where there was a decrease in PAR under intercropping. Furthermore, several studies have examined the effects of various light conditions on crops in temperate agroforestry systems, including durum wheat and apple (Moretti et al., 2020). Peng et al. (2009) reported a significant reduction in photosynthetically active radiation (PAR) in a 4-year-old plantation of walnut and plum-based agroforestry spaced at 5 m × 3 m when intercropped with soybean maize. The effects of tree competition significantly reduced PAR in Neembased agroforestry intercropped with black gram as compared to sole cropping (Pandey et al., 2010). Comparable results were also reported by Mukherjee and Sarkar (2016) in Acacia auriculiformis, Casuarina equisetifolia, Dalbergia sissoo, Glyricidia sepium, Albizia lebbek, Gmelina arborea, and Eucalyptus hybrid when intercropped with the tea crop in the eastern region of India.

Tree growth parameters

Perusal of data (Table 3) showed that there was no significant effect on tree growth parameters. The highest final height (8.49 m) was recorded in G₃V₁, which had the initial height of 8.2 m. G₁V₁ recorded the highest final GBH (48.88 cm), which started with an initial GBH of 42.41 cm. G₃V₁ had the highest initial crown spread of 5.19 m and final crown spread of 5.73 m. The intercropped treatments in all spacings exhibited superior growth characteristics compared to sole trees indicating that reduction in the distance between trees and cultivating them together with lentil varieties contributed to the increase in height and non-significant changes in the girth of M. dubia trees in a very short span of time. The results revealed favourable impacts of intercropping on the growth of trees in the agroforestry systems. A possible cause for this result may be the complementarity between the tree and the crop. The finding was consistent with other research by Ashalatha et al. (2015) and Ali et al. (2023) that the height of the M. dubia tree was higher when it was grown alongside the agricultural crops in comparison to sole M. dubia trees. A similar trend was observed by Nandal and Kumar (2010) that the tree height of M. dubia was higher under an intercropped field than pure stand of M. dubia. Similar findings were obtained by Thakur et al. (2019) that the highest girth was observed in M. composita-based silvimedicinal system spaced at 3 m \times 3 m compared to pure stands of M. dubia spaced at 2 m \times 2 m. Several scientific studies have reported the advantageous impacts of intercropping on the girth of trees in M. dubia-based agroforestry systems (Mohanty et al., 2019). Prasad et al. (2010) observed that the growth attributes like height and diameter increased under different spatial arrangements of Eucalyptusbased agroforestry as compared to sole stands of Eucalyptus. Singh and Kumar (2014) found that a greater distance between trees in agroforestry systems led to a wider spread of the tree crown in poplar-based agroforestry. These findings align with the research conducted by Singh et al. (2017), which showed that intercropping with leguminous crops enhanced the development and enlargement of tree crowns of poplar in Uttar Pradesh.


Biomass and carbon estimation

Significant differences were observed among treatments for biomass estimation (Table 3). Before sowing, the significantly higher above ground biomass, below ground biomass and total biomass were recorded under G_3V_1 (24.51 Mg ha⁻¹, 6.37 Mg ha⁻¹, 30.88 Mg ha⁻¹), which was at par with G_3V_2 (24.45 Mg ha⁻¹, 6.35 Mg ha⁻¹, 30.8 Mg ha⁻¹), and G_3 (24.26 Mg ha⁻¹, 6.31 Mg ha⁻¹, 30.57 Mg ha⁻¹) while the lowest was under G_1 (14.97 Mg ha⁻¹, 3.89 Mg ha⁻¹, 18.86 Mg ha⁻¹). After harvest, biomass values increased markedly, with G_3V_2 showing the highest above ground biomass, below ground biomass and total biomass (33.89 Mg ha⁻¹, 8.81 Mg ha⁻¹, 42.7 Mg ha⁻¹), which was at par with G_3V_1 (33.08 Mg ha⁻¹, 8.6 Mg ha⁻¹, 41.68 Mg ha⁻¹) and G_3 (31.8 Mg ha⁻¹, 8.26 Mg ha⁻¹, 40.06 Mg ha⁻¹). There were significant differences observed for Carbon storage and CO_2 sequestration potential. Before sowing, the highest Carbon storage and CO_2 sequestration potential was recorded

TABLE 3 Growth, biomass, and carbon sequestration attributes of M. dubia under lentil intercropping in an agroforestry system.

Treatments	Tree height (m)	Girth at breast height (cm)	Crown spread (m)	Above-ground biomass (Mg ha ⁻¹)	Below-ground biomass (Mg ha ⁻¹)	Carbon storage (Mg ha ⁻¹)	CO ₂ sequestration potential (Mg ha ⁻¹)	
Before sowing								
G ₁ V ₁ (AFS)	7.77	42.41	5.19	15.16	3.94	9.55	35.06	
G ₁ V ₂ (AFS)	7.9	42.42	5.08	15.52	4.03	9.78	35.89	
G ₁ (Sole tree)	7.72	42.01	5.01	14.97	3.89	9.43	34.63	
G ₂ V ₁ (AFS)	7.94	41.96	4.95	18.93	4.92	11.93	43.77	
G ₂ V ₂ (AFS)	7.95	41.94	4.97	19.09	4.96	12.02	44.15	
G ₂ (Sole tree)	7.89	41.88	4.76	18.91	4.91	11.91	43.72	
G ₃ V ₁ (AFS)	8.2	41.32	4.48	24.51	6.37	15.44	56.68	
G ₃ V ₂ (AFS)	8.16	40.68	4.51	24.45	6.35	15.41	56.54	
G ₃ (Sole tree)	8.05	40.07	4.36	24.26	6.31	15.28	56.1	
S. Em.±	0.35	1.76	0.2	1.69	0.44	1.07	3.92	
CD _{0.05}	NS	NS	NS	5.09	1.32	3.21	11.77	
After harvest					'			
G ₁ V ₁ (AFS)	7.99	48.88	5.73	20.52	5.34	12.93	47.46	
G ₁ V ₂ (AFS)	8.11	48.86	5.68	21.02	5.46	13.25	48.61	
G ₁ (Sole tree)	7.90	48.39	5.53	19.88	5.17	12.52	45.96	
G ₂ V ₁ (AFS)	8.16	48.13	5.41	25.4	6.61	16.01	58.74	
G ₂ V ₂ (AFS)	8.18	48.16	5.38	25.69	6.68	16.18	59.34	
G ₂ (Sole tree)	8.1	48.01	5.12	25.36	6.59	15.98	58.65	
G ₃ V ₁ (AFS)	8.49	47.29	4.94	33.08	8.6	20.84	76.48	
G ₃ V ₂ (AFS)	8.44	46.64	4.92	33.89	8.81	21.35	78.37	
G ₃ (Sole tree)	8.29	46.01	4.68	31.8	8.26	20.03	73.52	
S. Em.±	0.36	1.88	0.21	2.29	0.59	1.44	5.3	
CD _{0.05}	NS	NS	NS	6.87	1.78	4.33	15.89	

 G_1V_1 , $Melia\ dubia\ at\ 5m imes\ 5m$ + Lentil variety IPL 316; G_1V_2 , $Melia\ dubia\ at\ 5m imes\ 5m$ + Lentil variety IPL 316; G_2V_2 , $Melia\ dubia\ at\ 5m imes\ 4m$ + Lentil variety IPL 316; G_2V_2 , $Melia\ dubia\ at\ 5m imes\ 4m$ + Lentil variety IPL 316; G_2V_2 , $Melia\ dubia\ at\ 5m imes\ 4m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ + Lentil variety IPL 316; G_3V_2 , $Melia\ dubia\ at\ 5m imes\ 3m$ +

Total biomass ((a) initial biomass; (b) final biomass] of Melia dubia under under Lentil intercropping in agroforestry system (Treatments: $G_1V_1 = Melia$ dubia at $5m \times 5m + Lentil$ variety |PL 316, $G_1V_2 = Melia$ dubia at $5m \times 5m + Lentil$ variety |PL 316, $G_2V_2 = Melia$ dubia at $5m \times 5m + Lentil$ variety |PL 316, $G_2V_2 = Melia$ dubia at $5m \times 4m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 4m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 4m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ variety |PL 316, $G_3V_2 = Melia$ dubia at $5m \times 3m + Lentil$ v

under G_3V_1 (15.44 Mg ha⁻¹, 56.68 Mg ha⁻¹), which was at par with G_3V_2 (15.41 Mg ha⁻¹, 56.54 Mg ha⁻¹), and G_3 (15.28 Mg ha⁻¹, 56.1 Mg ha⁻¹), while the lowest was under G_1 (9.55 Mg ha⁻¹, 35.06 Mg ha⁻¹). After harvest, carbon storage and CO_2 sequestration potential increased markedly, with G_3V_2 showing the highest carbon storage and CO_2 sequestration potential (21.35 Mg ha⁻¹, 78.37 Mg ha⁻¹), which was at par with G_3V_1 (20.84 Mg ha⁻¹, 76.48 Mg ha⁻¹) and G_3 (20.03 Mg ha⁻¹, 73.52 Mg ha⁻¹). These studies have also shown that closer spacing in trees and intercropping practices can augment tree biomass production in agroforestry systems (Figure 5). Similar results were given by Ramesh et al. (2023) that Eucalyptus intercropped with pearl millet recorded higher above-ground biomass as compared to a sole stand of Eucalyptus. A three-year-old M. dubia plantation at a

density of 500 trees per hectare could sequester 25.64 Mg C ha⁻¹ in the Bundelkhand region of Central India (Gautam et al., 2025). Prajapati et al. (2020) also found a similar trend in an *M. dubia*-based silvopasture system. Vanlalngurzauva et al. (2010) found the biomass of *Gmelina arborea* increases when intercropped with black gram and groundnut as compared to sole *G. arborea*. These findings further substantiate the results reported in our study by Prajapati et al. (2023) that higher biomass was obtained under spacing of 4m × 4m *M. dubia*-based silvipasture system. Chandana et al. (2020) observed that highest carbon stock was observed under closer spacing of *M. dubia*-based agroforestry. Agroforestry has substantial potential for carbon sequestration, this finding aligns with previous studies that have highlighted positive effects of intercropping (Murthy et al., 2013).

TABLE 4 Economic Analysis of the M. dubia-based agroforestry system.

Treatments	Cost of cultivation (US\$ ha ⁻¹)	Gross returns (US\$ ha ⁻¹)	Net returns (US\$ ha ⁻¹)	B: C Ratio					
Tree spacings									
G_0	485	798	313	1.64					
G_1	1240	3333	2093	2.68					
G_2	1352	3772	2420	2.79					
G_3	1444	4227	2783	2.92					
SEm±	-	25.21	25.21	0.02					
CD _{0.05}	-	87.24	87.24	0.06					
Lentil varieties									
V_1	1130	3060	1930	2.7					
V_2	1130	3004	1874	2.65					
SEm±	-	14.16	14.16	0.01					
CD _{0.05}	-	46.17	46.17	0.03					
Interaction									
CD _{0.05}	-	NS	NS	NS					

 G_0 , Sole lentil crop; G_1 , Melia dubia at 5 m × 5 m; G_2 , Melia dubia at 5 m × 4 m; G_3 , Melia dubia at 5 m × 3 m; V_1 , Lentil variety IPL 316; V_2 , Lentil variety L 4727. NS, Non-significant at $p \le 0.05$.

Chauhan et al. (2012) demonstrated that carbon sequestration potential of *Populus deltoides* tree was higher under intercropping in poplar-wheat-based agroforestry.

Economic analysis

The cost of cultivating one hectare of land using various combinations of the M. dubia-based agroforestry system showed different trends (Table 4). As compared to lentil sole cropping, the expenses increased by 2-3 percent when planting M. dubia alongside lentil. The total cost of cultivation was calculated for the entire three-year establishment period of the M. dubia plantation, including the lentil intercrop season of 2023. On the other hand, when lentil was intercropped with M. dubia under 5m \times 3m (G₃) and 5m \times 4m (G₂) spacing, the net returns were \$2782 ha⁻¹ and \$2420 ha⁻¹, respectively. These returns were higher than sole cropping (G₀). Profitability increased progressively from G₀ to G₃, indicating that closer tree spacing positively impacts returns. The significantly higher Benefit-Cost Ratio (B:C) of 2.92 under $5m \times 3m$ (G₃). Both varieties had similar costs of cultivation but differed slightly in gross returns, making IPL 316 (V1) the preferred choice. Among the lentil varieties, the highest net returns of \$1930 ha-1 with a Benefit-Cost Ratio of 2.7 were achieved by IPL 316 (V_1). The lesser return in sole cropping can be linked to the sole presence of a single crop, which produces comparatively lesser amounts and so generates diminished income. The findings align with the study conducted by Dev et al. (2020), which assessed the performance of sesame-chickpea in a bamboo-based agroforestry system and revealed that sesamechickpea cultivation growing with bamboo yielded greater gross returns and profits compared to growing it as a sole crop. Similar results were given by Pratap et al. (2020) under *M. compositabased* agroforestry. Thakur et al. (2022) and Jilariya et al. (2019) also observed higher net returns and greater benefit-cost ratio for *M. dubia*-based agroforestry in comparison to sole cropping.

Conclusion

The study emphasizes the diverse advantages of incorporating M. dubia into agroforestry systems alongside L. culinaris farming in the semi-arid Bundelkhand region. The spacing of trees markedly affected the nutrient composition of lentil seeds, the quantity and quality of litterfall, tree development patterns, biomass accumulation, carbon sequestration, and overall economic feasibility. The 5m × 3m (G₃) tree spacing exhibited optimal performance regarding total biomass (42.7 Mg ha⁻¹), carbon storage (21.35 Mg ha⁻¹), and CO₂ sequestration potential (78.37 Mg ha⁻¹), in addition to the highest litterfall (1.19 Mg ha⁻¹) and nutrient return to the soil, thereby improving ecosystem sustainability. The lentil variety IPL 316 (V₁) consistently outperformed L 4727 (V2) in terms of nutrient quality attributes and profitability with net returns (\$ 1930 ha⁻¹). The economic analysis indicated that the G₃ spacing yielded the highest net returns (\$ 2783 ha⁻¹) and Benefit-Cost Ratio (2.92), suggesting that denser spacings can enhance profitability while preserving the ecological balance. Despite diminished photosynthetically active radiation (PAR) under denser tree cover impacting crop light availability, the compensatory benefit of improved soil nutrient recycling and elevated crop nutritional quality highlights the benefits of optimized agroforestry systems. This study confirms that a properly managed M. dubia-based agroforestry system can enhance crop

production, ecological resilience, and farmers' income, establishing it as a sustainable land use model for climate-vulnerable areas.

draft, Writing – review & editing. SB: Formal Analysis, Supervision, Visualization, Writing – original draft, Writing – review & editing.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding author.

Author contributions

PD: Conceptualization, Formal Analysis, Investigation, Methodology, Project administration, Software, Visualization, Writing - original draft, Writing - review & editing. PT: Conceptualization, Formal Analysis, Investigation, Methodology, Resources, Supervision, Writing - original draft, Writing - review & editing. MD: Conceptualization, Resources, Supervision, Writing - original draft, Writing - review & editing. RY: Conceptualization, Data curation, Formal Analysis, Methodology, Resources, Validation, Writing - original draft, Writing - review & editing. AH: Conceptualization, Methodology, Resources, Supervision, Writing - original draft, Writing - review & editing. NK: Conceptualization, Resources, Supervision, Validation, Writing - original draft, Writing - review & editing. DR: Conceptualization, Formal Analysis, Supervision, Validation, Visualization, Writing - original draft, Writing - review & editing. ID: Data curation, Formal Analysis, Visualization, Writing original draft, Writing - review & editing. DY: Conceptualization, Data curation, Validation, Visualization, Writing - original draft, Writing - review & editing. HA: Conceptualization, Data curation, Formal Analysis, Validation, Writing - original draft, Writing review & editing. AS: Investigation, Software, Supervision, Validation, Visualization, Writing - original draft, Writing review & editing. VS: Formal Analysis, Methodology, Software, Validation, Writing - original draft, Writing - review & editing. AK: Data curation, Formal Analysis, Software, Writing - original

Funding

The author(s) declare that no financial support was received for the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer JD declared a shared affiliation with the author(s) AK to the handling editor at the time of review.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Akchaya, K., Parasuraman, P., Pandian, K., Vijayakumar, S., Thirukumaran, K., Mustaffa, M. R., et al. (2025). Boosting resource use efficiency, soil fertility, food security, ecosystem services, and climate resilience with legume intercropping: A review. Front. Sustain. Food Syst. 9. doi: 10.3389/fsufs.2025.1527256

Akhilraj, T. M., Parthiban, K. T., and Kambli, S. S. (2023). Assessment of leaf fodder quality of Melia dubia genetic resources for proximate and mineral composition. *Indian J. Ecol.* 50, 926–931. doi: 10.55362/IJE/2023/3991

Ali, S., Vasudev, K. L., Devagiri, G. M., Hegde, R., and Naik, K. (2023). Growth performance of Melia dubia in agroforestry in the central dry zone of Karnataka. *Int. J. Advanced Biochem. Res.* SP7, 478–481. doi: 10.33545/26174693.2023.v7.i2Sg.254

Amassaghrou, A., Barkaoui, K., Bouaziz, A., Alaoui, S. B., Fatemi, Z. E. A., and Daoui, K. (2023). Yield and related traits of three legume crops grown in olive-based agroforestry under an intense drought in the South Mediterranean. *Saudi J. Biol. Sci.* 30, 103597. doi: 10.1016/j.sjbs.2023.103597

AOAC (1990). Official methods of analysis of the association of official analytical chemists. 15th Edition (Washington, D.C: Association of Official Analytical Chemists).

Arunachalam, A., Rizvi, R. H., Handa, A. K., and Ramanan, S. S. (2022). Agroforestry in India: area estimates and methods. *Curr. Sci.* 123, 743–744. doi: 10.18520/cs/v123/i6/743-744

Ashalatha, A., Divya, M. P., and Ajayghosh, V. (2015). Development of suita ble Melia dubia-based agroforestry models for higher productivity. *Madras Agric. J.* 102, 264–267. doi: 10.29321/MAJ.10.001115

OPSTAT statistical software. Available online at: http://opstat.somee.com/opstat/onefactor/onefactor.html (Accessed August 20, 2024).

Awasthi, P., Bargali, K., Bargali, S. S., and Khatri, K. (2022). Nutrient return through decomposing Coriaria Nepalensis litter in degraded hills of Kumaun Himalaya, India. Front. For. Glob. Change 5. doi: 10.3389/ffgc.2022.1008939

Bhardwaj, K. K., Yadav, R., Goyal, V., and Sharma, M. K. (2024). Pattern of litterfall production and nutrient addition in soil through litterfall by different tree species: A review. *Environ. Conserv. J.* 25, 257–266. doi: 10.36953/ECJ.24592671

Bhat, S., Aditya, K. S., Kumari, B., Acharya, K. K., and Sendhil, R. (2022). "Pulses production, trade and policy imperatives: A global perspective," in *Advances in legumes*

for sustainable intensification. Eds. R. S. Meena and S. Kumar (Academic Press, San Diego, CA), 639–656, doi: 10.1016/B978-0-323-85797-0.00018-5

Bhatia, A., Sharma, K., Thakur, M., Kumar, S., Sharma, R., and Kumar, A. (2024). Ecological and economical assessment of harar–soybean agroforestry system in subtropical conditions of Himachal Pradesh, India. *Agroforestry Syst.* 98, 151–164. doi: 10.1007/s10457-023-00896-2

Chakravarty, S., Pala, N. A., Tamang, B., Sarkar, B. C., Manohar, K. A., Rai, P., et al. (2019). "Ecosystem services of trees outside forest," in *Sustainable agriculture, forest and environmental management*Eds. M. K. Jhariya, A. Banerjee, R. Meena and D. Yadav (Springer, Singapore), 327–352. doi: 10.1007/978-981-13-6830-1_10

Chandana, P., Lata, A. M., Khan, M. A., and Krishna, A. (2020). Climate change smart option and doubling farmer's income through *Melia dubia*-based agrisilviculture system. *Curr. Sci.* 118, 444–448. doi: 10.18520/cs/v118/i3/444-448

Chauhan, S. K., Brar, M. S., and Sharma, R. (2012). Performance of poplar (*Populus deltoides*) and its effect on wheat yield under agroforestry system in irrigated agroecosystem, India. Caspian J. Environ. Sci. .10, 53–60.

Chauhan, R. S., Jadeja, D. B., Thakur, N. S., Jha, S. K., and Sankanur, M. S. (2018). Selection of candidate plus trees (CPTs) of Malabar neem (*Melia dubia* Cav.) for enhancement of farm productivity in south Gujarat, India. *Int. J. Curr. Microbiol. App. Sci.* 7, 3582–3592. doi: 10.20546/ijcmas.2018.705.414

Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B., et al. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. *Global Change Biol.* 20, 3177–3190. doi: 10.1111/gcb.12629

Deshmukh, P. P., Tiwari, P., Dobriyal, M. J., Yadav, R. P., Handa, A. K., Shekhawat, V., et al. (2025). Optimizing Pulse Cultivation: Impact of Malabar Neem (*Melia dubia* Cav.) Spacings on Growth and Yield of Lentil (*Lens culinaris* Medik.) Vis-a-Vis Soil Health in Semi-arid Conditions of Bundelkhand. *Legume Research-An Int. J.*, 1–8. doi: 10.18805/LR-5491

Dev, I., Ram, A., Ahlawat, S. P., Palsaniya, D. R., Newaj, R., Tewari, R. K., et al. (2017). Bamboo (Dendrocalamus strictus) + sesame (Sesamum indicum) based agroforestry model: A sustainable livelihood option for farmers of semi-arid region. *Indian J. Agric. Sci.* 87, 1528–1534. doi: 10.56093/ijas.v87i11.75746

Dev, I., Ram, A., Ahlawat, S. P., Palsaniya, D. R., Singh, R., Dhyani, S. K., et al. (2020). Bamboo-based agroforestry system (*Dendrocalamus strictus+* sesame–chickpea) for enhancing productivity in semi-arid tropics of central India. *Agrofor. Syst.* 94, 1725–1739. doi: 10.1007/s10457-020-00492-8

Dhewa, J. S., Daniel, S., and Sulochana, (2017). Effect of different levels of phosphorus and sulphur on yield and quality of green gram (Vigna radiata L.) under teak (Tectona grandis L.) -based agroforestry system. *Int. J. Curr. Microbiol. App. Sci.* 6, 520–534. doi: 10.20546/ijcmas.2017.602.059

Elias, D. M., Robinson, S., Both, S., Goodall, T., Majalap-Lee, N., Ostle, N. J., et al. (2020). Soil microbial community and litter quality controls on decomposition across a tropical forest disturbance gradient. *Front. For. Glob. Change* 3. doi: 10.3389/ffgc.2020.0008

Fahad, S., Chavan, S. B., Chichaghare, A. R., Uthappa, A. R., Kumar, M., Kakade, V., et al. (2022). Agroforestry systems for soil health improvement and maintenance. *Sustainability* 14, 14877. doi: 10.3390/su142214877

Forest Survey of India (2023). "Forest and tree cover," in *India state of forest report 2023, volume I* (Ministry of Environment, Forest and Climate Change, Government of India, Dehradun).

Gautam, K., Kumar, N., Ram, A., Dev, I., Choudhury, B. U., Singh, N. R., et al. (2025). Root architecture and carbon sequestration potential of fast-growing agroforestry tree species in semi-arid Central India. *Front. Agron.* 7. doi: 10.3389/fagro.2025.1597122

Gawali, A. (2014). Litterfall, carbon and nutrient returns in stands of *ceiba pentandra* (L.) gaertn. Subhumid tropics of eastern India. *Indian J. Ecol.* 41, 57–62.

Ghosh, P. K., Bandyopadhyay, K. K., Wanjari, R. H., Manna, M. C., Misra, A. K., Mohanty, M., et al. (2007). Legume effect for enhancing productivity and nutrient use-efficiency in major cropping systems – an Indian perspective: a review. *J. Sustain. Agric.* 30, 59–86. doi: 10.1300/J064v30n01_07

Ghosh, P. K., Kumar, S., and Singh, G. (2014). Agronomic practices for agroforestry systems in India. *Indian J. Agron.* 59, 497–510. doi: 10.59797/ija.v59i4.4571

Gill, R. I. S., Singh, B., and Kaur, N. (2009). Productivity and nutrient uptake of newly released wheat varieties at different sowing times under poplar plantation in northwestern India. *Agrofor. Syst.* 76, 579–590. doi: 10.1007/s10457-009-9223-0

Gupta, S. R., Dagar, J. C., and Teketay, D. (2020). "Agroforestry for rehabilitation of degraded landscapes: Achieving livelihood and environmental security," in *Agroforestry for degraded landscapes: recent advances and emerging challenges vol. 1.* Eds. J. C. Dagar and D. Teketay (Springer, Singapore), 23–68. doi: 10.1007/978-981-15-4136-0_2

Gupta, G., Yadav, R. S., Maurya, D., and Mishra, S. V. (2010). Litter dynamics under different pruning regimes of *Albizia procera* based agroforestry system in semiarid region. *Asian Sci.* 5, 93–97.

Handiso, M. A., Asfaw, Z., Glaser, B., Bromm, T., Gross, A., and Lemma, B. (2024). Effects of canopy management of umbrella tree (Terminalia brownii Fres.) on microclimate and maize (Zea mays L.) yield in agroforestry parkland of South Ari District, southern Ethiopia. Front. Sustain. Food Syst. 8. doi: 10.3389/fsufs.2024.1464609

Howard, J., Hoyt, S., Isensee, K., Telszewski, M., and Pidgeon, E. (2014). Coastal Blue Carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal

salt marshes, and seagrass meadows (Arlington, VA, USA: Conservation International; IOCUNESCO: IUCN), 180.

Jackson, M. L. (1973). *Soil chemical analysis* (New Delhi: Prentice Hall of India Pvt. Ltd.) 1–498

Jilariya, D. J., Thakur, N. S., Singh, N., and Gunaga, R. P. (2019). Economics of cultivation of *Melia dubia Cav.-Aloe vera L.* silvi-medicinal model. *Indian J. Agrofor.* 21, 35–40.

Jinger, D., Kakade, V., Bhatnagar, P. R., Paramesh, V., Dinesh, D., Singh, G., et al. (2024). Enhancing productivity and sustainability of ravine lands through hortisilviculture and soil moisture conservation: A pathway to land degradation neutrality. *J. Environ. Manage.* 364, 121425. doi: 10.1016/j.jenvman.2024.121425

Jinger, D., Kakade, V., Kaushal, R., Bhatnagar, P. R., Ghosh, A., Mahawer, S. K., et al. (2025). Nature-based solutions for enhancing soil health and M. sequestration in degraded ravine lands through silvo-aromatic system and soil moisture conservation techniques. *J. Environ. Manage.* 380, 124904. doi: 10.1016/j.jenvman.2025.124904

Jinger, D., Kakade, V. D., Kaushal, R., Dinesh, D., Bhatnagar, P. R., and Singhal, V. (2021). Rehabilitation of degraded lands through different planting techniques in *Melia dubia Cav. Food Sci. Rep.* 2, 7–9.

Jinger, D., Kaushal, R., Kumar, R., Paramesh, V., Verma, A., Shukla, M., et al. (2023). Degraded land rehabilitation through agroforestry in India: Achievements, current understanding, and future prospectives. *Front. Ecol. Evol.* 11. doi: 10.3389/fevo.2023.1088796

Jinger, D., Khatri, P., Kumari, K., and Kumar, D. (2022b). Agroforestry-Based ecosystem services for livelihood resilience. *Food Sci. Rep.* 3, 50–55.

Jinger, D., Kumar, R., Kakade, V., Dinesh, D., Singh, G., Pande, V. C., et al. (2022a). Agroforestry system for controlling soil erosion and enhancing system productivity in ravine lands of Western India under climate change scenarios. *Environ. Monit. Assess.* 194. 267. doi: 10.1007/s10661-022-09910-z

Keprate, A., Bhardwaj, D. R., Sharma, P., Kumar, D., and Rana, R. K. (2024). Biomass partitioning, carbon storage, and pea (Pisum sativum L.) crop production under a Grewia optiva-based agroforestry system in the mid-hills of the northwestern Himalayas. *Sustainability* 16,), 7438. doi: 10.3390/su16177438

Ketali, S. S., Swaminathan, B., and Aiswarya, S. (2024). Towards atmanirbharta (self-reliance) in the production of pulse crops in India: A situational analysis of future demand and supply. *Int. J. Humanities Soc. Sci. Manage.* 4, 241–254.

Kreitzman, M., Chapman, M., Keeley, K. O., and Chan, K. M. (2022). Local knowledge and relational values of Midwestern woody perennial polyculture farmers can inform tree-crop policies. *People Nat.* 4, 180–200. doi: 10.1002/pan3.10275

Kumar, S., Gopinath, K. A., Sheoran, S., Meena, R. S., Srinivasarao, C., Bedwal, S., et al. (2023). Pulse-based cropping systems for soil health restoration, resources conservation, and nutritional and environmental security in rainfed agroecosystems. *Front. Microbiol.* 13. doi: 10.3389/fmicb.2022.1041124

Kumar, T., Kumari, B., Arya, S., Jayaswal, D., and Kaushik, P. (2021). Litterfall guided soil nutrient return in Eucalyptus based agroforestry system. *Indian J. Traditional Knowledge* 20, 544–549.

Lal, R. (2025). Managing soil health in africa (MASHA) by re-carbonization of its agroecosystems. *Egyptian J. Soil Sci.* 65, 301–320. doi: 10.21608/ejss.2024.334426.1913

Lasco, R. D., Delfino, R. J. P., and Espaldon, M. L. O. (2014). Agroforestry systems: helping smallholders adapt to climate risks while mitigating climate change. *Wiley Interdiscip. Reviews: Climate Change* 5, 825–833. doi: 10.1002/wcc.301

Liu, J. (2025). Progress in research on the effects of environmental factors on natural forest regeneration. *Front. For. Glob. Change* 8. doi: 10.3389/ffgc.2025.1525461

MacDicken, K. G. (1997). "A guide to monitoring carbon storage in forestry and agroforestry projects," in Winrock international institute for agricultural development, forest carbon monitoring program. (Arlington, VA).

Malik, D. P., Devi, M., and Reddy, A. A. (2022). Global status of lentil production with special reference to India. *Indian J. Agric. Sci.* 92, 46–50. doi: 10.56093/ijas.v92i4.123972

Mohanty, S., Thakur, N. S., Gunaga, R. P., and Gajbhiye, N. (2019). Influence of *Melia dubia* Cav. Spatial Geometries on Growth, Herbage Yield and Essential Oil Constituents of *Cymbopogon martinii* (Roxb.) Wats. *J. Essential Oil Bearing Plants* 22, 630–648. doi: 10.1080/0972060X.2019.1642144

Moretti, B., Fracasso, A., Sacco, D., and Nervo, G. (2020). Morphology, phenology, yield, and quality traits of durum wheat cultivars grown under different light regimes in a temperate agroforestry system. *Agronomy* 10, 1789. doi: 10.3390/agronomy10111789

Mukherjee, A., and Sarkar, S. (2016). Impact of photosynthetic active radiation on performance of tea crop under agro forestry ecosystem in eastern India. *Ital J. Agrometeorol-Rivista Italiana Di Agrometeorologia* 21, 37–46.

Murthy, I. K., Gupta, M., Tomar, S., Munsi, M., Tiwari, R., Hegde, G. T., et al. (2013). Carbon sequestration potential of agroforestry systems in India. *J. Earth Sci. Climate Change* 4, 1–7. doi: 10.4172/2157-7617.1000131

Nair, P. K. R. (2012). Carbon sequestration studies in agroforestry systems: a reality-check. *Agrofor. Syst.* 86, 243–253. doi: 10.1007/s10457-011-9434-z

Nair, P. K. R., Mohan Kumar, B., and Nair, V. D. (2009). Agroforestry as a strategy for carbon sequestration. *J. Plant Nutr. Soil Sci.* 172, 10–23. doi: 10.1002/jpln.200800030

Nandal, D. P. S., and Kumar, R. (2010). Influence of *Melia azedarach*-based land use systems on economics and reclamation of salt affected soil. *Indian J. Agrofor.* 12, 23–26.

Painkra, D. S., Toppo, P., Tirkey, J., Kashyap, P., Yadav, P., Minj, S. K., et al. (2023). Economics of Potato Varieties (*Solanum tuberosum* L.) and Soil Health under Peachbased Agroforestry System in Northern Hills Zone of Chhattisgarh, India. *Int. J. Plant Soil Sci.* 35, 1016–1020. doi: 10.9734/ijpss/2023/v35i203896

Palsaniya, D. R., Tewari, R. K., Singh, R., Yadav, R. S., and Dhyani, S. K. (2010). Farmer-agroforestry land use adoption interface in degraded agroecosystem of Bundelkhand region, India. *Range Manage. Agroforestry* 31, 11–19.

Pandey, A. K., Gupta, V. K., and Solanki, K. R. (2010). Productivity of neem-based agroforestry system in semi-arid region of India. *Range Manage. Agroforestry* 31, 144–149.

Pandey, A. K., Tripathi, Y. C., and Kumar, A. (2016). Non timber forest products (NTFPs) for sustained livelihood: Challenges and strategies. *Res. J. Forestry* 10, 1–7. doi: 10.3923/rjf.2016.1.7

Peng, X., Zhang, Y., Cai, J., Jiang, Z., and Zhang, S. (2009). Photosynthesis, growth and yield of soybean and maize in a tree-based agroforestry intercropping system on the Loess Plateau. *Agrofor. Syst.* 76, 569–577. doi: 10.1007/s10457-009-9227-9

Pohlmann, V., Schöffel, E. R., Eicholz, E. D., Guarino, E. D. S. G., Eicholz, M. D., Del Pino, B. S., et al. (2024). Impacts of agroforestry systems and intercropping on the growth, production, and seed quality of corn and beans. *Agrofor. Syst.* 98, 3075–3088. doi: 10.1007/s10457-024-01075-7

Ponyane, P., Dina Ebouel, F. J., and Eze, P. N. (2025). Formation pathways, ecosystem functions, and the impacts of land use and environmental stressors on soil aggregates. *Front. Environ. Sci.* 13. doi: 10.3389/fenvs.2025.1628746

Prajapati, D. R., Thakur, N. S., Gunaga, R. P., and Bhuva, D. C. (2023). Growth and production of *Melia dubia* under silvi-pasture systems and sole plantations: Positive implications of intercropping hybrid napier. *Indian J. Agrofor.* 25, 41–47.

Prajapati, D. R., Thakur, N. S., Singh, N., Gunaga, R. P., and Patel, V. R. (2020). Economic feasibility of *Melia dubia*-Sorgham Sudan grass based silvi-pasture systems. *Indian J. Ecol.* 47, 502–506.

Prasad, J. V. N. S., Korwar, G. R., Rao, K. V., Mandal, U. K., Rao, C. A. R., Rao, G. R., et al. (2010). Tree row spacing affected agronomic and economic performance of Eucalyptus-based agroforestry in Andhra Pradesh, Southern India. *Agrofor. Syst.* 78, 253–267. doi: 10.1007/s10457-009-9275-1

Pratap, U. B., Pant, K. S., Kumar, S., and Tiwari, P. (2020). Economic feasibility of *Melia composita*-radish based agrisilviculture systems. *Int. J. Chem. Stud.* 8, 257–260. doi: 10.22271/chemi.2020.v8.i5e.10620

Qiao, X., Chen, X., Lei, J., Sai, L., and Xue, L. (2020). Apricot-based agroforestry system in Southern Xinjiang Province of China: influence on yield and quality of intercropping wheat. *Agrofor. Syst.* 94, 477–485. doi: 10.1007/s10457-019-00412-5

Ram, A., Choure, S., Dev, I., Kumar, N., Singh, D., Kumar, D, et al. (2025). Soil carbon and nutrient cycling regulated by fine roots distribution and dynamics in teak (*Tectona grandis L.*) -based agroforestry system in semi-arid central India. *J. Soil Sci. Plant Nutr.* 25, 7281-7293. doi: 10.1007/s42729-025-02595-6

Ramesh, K. R., Deshmukh, H. K., Sivakumar, K., Guleria, V., Umedsinh, R. D., Krishnakumar, N., et al. (2023). Influence of Eucalyptus agroforestry on crop yields, soil properties, and system economics in Southern Regions of India. Sustainability 15, 3797. doi: 10.3390/su15043797

Ravindranath, N. H., and Ostwald, M. (2008). Carbon inventory methods: handbook for greenhouse gas inventory, carbon mitigation and roundwood production projects (Advances in global change research, vol. 29) (Dordrecht: Springer Netherlands). doi: 10.1007/978-1-4020-6547-7

Riaz, F., Hameed, A., and Asghar, M. J. (2024). Grain nutritional and antioxidant profiling of diverse lentil (*Lens culinaris* Medikus) genetic resources revealed genotypes with high nutritional value. *Front. Nutr.* 11. doi: 10.3389/fnut.2024.1344986

Saleem, I., Mugloo, J. A., Pala, N. A., Bhat, G. M., Masoodi, T. H., Mughal, A. H., et al. (2023). Biomass production, carbon stock and sequestration potential of prominent agroforestry systems in north-western Himalaya, India. *Front. For. Glob. Change* 6. doi: 10.3389/ffgc.2023.1192382

Saravanan, V., Parthiban, K. T., Thiruneraiselvan, S., Kumar, P., Vennila, S., and Kanna, S. U. (2014). Comparative study of wood physical and mechanical properties of

Melia dubia with Tectona grandis at different Age Gradation. Res. J. Recent Sci. 3, 256–263

Selvan, T., Panmei, L., Murasing, K. K., Guleria, V., Ramesh, K. R., Bhardwaj, D. R., et al. (2023). Circular economy in agriculture: Unleashing the potential of integrated organic farming for food security and sustainable development. *Front. Sustain. Food Syst.* 7. doi: 10.3389/fsufs.2023.1170380

Semba, R. D., Ramsing, R., Rahman, N., Kraemer, K., and Bloem, M. W. (2021). Legumes as a sustainable source of protein in human diets. *Global Food Secur.* 28, 100520. doi: 10.1016/j.gfs.2021.100520

Sharma, A. (2023). Rainfall deficiency, drought and economic growth in the Bundelkhand region of India. *Sustain. Water Resour. Manage.* 9, 72. doi: 10.1007/s40899-023-00851-0

Sharma, A., Sharma, K., Thakur, M., and Kumar, S. (2023). Protein content enhanced in soybean under aonla-based agroforestry system. *Agrofor. Syst.* 97, 261–272. doi: 10.1007/s10457-023-00804-8

Singh, B. (2009). Return and release of nutrients from popular litterfall in an agroforestry system under subtropical condition. *J. Indian Soc Soil Sci.* 57, 214–218.

Singh, B., Gill, R., and Kaur, N. (2007). Litterfall and nutrients return in poplar plantation varying in row directions and spacings. *Indian J. Agrofor.* 9, 33–37.

Singh, B., Kaur, H., Gill, R., Kaur, N., and Singh, A. (2023). Pattern of nutrient dynamics through litterfall in *Melia composita* plantation with different espacements under agroforestry. *Indian J. Agrofor.* 25, 82–88.

Singh, B., Kaur, H., Kaur, S., Kaur, N., and Gill, R. I. S. (2024). Nutrient return through litterfall from Poplar plantation having different spacings in an agroforestry system. *Agric. Res. J.* 61, 388–394. doi: 10.5958/2395-146X.2024.00050.X

Singh, A., and Kumar, A. (2014). Critical issue in Poplar-based agroforestry system. *Indian J. Agrofor.* 16, 58–67.

Singh, A. K., Kumar, A., and Singh, R. (2017). Growth and yield of poplar (*Populus deltoides*) based agroforestry system in eastern Uttar Pradesh, India. *Indian J. Agrofor.* 19, 1–8.

Singhal, V., Jinger, D., Rathore, A. C., Pal, R., Samal, I., Bhoi, T. K., et al. (2024). COVID-19, deforestation, and green economy. *Front. For. Glob. Change* 6. doi: 10.3389/ffgc.2023.1305779

Sirohi, C., Bangarwa, K. S., and Dhillon, R. S. (2018). *Melia dubia*: a potential tree and source of income generation under agroforestry. *Indian Farming* 68.

Smith, H. (2000). Phytochromes and light signal perception by plants—an emerging synthesis. *Nature* 407, 585–591. doi: 10.1038/35036500

Thakur, N. S., Mohanty, S., Hegde, H. T., Chauhan, R. S., Gunaga, R. P., and Bhuva, D. C. (2019). Performance of *Melia dubia* under Cymbopogon spp.-based agroforestry systems. *J. Tree Sci.* 38, 28–34. doi: 10.5958/2455-7129.2019.00005.0

Thakur, N. S., Prajapati, D. R., Singh, N., Gunaga, R. P., Bhuva, D. C., and Mevada, R. J. (2022). Economics of cultivation of *Melia dubia*-Hybrid Napier silvi-pasture models. *Indian J. Agrofor.* 24, 35–40.

Vanlalngurzauva, T., Dhara, P. K., Banerjee, H., and Maiti, S. (2010). Growth and productivity of different intercrops grown under gamhar (*Gmelina arborea*) based agroforestry system. *Indian J. Agrofor.* 12, 105–108.

Venugopalan, V. K., Nath, R., Sengupta, K., Nalia, A., Banerjee, S., Chandran, M. A. S., et al. (2021). The response of lentil (*Lens culinaris* Medik.) to soil moisture and heat stress under different dates of sowing and foliar application of micronutrients. *Front. Plant Sci.* 12. doi: 10.3389/fpls.2021.679469

Vikas,, and Ranjan, R. (2024). Agroecological approaches to sustainable development. Front. Sustain. Food Syst. 8. doi: 10.3389/fsufs.2024.1405409

Wang, K., Zhang, R., Song, L., Yan, T., and Na, E. (2021). Comparison of C: N: P stoichiometry in the plant–litter–soil system between poplar and elm plantations in the Horqin Sandy Land, China. *Front. Plant Sci.* 12. doi: 10.3389/fpls.2021.655517

Zaki, H., Mahmoud, A., Abd El-Ati, Y., Hammad, A., and Sayed, R. (2017). Studies on pea (*Pisum sativum L.*) growth and productivity under agroforestry system: 2. Yield and seed quality of pea under alley cropping system with two types of trees. *J. Basic Appl. Res. Biomedicine* 3, 1–9.

Zheng, Y., Guan, F., Fan, S., Yan, X., and Huang, L. (2022). Dynamics of leaf-litter biomass, nutrient resorption efficiency and decomposition in a moso bamboo forest after strip clearcutting. *Front. Plant Sci.* 12. doi: 10.3389/fpls.2021.799424