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Integrating weather
variables and AI models for
forecasting major pests in jute:
applications in climate-smart
crop management
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1Department of Agricultural Statistics, Uttar Banga Krishi Viswavidyalaya, Cooch Behar, West Bengal,
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3AINP-Jute and Allied Fibres, Uttar Banga Krishi Viswavidyalaya, Cooch Behar, West Bengal, India,
4RRS, Terai Zone, Uttar Banga Krishi Viswavidyalaya, Cooch Behar, West Bengal, India
Jute crop suffers a substantial amount of physical and economic loss every year

due to the infestation of several insect pests, such as yellow mite

(Polyphagotarsonemus latus Banks) and jute semilooper (Anomis sabulifera

Guen), at different stages of crop growth. This study utilizes data on the mean

incidence of yellow mite and jute semilooper at different days after sowing (DAS)

from 2013 to 2023, along with weather variables, collected at the AINP-JAF,

UBKV Centre, Cooch Behar, West Bengal. The results indicate that the incidence

of jute semilooper follows a seasonal pattern, with most peaks occurring at

approximately 45 DAS. Additionally, the mean incidence of yellow mite is found

to be significantly positively correlated with maximum temperature and

negatively correlated with minimum and maximum relative humidity at a 2-

week lag. This suggests that dry weather with high temperatures 2 weeks prior

contributes to higher yellow mite infestations at the current time. A similar

correlation is observed for jute semilooper infestation. Various time series and

machine learning models, including Autoregressive Integrated Moving Average

(ARIMA), ARIMA-T, Seasonal ARIMA (SARIMA), SARIMA-T, ARIMA with exogenous

variables (ARIMAX), SARIMA with exogenous variables (SARIMAX)-T, Random

Forest, Support Vector Regression (SVR), and TDNNX, are applied to the

training dataset from 2013 to 2022. The models are validated using the test

data for the year 2023, based on root mean square error (RMSE) and root median

square error (RMdSE) values. For yellow mite, TDNNX is found to be the best

fitted model followed by SVR and SARIMAX-T in terms of RMSE and RMdSE

values. Similarly, for jute semilooper, TDNNX is found to be the best fitted model

followed by Random Forest and SARIMA. Finally, pest incidence forecasts for

yellow mite and jute semilooper are obtained for 2024 using the forecasted and

average weather data, applying the TDNNX model.
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Introduction

Jute, a cost-effective natural fiber, ranks second only to cotton in

terms of production and versatility. In India, jute farming covers

646.11 thousand hectares, yielding 94.49 lakh tons with a

productivity of 2.62 tons per hectare in 2023–2024 (Directorate of

Economics and Statistics, MoAFW, Govt. of India). The raw jute

sector provides significant employment to the rural population due

to its labor-intensive nature. West Bengal, which accounts for

78.94% of the cultivated jute land and 82% of the production, is

the leading jute-growing state in India. The sector holds social,

economic, and physical value for approximately 33–35 lakh small

and marginal farmers in India (Sarkar and Majumdar, 2016). In

2023–2024, West Bengal cultivated 6.46 lakh hectares of jute,

producing 94.49 lakh bales (Directorate of Economics and

Statistics, MoAFW, Govt. of India). Cooch Behar is one of the

major districts in the state for jute fiber cultivation.

Jute is an essential cash crop for farmers, but challenges such as

pest infestations and pricing issues hinder its growth. Oversupply in

the market and the scarcity of high-yielding seeds restrict the farmers’

ability to adopt advanced technologies, reducing their interest in

high-yielding jute varieties (Hussain et al., 2002). Jute cultivation,

typically carried out during the pre-kharif season, suffers significant

physical and economic losses each year due to infestations by major

insect pests like yellow mite (Polyphagotarsonemus latus Banks) and

jute semilooper (Anomis sabulifera Guen) at various stages of crop

growth. In West Bengal, the avoidable loss in fiber yield has been

estimated to range from 31% to 34% (Rahman and Khan, 2012).

These losses could beminimized through sustainable plant protection

measures, such as integrated pest management, biological control,

and mechanical methods.

Timely and accurate forecasting of pest incidence using

mathematical, statistical, and simulation models can help

minimize these losses by enabling farmers to implement

appropriate pest management strategies. With the advancement

of computing power, machine learning models are increasingly

used for precise forecasting (Durgabai and Bhargavi, 2018).

Numerous studies have shown that weather variables—

particularly temperature, relative humidity, and rainfall—play a

crucial role in the occurrence and survival of various insect pests on

jute crops (Rahman and Khan, 2012; Suyal et al., 2018). It has also

been found that pest incidence is correlated with both the current

time period and lead times ranging from 1 to 4 weeks (Katke et al.,

2009; Balikai and Venkatesh, 2019). Therefore, incorporating

weather variables along with past pest incidence data provides a

solid foundation for developing reliable pest prediction models.

Several researchers have already developed weather-based models

for predicting crop pests and diseases (Sarkar et al., 2023; Vaidheki

et al., 2023). Therefore, in the present study, an attempt has been

made to forecast the mean incidence of major pests of jute crop in

Cooch Behar district of West Bengal using machine learning models

and weather data.
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Materials and methods

Description of data

The incidence data of major jute pests used in this study are

secondary data obtained from the All India Network Project

(AINP) on Jute and Allied Fibers, Uttar Banga Krishi

Viswavidyalaya (UBKV) Centre, Pundibari, Cooch Behar, West

Bengal, covering the period from 2013 to 2023. During each crop

season, yellow mite and jute semilooper incidences are available at

25, 35, 45, 55, 65, and 75 days after sowing (DAS). The infestation

level of the semilooper is measured as the percentage of infestation,

while yellow mite incidence is quantified by counting its number

per square centimeter on the second unfold leaf. The pest incidence

data used in this study were collected from control fields, i.e.,

without pest control operations, from a widely cultivated variety of

jute, JRO-524 recommended for the region. The same variety was

consistently used across all years of the study (2013–2023) to

maintain uniformity in pest incidence data collection and avoid

variability arising from genetic differences among varieties. It was

consistently observed across all years that pest incidence at 25 and

75 DAS was zero. Including these zero values in the analysis could

lead to inconsistencies in model fitting and forecasting. Moreover,

the study focuses primarily on pest incidences that exceed the

economic threshold levels—approximately five mites per square

centimeter for yellow mite and 10% infestation for jute semilooper,

as reported in the literature. Therefore, data from 25 and 75 DAS

were excluded, and the analysis was conducted using the remaining

data points where significant pest incidence was observed. Similarly,

the weather data used in this study are secondary data obtained

from the records of Gramin Krishi Mausam Sewa (GKMS),

Agrometeorological Field Unit (AMFU), Pundibari, UBKV. The

dataset includes daily observations of rainfall (mm), maximum and

minimum temperatures (MaxT and MinT in °C), and maximum

and minimum relative humidity (MaxRH and MinRH in %)

spanning the period from 2013 to 2023. These daily records were

aggregated into weekly data based on the Standard Meteorological

Weeks (SMWs) to correspond with the pest incidence survey dates.

For each SMW, the rainfall values were summed, while the

temperature and relative humidity variables were averaged to

ensure consistency with the timing of pest observations.
Methodology

To check the presence of seasonality in pest incidence, time

plots of the mean incidence of both pests are constructed along with

the Webel–Ollech (WO) seasonality test. Pest weather relationship

has been studied using the Pearson correlation coefficient between

mean pest incidence and weather variables in the current week as

well as at the 1- to 2-week lag. Various time series forecasting

models, including Autoregressive Integrated Moving Average
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(ARIMA), ARIMA with exogenous variables (ARIMAX), Seasonal

ARIMA (SARIMA), and SARIMA with exogenous variables

(SARIMAX), are implemented. In addition, machine learning

models such as Random Forest, Support Vector Regression

(SVR), and Time Delay Neural Network with exogenous variables

(TDNNX) are used to predict the mean pest incidence based on

weather variables. A total of 44 data points from 2013 to 2023 are

available, out of which the initial 40 data points (2013–2022) were

used for model development and the remaining 4 data points from

2023 were reserved for model validation, maintaining a 90:10 train–

test ratio. The analysis has been carried out using R software.
Autoregressive Integrated Moving Average

Being one of the most prevalent time series models, ARIMA

(Box and Jenkins, 1976) is suitable for short-term forecasting, and it

is dependent on past values of the variable being forecast. The basic

formulation of ARIMA (p, d, q) could be narrated as

∇dyt = m + f1∇
dyt−1 +… + fp∇

dyt−p − q1et−1 −… − qqet−q + et

where yt is the value of the dependent variable at time t; yt−1, yt

−2,…, yt−p are values of the dependent variable at time lags t−1, t

−2…, t−p, respectively; m is the constant mean; j1, j2,…, jp are p

autoregression (AR) coefficients to be estimated; q1, q2,…, qq are q
moving average (MA) coefficients to be estimated; et is the forecast
error at time t, independently and normally distributed with zero

mean and constant variance s 2 ∀ t = 1, 2,…, T; and d is the order

of differencing.
ARIMA with exogenous variables

АRIMАX (Bierens, 1987) is an acronym for autoregressive

integrated moving average with exogenous variables. It is а logical

extension of the pure АRIMАmodel that incorporates independent

variables that add explanatory value. Conceptually, it is аmerging of

АRIMА and the regression model. It can be expressed as

∇dyt = m + f1∇
dyt−1 +… + fp∇

dyt−p − q1et−1 −… − qqet−q + b0

+ b1x1t +… + bkxkt + et

where, x1t, x2t,…, xkt are the values of k exogenous variables at

time t.
Seasonal ARIMA

The SARIMA model (Box and Jenkins, 1976) is an extension of

ARIMA that completely deals with the time series data consisting of

seasonal components. In order to improve the performance of the

conventional ARIMA model, seasonal data patterns are added to

develop the SARIMA model (Box and Jenkins, 1976). The SARIMA

model can be formulated as
Frontiers in Agronomy 03
FP(B
s)fp(B)∇

D
s ∇

dyt = m +QQ(B
s)qq(B)et

where µ is the intercept or mean term, et is the residual at time t

follows N(0,s 2), B is the backward shift operator, and s denotes the

number of periods per season. The polynomials fp(B) and qq(B)
represent the non-seasonal autoregressive and moving average

terms with orders p and q, respectively. Similarly, the seasonal

autoregressive and moving average terms of order P and Q,

respectively, are represented by FP(B
s) and QQ(B

s) polynomials,

and also, the seasonal and non-seasonal differencing terms are

represented by ∇D
s and ∇d respectively.
SARIMA with exogenous variables

The SARIMAX model (Box and Jenkins, 1976) is a rational

extension of SARIMA that allows the incorporation of explanatory

variables. It is an integration of regression and the SARIMA model.

If only the SARIMA model is not sufficient to provide an acceptable

efficiency, it is very obvious to look for other processes that have the

potential to implant in past values of the dependent variables.
Random Forest

Random Forest (Breiman, 2001) has become widely used in

machine learning. The method of Random Forest usually works in

two steps. In the first step, Random Forest constructs n number of

binary classification/regression trees using multiple bootstrap

samples with replacement obtained from the original

observations. The correct classification/regression is determined

by the majority vote/average value of all the trees. The second

step is to randomly select input variables (mtry) from a random

subset of the features (exogenous variables) and to calculate the best

split for the tree based only on these selected variables.
Support vector regression

The SVR is a nonlinear modeling procedure that utilizes the

principle of structured risk minimization (Vapnik, 2000). The SVR

model can be expressed as

y = wTj(x) + b

where j( : ) :Rn → Rnh is a nonlinear mapping function from

the original input space into a higher-dimensional feature space,

w ∈ Rnh is the weight vector, b is the bias term, and the superscript

T denotes transpose.
Time Delay Neural Network with
exogenous variables

А neural network consists of а set of connected cells called

neurons or node. The neurons receive information from either
frontiersin.org
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input cells or other neurons and perform some kind of

transformation of the input and transmit the outcome to other

neurons to output cells. The neural networks are built from layers of

neurons connected so that one layer receives input from the

preceding layer of neurons and passes the output on to the

subsequent layer. In TDNNX (Hyndman and Athanasopoulos,

2021), all neurons are connected through weights. To design а

TDNNX, (a) number of input, hidden, and output layer; (b)

number of input, hidden, and output node; (c) activation

function; (d) bias; and (e) exogenous variables are to specified.

The TDNNX performs the following non-linear mapping between

input and output.

yt = f (yt−1,  yt−2,…, yt−p,  x1t ,  x2t ,…, xqt) + et

where f is the function of the network structure and connection

weights. Here, yt−1, yt−2, …, yt−p, the pth order lag of study variable

y, and x1t, x2t, …, xqt, the q exogenous variables selected from

Random Forest model, are network input nodes.
Forecast evaluation methods

Different forecasting models are evaluated using the criteria of

root mean square error (RMSE) and root median square error

(RMdSE), which are expressed as

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1 n= ) o

n

t=1
(yt − ŷt)

2
� �

,   and

s

RMdSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Median(yt − ŷ t)

2
q

where yt and ŷ t are the actual and predicted values of pest

incidence at time t, respectively. The RMSE was used as an

evaluation criterion to measure the accuracy of the forecasted pest

incidence, as described by Chai and Draxler (2014). The RMdSE

was employed as an additional criterion to assess forecast

performance, providing robustness against extreme values, as

discussed in Hyndman and Koehler (2006).
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Results and discussion

Descriptive statistics

The descriptive statistics of incidence of both pests and weather

variables in the current week are presented in Table 1. It is evident

from Table 1 that the variability in pest incidence is quite high for

both pests since the coefficient of variation (CV) is found to be 134%

and 102% for yellow mite and jute semilooper, respectively. Among

the weather variables, rainfall in the current week shows

considerably high CV.
Seasonal incidence

The seasonal plots of yellow mite and jute semilooper are

presented in Figures 1 and 2, respectively. For both pests, peak

incidence is observed on 55 DAS followed by 45 DAS. The results of

the WO test in Table 2 indicate that seasonality is present for jute

semilooper but is absent for yellow mite.
Correlation analysis

Results of Pearson’s correlation analysis in Table 3 reveal that

the mean incidence of yellow mite is significantly positively

correlated with maximum temperature at a 2-week lag, whereas it

is significantly negatively correlated with maximum RH at a 1-week

lag, and minimum and maximum RH at a 2-week lag. Similarly, the

mean incidence of jute semilooper is also significantly positively

correlated with maximum temperature at a 2-week lag, whereas it is

significantly negatively correlated with maximum and minimum

RH at a 2-week lag. The weather variables that are significantly

correlated with pest incidence are further subjected to

multicollinearity analysis. The results of multicollinearity analysis

in Table 4 reveal that maximum and minimum RH at a 2-week lag

show moderate multicollinearity for yellow mite incidence, whereas

for jute semilooper, minimum RH at a 2-week lag shows moderate
TABLE 1 Descriptive statistics of pest incidence and weather variables in the current week.

Statistics
Yellow mite
(n/cm2)

Jute semilooper
(% infestation)

MaxT (°C) MinT (°C) MaxRH (%) MinRH (%) Rainfall (mm)

Mean 3.97 5.17 31.64 22.17 83.91 72.56 104.48

Median 2.27 4.23 31.57 22.25 83.94 72.93 57.85

Standard deviation 5.33 5.29 1.97 2.12 10.12 10.42 117.59

CV(%) 134 102 6 10 12 14 112

Minimum 0.00 0.00 28.29 13.00 46.43 37.86 0.00

Maximum 25.62 18.99 36.86 25.29 99.14 92.57 533.90
frontiersin.org

https://doi.org/10.3389/fagro.2025.1687988
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Basak et al. 10.3389/fagro.2025.1687988
multicollinearity. Therefore, maximum RH at a 1-week lag and

maximum temperature at a 2-week lag are to be used as exogenous

variables in time series models for yellow mite incidence, whereas

for jute semilooper, the exogenous variables are maximum

temperature and maximum RH at a 2-week lag.
Frontiers in Agronomy 05
Fitting of different models for yellow mite
and jute semilooper incidence

To check the presence of stationarity in the data series, the

Augmented Dickey–Fuller (ADF) test and Phillips–Perron (PP) test

have been applied, and the results are presented in Table 5. It is

found that the both data series are stationary and, therefore, regular

differencing is not required.

After confirming the stationarity of the time series data of

yellow mite incidence, an ARIMA model is fitted and the

parameters are presented in Table 6. The residuals of the fitted

ARIMA model are found to be non-normal, as evident from

Table 7; therefore, the original data series is transformed using

square root transformation with the addition of 0.5 as few zero

values are there. The transformed data exhibit seasonality as evident

from the WO test, and therefore, a suitable SARIMA model is fitted
FIGURE 2

Seasonal plot of jute semilooper incidence.
FIGURE 1

Seasonal plot of yellow mite incidence.
TABLE 2 WO test to check seasonality.

Test
statistic

p-value

Yellow mite 0.04 1 0.014 0.04

Jute
semilooper

1 0.0001 0.0004 0.003*
*Significant at the 5% level of significance.
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based on the minimum AIC and BIC criteria, and this model is

referred to as SARIMA-T. The parameters of the fitted SARIMA-T

model are also presented in Table 6. Subsequently, MaxRH at 1

week and MaxT at 2 weeks are used as exogenous variables in the
Frontiers in Agronomy 06
SARIMA-T model and, therefore, referred to as the SARIMAX-

T model.

Similarly, the results of ADF and PP tests for jute semilooper

incidence in Table 4 indicate that the data series is stationary, and the

WO test in Table 2 indicates that the series is seasonal. Therefore, the

SARIMAmodel is fitted to predict the incidence of jute semilooper and

the parameters of the model are presented in Table 8. Since the

residuals of the fitted SARIMA model depict non-normality as

evident from Table 9, square root transformation is therefore applied

on the original data with the addition of 0.5 to it. The WO test on the

square root transformed data of semilooper incidence indicates non-

seasonality, and accordingly, the ARIMA (2, 0, 1) model is fitted on this

transformed data, and subsequently, the model is referred to as

ARIMA-T. The parameters of the fitted ARIMA-T model are also

presented in Table 8. In case of jute semilooper, MaxT andMaxRH at 2

weeks are found to be the most important exogenous variables.
TABLE 3 Correlation between the mean incidence of pests with weather variables.

Weather variables
Yellow mite Jute semilooper

Current week One-week lag Two-week lag Current week One-week lag Two-week lag

MaxT −0.16 0.26 0.34* 0.02 0.15 0.39**

MinT −0.27 −0.16 −0.21 −0.02 −0.05 −0.08

MaxRH −0.19 −0.40** −0.54** −0.15 −0.16 −0.37*

MinRH −0.01 −0.27 −0.46** −0.07 −0.15 −0.41**

Rainfall −0.17 −0.21 −0.18 −0.05 −0.04 −0.24
*: Significant at 5% level of significance ; **Significant at the 1% level of significance.
TABLE 4 VIF values of significantly correlated weather variables.

Yellow mite Jute semilooper

Variables VIF Variables VIF

MaxRH lag1 3.15 MaxT lag2 1.66

MaxT lag2 2.10 MaxRH lag2 5.54

MaxRH lag2 7.92^ MinRH lag2 6.34^

MinRH lag2 6.39^
^Moderate multicollinearity.
TABLE 5 ADF and PP test for stationarity.

Yellow mite Jute semilooper

ADF test PP test ADF test PP test

Test
statistic

p-value
Test

statistic
p-value

Test
statistic

p-value
Test

statistic
p-value

−4.01 0.01** −4.128 0.015* −5.17 0.01** −5.16 0.01**
*: Significant at 5% level of significance; **: Significant at 1% level of significance.
TABLE 6 Parameter estimates of the ARIMA (0, 0, 1), SARIMA-T (0, 0, 1) (1,0,0)4, and SARIMAX-T (0,0,1) (1,0,0)4 models for yellow mite incidence.

Model Parameters Estimate SE p-value

ARIMA (0, 0, 1)
C 3.98 1.20 0.001**

MA1 0.71 0.11 0.000***

SARIMA-T (0, 0, 1) (1,0,0)4

C 1.76 0.32 0.000***

MA1 0.57 0.15 0.000***

SAR1 0.27 0.16 0.09

SARIMAX-T (0,0,1) (1,0,0)4

MA1 0.49 0.17 0.004**

SAR1 0.33 0.15 0.035*

MaxRH lag1 −0.03 0.01 0.029*

MaxT lag2 0.13 0.04 0.000**
*: Significant at 5% level of significance; **: Significant at 1% level of significance; ***Significant at the 0.1% level of significance.
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Therefore, ARIMAX (3,1,0) is found to be the best fitted model on the

original time series data of jute semilooper incidence. The parameter

estimates with standard error (SE) and p-values are presented in

Table 8. However, the residuals of fitted ARIMAX model are found

to be non-normal and therefore, ARIMAX model is fitted on the
Frontiers in Agronomy 07
square root transformed data. This model is referred to as ARIMAX-T.

The estimate of parameters, its SE, and the respective p-values are also

presented in Table 8.

Random Forest relies on two key algorithms: bagging and

random feature selection. Bagging involves selecting a specified

number of samples (ntree) from the dataset using simple random

sampling with replacement (SRSWR) to construct multiple trees.

Random feature selection determines the number of variables

(mtry) to consider at each split. The hyperparameters of the fitted

Random Forest model are provided in Table 10. The Random

Forest model also evaluates the % increase in node impurity

(IncNodePurity) to identify important variables. For predicting

the mean incidence of yellow mite, rainfall and MaxT at a 2-week

lag are identified as significant weather variables, as shown in

Figure 3. Similarly, for predicting the jute semilooper incidence,

rainfall and MaxT at a 2-week lag are also recognized as important

weather variables, as shown in Figure 4. The key weather variables

identified from the variance importance plot in the Random Forest

model, rainfall and MaxT at a 2-week lag, are used as exogenous

variables in both the SVR and TDNNX models.

For both pests, the SVR model is trained with the mean

incidence as the dependent variable and rainfall and MaxT at a 2-
TABLE 7 Residual diagnostics test for time series models of yellow mite incidence.

Diagnostic
test

ARIMA SARIMA-T SARIMAX-T

Test statistic p-value Test statistic p-value Test statistic p-value

Box–Ljung 6.31 0.61 2.98 0.94 3.57 0.89

Shapiro–Wilk 0.87 0.0003* 0.95 0.07 0.96 0.14

ARCH LM 19.29 0.01 14.15 0.08 7.65 0.47
*: Significant at 5% level of significance.
TABLE 8 Parameter estimates of the SARIMA (0, 0, 1) (1,0,0)4, ARIMA-T
(2, 0, 1), ARIMAX (3, 1, 0), and SARIMAX-T (0, 0, 1) (1,0,0)4 models for jute
semilooper incidence.

Model Parameters Estimate SE p-value

SARIMA (0, 0, 1)
(1,0,0)4

C 5.11 1.96 0.009**

MA1 0.63 0.15 0.000***

SAR1 0.49 0.14 0.000***

ARIMA-T (2, 0, 1)

C 2.06 0.11 0.000***

AR1 −0.02 0.14 0.912

AR2 −0.70 0.13 0.000***

MA1 0.63 0.25 0.011*

ARIMAX (3, 1, 0)

AR1 −0.75 0.14 0.000***

AR2 −0.92 0.09 0.000***

AR3 −0.61 0.14 0.000***

MaxT lag2 0.49 0.28 0.079

MaxRH lag2 −0.19 0.05 0.000***

ARIMAX-T (0, 0,
1) (1,0,0)4

MA1 0.87 0.12 0.000***

SAR1 0.70 0.12 0.000***

MaxT lag2 0.11 0.02 0.000***

MaxRH lag2 −0.01 0.01 0.015*
*: Significant at 5% level of significance; **: Significant at 1% level of significance; ***:
Significant at 0.1% level of significance.
TABLE 9 Residual diagnostics test for time series models of jute semilooper incidence.

Diagnostic test
SARIMA ARIMA-T ARIMAX ARIMAX-T

Test statistic p-value Test statistic p-value Test statistic p-value Test statistic p-value

Box–Ljung 5.60 0.69 2.76 0.95 5.22 0.73 6.97 0.54

Shapiro–Wilk 0.86 0.0001*** 0.88 0.0006*** 0.92 0.007** 0.92 0.008*

ARCH LM 2.72 0.95 1.92 0.98 4.34 0.82 4.94 0.76
*: Significant at 5% level of significance; **: Significant at 1% level of significance; ***: Significant at 0.1% level of significance.
TABLE 10 Hyperparameters of the Random Forest model for both
yellow mite and jute semilooper incidences.

Hyperparameters
Yellow
mite

Jute
semilooper

Type of Random Forest Regression Regression

Number of trees (ntree) 500 500

No. of variables tried at each split
(mtry)

5 5

Mean of squared residuals 27.62 32.36
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week lag as the exogenous variables. The hyperparameters of the

fitted SVR model are provided in Table 11.

The TDNNXmodel is fitted between the mean incidence of pest

with its lagged values up to the significant order and exogenous
Frontiers in Agronomy 08
weather variables selected from the Random Forest model. In the

TDNNX (p,k) model, p and k indicate the number of nodes in the

input and hidden layer, respectively. For both yellow mite and

semilooper incidences, there are five nodes in the input layer that
FIGURE 3

Variable importance plot of the Random Forest model for yellow mite incidence.
FIGURE 4

Variable importance plot of the Random Forest model for jute semilooper incidence.
TABLE 11 Hyperparameters of the SVR model for both yellow mite and jute semilooper incidences.

Pest Type Kernel Cost (C) Gamma Epsilon (e) No. of support
vectors

Yellow mite eps-regression Radial 1 0.5 0.1 39

Jute semilooper eps-regression Radial 1 0.5 0.1 37
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correspond to lagged values of mean pest incidence up to the order

of three and two exogenous weather variables. The hyperparameters

of the fitted TDNNX model are presented in Table 12.
Model validation

The predictive abilities of different time series and machine

learning models are compared using RMSE and RMdSE as the

evaluation criteria for both training and testing dataset, and the
TABLE 12 Hyperparameters of the TDNNX model for both yellow mite
and jute semilooper incidences.

Number of
input nodes

(p)

Number of
hidden nodes

(k)

Exogenous
variables

Activation
function

5 3

Rainfall at a 2-
week lag
MaxT at a 2-
week lag

Sigmoid (input
layer)
Linear (output
layer)
TABLE 13 Predictive abilities of different models for both yellow mite and jute semilooper incidences.

Pest Model
RMSE RMdSE

Training Testing Training Testing

Yellow mite ARIMA (0,0,1) 4.50 2.11 2.60 1.72

SARIMA-T (0,0,1) (1,0,0) [4] 4.72 2.25 2.06 1.06

SARIMAX-T (0,0,1)(1,0,0)4 4.14 1.85 1.89 1.76

SVR 4.52 1.33 2.14 0.98

Random Forest 2.28 2.92 1.41 2.46

TDNNX 1.39 0.60 0.85 0.39

Jute semilooper SARIMA (0,0,1) (1,0,0)4 4.23 1.01 1.95 0.87

ARIMA-T (2,0,1) 3.43 2.91 1.18 2.83

ARIMAX (3,1,0) 3.35 7.47 1.81 7.07

SARIMAX-T (0,0,1) (1,0,0)4 3.91 4.82 1.13 2.34

SVR 4.86 3.10 2.42 2.40

Random Forest 2.40 3.96 1.78 0.45

TDNNX 0.82 2.49 0.30 0.91
FIGURE 5

Plot of observed vs. fitted values by SARIMAX-T, SVR, and TDNNX models for yellow mite incidence.
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results are presented in Table 13. For the mean incidence of yellow

mite, TDNNX is found to be the best fitted model followed by SVR

and SARIMA-T on the basis of RMSE and RMdSE values. Similarly,

for jute semilooper, it is observed that the TDNNX model produces

the least RMSE and RMdSE value for the training dataset followed

by Random Forest, but for the testing dataset, SARIMA has the least

RMSE values followed by Random Forest and TDNNX. However,

the residuals of the fitted SARIMA model are not normally

distributed, and therefore, model assumptions are violated. Thus,

by considering both RMSE and RMdSE values, TDNNX may also

be considered as the best fitted model for prediction of the mean

incidence of jute semilooper followed by Random Forest and

SARIMA. The plots of observed vs. fitted values for the mean
Frontiers in Agronomy 10
incidence of yellowmite and jute semilooper across different models

are shown in Figures 5 and 6, respectively.
Forecasting of pest incidence

The out-of-sample forecasts for pest incidence of yellow mite

and jute semilooper are obtained using the TDNNX model for the

year 2024 at 35, 45, 55, and 65 DAS. The forecasts are obtained

using forecasted values of weather variables, i.e., rainfall and MaxT

at a 2-week lag, from the ARIMA model, and the results are

presented in Table 14. Additionally, out-of-sample forecasts of

pest incidence are also made using the average values of weather
FIGURE 6

Plot of observed vs. fitted values of SARIMA, Random Forest, and TDNNX models for semilooper incidence.
TABLE 14 Out-of-sample forecast for the mean incidence of yellow mite and jute semilooper for the year 2024 using forecasted weather data.

DAS
Forecasted rainfall

at lag2
Forecasted MaxT

at lag2
Yellow mite mean incidence

(n/cm2)
Jute semilooper mean incidence

(% infestation)

35 73.84 31.50 1.93 0.05

45 77.21 31.50 2.35 1.77

55 78.19 31.50 2.17 7.81

65 78.47 31.50 2.06 15.30
TABLE 15 Out-of-sample forecast for the mean incidence of yellow mite and jute semilooper for the year 2024 using average weather data from
2013 to 2023.

DAS
Average rainfall at

lag2
Average MaxT at

lag2
Yellow mite mean incidence

(n/cm2)
Jute semilooper mean incidence

(% infestation)

35 77.5 31.1 1.91 0.11

45 51.9 31.6 2.42 1.41

55 88.5 31.7 2.12 8.12

65 97.4 31.6 2.05 12.60
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variables (rainfall and MaxT at a 2-week lag) for the period from

2013 to 2023, and the results are presented in Table 15.
Conclusion

The study found that the peak mean incidence of jute semilooper

and yellow mite occurs at 45 and 55 DAS, respectively, with

seasonality observed only in jute semilooper. Among the crop years

studied, the peak mean incidence of yellow mite was recorded in 2014,

while for jute semilooper, it occurred in 2022. The study also revealed

that incidence of yellow mite has a significant positive correlation with

maximum temperature at a 2-week lag while the correlation with

maximum relative humidity at a 1- and 2-week lag is highly significant

in a negative direction. This suggests that dry weather with high

temperatures 2 weeks prior leads to higher yellow mite infestations at

present. Consequently, if such weather conditions are observed, there

is a likelihood of increased mite infestation in the following 2 weeks.

This information can assist farmers in better preparing for pest

emergence and in making informed decisions regarding pest control

measures. Among the different time series and machine learning

models, the TDNNX model was found to be the most accurate for

predicting the mean incidence of both yellowmite and jute semilooper

using weather variables.
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