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Jute crop suffers a substantial amount of physical and economic loss every year
due to the infestation of several insect pests, such as yellow mite
(Polyphagotarsonemus latus Banks) and jute semilooper (Anomis sabulifera
Guen), at different stages of crop growth. This study utilizes data on the mean
incidence of yellow mite and jute semilooper at different days after sowing (DAS)
from 2013 to 2023, along with weather variables, collected at the AINP-JAF,
UBKV Centre, Cooch Behar, West Bengal. The results indicate that the incidence
of jute semilooper follows a seasonal pattern, with most peaks occurring at
approximately 45 DAS. Additionally, the mean incidence of yellow mite is found
to be significantly positively correlated with maximum temperature and
negatively correlated with minimum and maximum relative humidity at a 2-
week lag. This suggests that dry weather with high temperatures 2 weeks prior
contributes to higher yellow mite infestations at the current time. A similar
correlation is observed for jute semilooper infestation. Various time series and
machine learning models, including Autoregressive Integrated Moving Average
(ARIMA), ARIMA-T, Seasonal ARIMA (SARIMA), SARIMA-T, ARIMA with exogenous
variables (ARIMAX), SARIMA with exogenous variables (SARIMAX)-T, Random
Forest, Support Vector Regression (SVR), and TDNNX, are applied to the
training dataset from 2013 to 2022. The models are validated using the test
data for the year 2023, based on root mean square error (RMSE) and root median
square error (RMdSE) values. For yellow mite, TDNNX is found to be the best
fitted model followed by SVR and SARIMAX-T in terms of RMSE and RMdSE
values. Similarly, for jute semilooper, TDNNX is found to be the best fitted model
followed by Random Forest and SARIMA. Finally, pest incidence forecasts for
yellow mite and jute semilooper are obtained for 2024 using the forecasted and
average weather data, applying the TDNNX model.

KEYWORDS

weather variables, SARIMA, SARIMAX, SVR, random forest, TDNNX, major pests, jute

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fagro.2025.1687988/full
https://www.frontiersin.org/articles/10.3389/fagro.2025.1687988/full
https://www.frontiersin.org/articles/10.3389/fagro.2025.1687988/full
https://www.frontiersin.org/articles/10.3389/fagro.2025.1687988/full
https://www.frontiersin.org/articles/10.3389/fagro.2025.1687988/full
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fagro.2025.1687988&domain=pdf&date_stamp=2025-10-27
mailto:pradipbasak.99@gmail.com
https://doi.org/10.3389/fagro.2025.1687988
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/agronomy#editorial-board
https://www.frontiersin.org/journals/agronomy#editorial-board
https://doi.org/10.3389/fagro.2025.1687988
https://www.frontiersin.org/journals/agronomy

Basak et al.

Introduction

Jute, a cost-effective natural fiber, ranks second only to cotton in
terms of production and versatility. In India, jute farming covers
646.11 thousand hectares, yielding 94.49 lakh tons with a
productivity of 2.62 tons per hectare in 2023-2024 (Directorate of
Economics and Statistics, MOAFW, Govt. of India). The raw jute
sector provides significant employment to the rural population due
to its labor-intensive nature. West Bengal, which accounts for
78.94% of the cultivated jute land and 82% of the production, is
the leading jute-growing state in India. The sector holds social,
economic, and physical value for approximately 33-35 lakh small
and marginal farmers in India (Sarkar and Majumdar, 2016). In
2023-2024, West Bengal cultivated 6.46 lakh hectares of jute,
producing 94.49 lakh bales (Directorate of Economics and
Statistics, MoAFW, Govt. of India). Cooch Behar is one of the
major districts in the state for jute fiber cultivation.

Jute is an essential cash crop for farmers, but challenges such as
pest infestations and pricing issues hinder its growth. Oversupply in
the market and the scarcity of high-yielding seeds restrict the farmers’
ability to adopt advanced technologies, reducing their interest in
high-yielding jute varieties (Hussain et al, 2002). Jute cultivation,
typically carried out during the pre-kharif season, suffers significant
physical and economic losses each year due to infestations by major
insect pests like yellow mite (Polyphagotarsonemus latus Banks) and
jute semilooper (Anomis sabulifera Guen) at various stages of crop
growth. In West Bengal, the avoidable loss in fiber yield has been
estimated to range from 31% to 34% (Rahman and Khan, 2012).
These losses could be minimized through sustainable plant protection
measures, such as integrated pest management, biological control,
and mechanical methods.

Timely and accurate forecasting of pest incidence using
mathematical, statistical, and simulation models can help
minimize these losses by enabling farmers to implement
appropriate pest management strategies. With the advancement
of computing power, machine learning models are increasingly
used for precise forecasting (Durgabai and Bhargavi, 2018).
Numerous studies have shown that weather variables—
particularly temperature, relative humidity, and rainfall—play a
crucial role in the occurrence and survival of various insect pests on
jute crops (Rahman and Khan, 2012; Suyal et al., 2018). It has also
been found that pest incidence is correlated with both the current
time period and lead times ranging from 1 to 4 weeks (Katke et al,
2009; Balikai and Venkatesh, 2019). Therefore, incorporating
weather variables along with past pest incidence data provides a
solid foundation for developing reliable pest prediction models.
Several researchers have already developed weather-based models
for predicting crop pests and diseases (Sarkar et al., 2023; Vaidheki
et al., 2023). Therefore, in the present study, an attempt has been
made to forecast the mean incidence of major pests of jute crop in
Cooch Behar district of West Bengal using machine learning models
and weather data.
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Materials and methods
Description of data

The incidence data of major jute pests used in this study are
secondary data obtained from the All India Network Project
(AINP) on Jute and Allied Fibers, Uttar Banga Krishi
Viswavidyalaya (UBKV) Centre, Pundibari, Cooch Behar, West
Bengal, covering the period from 2013 to 2023. During each crop
season, yellow mite and jute semilooper incidences are available at
25, 35, 45, 55, 65, and 75 days after sowing (DAS). The infestation
level of the semilooper is measured as the percentage of infestation,
while yellow mite incidence is quantified by counting its number
per square centimeter on the second unfold leaf. The pest incidence
data used in this study were collected from control fields, i.e.,
without pest control operations, from a widely cultivated variety of
jute, JRO-524 recommended for the region. The same variety was
consistently used across all years of the study (2013-2023) to
maintain uniformity in pest incidence data collection and avoid
variability arising from genetic differences among varieties. It was
consistently observed across all years that pest incidence at 25 and
75 DAS was zero. Including these zero values in the analysis could
lead to inconsistencies in model fitting and forecasting. Moreover,
the study focuses primarily on pest incidences that exceed the
economic threshold levels—approximately five mites per square
centimeter for yellow mite and 10% infestation for jute semilooper,
as reported in the literature. Therefore, data from 25 and 75 DAS
were excluded, and the analysis was conducted using the remaining
data points where significant pest incidence was observed. Similarly,
the weather data used in this study are secondary data obtained
from the records of Gramin Krishi Mausam Sewa (GKMS),
Agrometeorological Field Unit (AMFU), Pundibari, UBKV. The
dataset includes daily observations of rainfall (mm), maximum and
minimum temperatures (MaxT and MinT in °C), and maximum
and minimum relative humidity (MaxRH and MinRH in %)
spanning the period from 2013 to 2023. These daily records were
aggregated into weekly data based on the Standard Meteorological
Weeks (SMWs) to correspond with the pest incidence survey dates.
For each SMW, the rainfall values were summed, while the
temperature and relative humidity variables were averaged to
ensure consistency with the timing of pest observations.

Methodology

To check the presence of seasonality in pest incidence, time
plots of the mean incidence of both pests are constructed along with
the Webel-Ollech (WO) seasonality test. Pest weather relationship
has been studied using the Pearson correlation coefficient between
mean pest incidence and weather variables in the current week as
well as at the 1- to 2-week lag. Various time series forecasting
models, including Autoregressive Integrated Moving Average
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(ARIMA), ARIMA with exogenous variables (ARIMAX), Seasonal
ARIMA (SARIMA), and SARIMA with exogenous variables
(SARIMAX), are implemented. In addition, machine learning
models such as Random Forest, Support Vector Regression
(SVR), and Time Delay Neural Network with exogenous variables
(TDNNX) are used to predict the mean pest incidence based on
weather variables. A total of 44 data points from 2013 to 2023 are
available, out of which the initial 40 data points (2013-2022) were
used for model development and the remaining 4 data points from
2023 were reserved for model validation, maintaining a 90:10 train-
test ratio. The analysis has been carried out using R software.

Autoregressive Integrated Moving Average

Being one of the most prevalent time series models, ARIMA
(Box and Jenkins, 1976) is suitable for short-term forecasting, and it
is dependent on past values of the variable being forecast. The basic
formulation of ARIMA (p, d, q) could be narrated as

V= + 6V + o+ OV, — O — .~ Ot &

where y, is the value of the dependent variable at time  y, 1, y,
255 Yip ATE values of the dependent variable at time lags -1, ¢
—2..., t—p, respectively; u is the constant mean; @;, @,,..., ¢, are p
autoregression (AR) coefficients to be estimated; 6,, 6,...., 6, are q
moving average (MA) coefficients to be estimated; & is the forecast
error at time f, independently and normally distributed with zero
mean and constant variance 62 V t = 1, 2,..., T; and d is the order
of differencing.

ARIMA with exogenous variables

ARIMAX (Bierens, 1987) is an acronym for autoregressive
integrated moving average with exogenous variables. It is a logical
extension of the pure ARIMA model that incorporates independent
variables that add explanatory value. Conceptually, it is a merging of
ARIMA and the regression model. It can be expressed as

VY =+ $V Y+ 0V Yy — 018 — o = Oy + By
+ Bixy o+ Bix + &

where, x1;, X2p..., Xi are the values of k exogenous variables at
time t.

Seasonal ARIMA

The SARIMA model (Box and Jenkins, 1976) is an extension of
ARIMA that completely deals with the time series data consisting of
seasonal components. In order to improve the performance of the
conventional ARIMA model, seasonal data patterns are added to
develop the SARIMA model (Box and Jenkins, 1976). The SARIMA
model can be formulated as
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Dp(B)¢,(B)VYVy, = 1+ Oo(B)6,(B)e;

where y is the intercept or mean term, & is the residual at time ¢
follows N(0, 62), B is the backward shift operator, and s denotes the
number of periods per season. The polynomials ¢,(B) and 6,(B)
represent the non-seasonal autoregressive and moving average
terms with orders p and g, respectively. Similarly, the seasonal
autoregressive and moving average terms of order P and Q,
respectively, are represented by ®»(B°) and ©y(B°) polynomials,
and also, the seasonal and non-seasonal differencing terms are
represented by V2 and V¢ respectively.

SARIMA with exogenous variables

The SARIMAX model (Box and Jenkins, 1976) is a rational
extension of SARIMA that allows the incorporation of explanatory
variables. It is an integration of regression and the SARIMA model.
If only the SARIMA model is not sufficient to provide an acceptable
efficiency, it is very obvious to look for other processes that have the
potential to implant in past values of the dependent variables.

Random Forest

Random Forest (Breiman, 2001) has become widely used in
machine learning. The method of Random Forest usually works in
two steps. In the first step, Random Forest constructs # number of
binary classification/regression trees using multiple bootstrap
samples with replacement obtained from the original
observations. The correct classification/regression is determined
by the majority vote/average value of all the trees. The second
step is to randomly select input variables (mtry) from a random
subset of the features (exogenous variables) and to calculate the best
split for the tree based only on these selected variables.

Support vector regression

The SVR is a nonlinear modeling procedure that utilizes the
principle of structured risk minimization (Vapnik, 2000). The SVR
model can be expressed as

y = wT(p(x) +b

where ¢(.):R" — R"™ is a nonlinear mapping function from
the original input space into a higher-dimensional feature space,
w € R™ is the weight vector, b is the bias term, and the superscript
T denotes transpose.

Time Delay Neural Network with
exogenous variables

A neural network consists of a set of connected cells called
neurons or node. The neurons receive information from either
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input cells or other neurons and perform some kind of
transformation of the input and transmit the outcome to other
neurons to output cells. The neural networks are built from layers of
neurons connected so that one layer receives input from the
preceding layer of neurons and passes the output on to the
subsequent layer. In TDNNX (Hyndman and Athanasopoulos,
2021), all neurons are connected through weights. To design a
TDNNX, (a) number of input, hidden, and output layer; (b)
number of input, hidden, and output node; (c) activation
function; (d) bias; and (e) exogenous variables are to specified.
The TDNNX performs the following non-linear mapping between
input and output.

Ve =fWiets Yicas oo Vieps Xio Xaps oo Xg) + &

where fis the function of the network structure and connection
weights. Here, y,_1, ¥1—2, ..., y1—p» the pth order lag of study variable
y, and X1, Xop ..o Xgp the g exogenous variables selected from
Random Forest model, are network input nodes.

Forecast evaluation methods

Different forecasting models are evaluated using the criteria of
root mean square error (RMSE) and root median square error
(RMASE), which are expressed as

RMSE = \/ /) {é(yt - y,)z}, and
t=1

RMASE =/ Median(y, - y,)*

where y, and y, are the actual and predicted values of pest
incidence at time ¢, respectively. The RMSE was used as an
evaluation criterion to measure the accuracy of the forecasted pest
incidence, as described by Chai and Draxler (2014). The RMdSE
was employed as an additional criterion to assess forecast
performance, providing robustness against extreme values, as
discussed in Hyndman and Koehler (2006).

10.3389/fagro.2025.1687988

Results and discussion
Descriptive statistics

The descriptive statistics of incidence of both pests and weather
variables in the current week are presented in Table 1. It is evident
from Table 1 that the variability in pest incidence is quite high for
both pests since the coefficient of variation (CV) is found to be 134%
and 102% for yellow mite and jute semilooper, respectively. Among
the weather variables, rainfall in the current week shows
considerably high CV.

Seasonal incidence

The seasonal plots of yellow mite and jute semilooper are
presented in Figures 1 and 2, respectively. For both pests, peak
incidence is observed on 55 DAS followed by 45 DAS. The results of
the WO test in Table 2 indicate that seasonality is present for jute
semilooper but is absent for yellow mite.

Correlation analysis

Results of Pearson’s correlation analysis in Table 3 reveal that
the mean incidence of yellow mite is significantly positively
correlated with maximum temperature at a 2-week lag, whereas it
is significantly negatively correlated with maximum RH at a 1-week
lag, and minimum and maximum RH at a 2-week lag. Similarly, the
mean incidence of jute semilooper is also significantly positively
correlated with maximum temperature at a 2-week lag, whereas it is
significantly negatively correlated with maximum and minimum
RH at a 2-week lag. The weather variables that are significantly
correlated with pest incidence are further subjected to
multicollinearity analysis. The results of multicollinearity analysis
in Table 4 reveal that maximum and minimum RH at a 2-week lag
show moderate multicollinearity for yellow mite incidence, whereas
for jute semilooper, minimum RH at a 2-week lag shows moderate

TABLE 1 Descriptive statistics of pest incidence and weather variables in the current week.

Yellow mite

Jute semilooper

Statistics e 7 e el MaxT (°C) MinT (°C) MaxRH (%) MinRH (%) Rainfall (mm)
Mean 3.97 5.17 31.64 22.17 83.91 72.56 104.48
Median 227 423 31.57 2225 83.94 72.93 57.85

Standard deviation 533 529 1.97 212 10.12 10.42 117.59
CV(%) 134 102 6 10 12 14 112
Minimum 0.00 0.00 2829 13.00 46.43 37.86 0.00
Maximum 25.62 18.99 36.86 2529 99.14 92.57 533.90
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FIGURE 1
Seasonal plot of yellow mite incidence.
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FIGURE 2
Seasonal plot of jute semilooper incidence.

multicollinearity. Therefore, maximum RH at a 1-week lag and
maximum temperature at a 2-week lag are to be used as exogenous
variables in time series models for yellow mite incidence, whereas
for jute semilooper, the exogenous variables are maximum
temperature and maximum RH at a 2-week lag.

TABLE 2 WO test to check seasonality.

Test
statistic
Yellow mite 0.04 1 0.014 0.04
Jute
. 1 0.0001 0.0004 0.003*
semilooper

*Significant at the 5% level of significance.

Frontiers in Agronomy

DAS

Fitting of different models for yellow mite
and jute semilooper incidence

To check the presence of stationarity in the data series, the
Augmented Dickey-Fuller (ADF) test and Phillips—Perron (PP) test
have been applied, and the results are presented in Table 5. It is
found that the both data series are stationary and, therefore, regular
differencing is not required.

After confirming the stationarity of the time series data of
yellow mite incidence, an ARIMA model is fitted and the
parameters are presented in Table 6. The residuals of the fitted
ARIMA model are found to be non-normal, as evident from
Table 7; therefore, the original data series is transformed using
square root transformation with the addition of 0.5 as few zero
values are there. The transformed data exhibit seasonality as evident
from the WO test, and therefore, a suitable SARIMA model is fitted

frontiersin.org
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TABLE 3 Correlation between the mean incidence of pests with weather variables.

Yellow mite
Weather variables

Current week One-weeklag Two-week lag

Jute semilooper

Current week One-week lag Two-week lag

MaxT -0.16 0.26 0.34* 0.02 0.15 0.39**
MinT -0.27 -0.16 -0.21 -0.02 -0.05 -0.08
MaxRH -0.19 —0.40** -0.54** —-0.15 -0.16 -0.37*
MinRH -0.01 -0.27 —0.46** -0.07 -0.15 —0.41**
Rainfall -0.17 -0.21 -0.18 -0.05 -0.04 -0.24

*: Significant at 5% level of significance ; **Significant at the 1% level of significance.

TABLE 4 VIF values of significantly correlated weather variables.

Yellow mite Jute semilooper
Variables VIF Variables VIF
MaxRH lagl 3.15 MaxT lag2 1.66

MaxT lag2 2.10 MaxRH lag2 5.54
MaxRH lag2 7.92/ MinRH lag2 6.341
MinRH lag2 6.39/

AModerate multicollinearity.

based on the minimum AIC and BIC criteria, and this model is
referred to as SARIMA-T. The parameters of the fitted SARIMA-T
model are also presented in Table 6. Subsequently, MaxRH at 1
week and MaxT at 2 weeks are used as exogenous variables in the

TABLE 5 ADF and PP test for stationarity.

Yellow mite
ADF test PP test

Test
statistic

Test

statistic p-value

p-value

-4.01 0.01** —4.128 0.015*

SARIMA-T model and, therefore, referred to as the SARIMAX-
T model.

Similarly, the results of ADF and PP tests for jute semilooper
incidence in Table 4 indicate that the data series is stationary, and the
WO test in Table 2 indicates that the series is seasonal. Therefore, the
SARIMA model is fitted to predict the incidence of jute semilooper and
the parameters of the model are presented in Table 8. Since the
residuals of the fitted SARIMA model depict non-normality as
evident from Table 9, square root transformation is therefore applied
on the original data with the addition of 0.5 to it. The WO test on the
square root transformed data of semilooper incidence indicates non-
seasonality, and accordingly, the ARIMA (2, 0, 1) model is fitted on this
transformed data, and subsequently, the model is referred to as
ARIMA-T. The parameters of the fited ARIMA-T model are also
presented in Table 8. In case of jute semilooper, MaxT and MaxRH at 2
weeks are found to be the most important exogenous variables.

Jute semilooper
ADF test PP test

Test
statistic

Test

p-value statistic

p-value

=5.17 0.01** -5.16 0.01**

*: Significant at 5% level of significance; **: Significant at 1% level of significance.

TABLE 6 Parameter estimates of the ARIMA (0, 0, 1), SARIMA-T (0, O, 1) (1,0,0)4, and SARIMAX-T (0,0,1) (1,0,0), models for yellow mite incidence.

Model Parameters Estimate SE p-value
C 3.98 1.20 0.001**
ARIMA (0, 0, 1)
MAL 071 0.11 0.000%**
C 1.76 032 0.000%**
SARIMA-T (0, 0, 1) (1,0,0), MA1 0.57 0.15 0.000+*
SARI 027 0.16 0.09
MAI 0.49 0.17 0.004**
SARI 033 0.15 0.035*
SARIMAX-T (0,0,1) (1,0,0),
MaxRH lagl -0.03 0.01 0.029*
MaxT lag2 0.13 0.04 0.000**

*

Frontiers in Agronomy
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: Significant at 5% level of significance; **: Significant at 1% level of significance; ***Significant at the 0.1% level of significance.
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TABLE 7 Residual diagnostics test for time series models of yellow mite incidence.

Diagnostic ARIMA SARIMA-T SARIMAX-T
A Test statistic p-value Test statistic p-value Test statistic p-value
Box-Ljung 631 0.61 2.98 0.94 3.57 0.89
Shapiro-Wilk 0.87 0.0003* 0.95 0.07 0.96 0.14
ARCH LM 19.29 0.01 14.15 0.08 7.65 0.47

*: Significant at 5% level of significance.

Therefore, ARIMAX (3,1,0) is found to be the best fitted model on the
original time series data of jute semilooper incidence. The parameter
estimates with standard error (SE) and p-values are presented in
Table 8. However, the residuals of fited ARIMAX model are found
to be non-normal and therefore, ARIMAX model is fitted on the

TABLE 8 Parameter estimates of the SARIMA (0, 0, 1) (1,0,0)4, ARIMA-T
(2, 0, 1), ARIMAX (3, 1, 0), and SARIMAX-T (0, 0, 1) (1,0,0), models for jute
semilooper incidence.

Model Parameters Estimate SE p-value
¢ 5.11 1.96 0.009**
SARIMA (0, 0, 1
¢ ) MAL1 0.63 0.15 0.000**
(1,0,0)4
SARL 0.49 0.14 0.000*
C 2.06 0.11 0.000°*
ARI -0.02 0.14 0912
ARIMA-T (2, 0, 1)
AR2 -0.70 0.13 0.000°*
MAL 0.63 0.25 0.011*
ARI -0.75 0.14 0.000**
AR2 -0.92 0.09 0.000*
ARIMAX (3, 1, 0) AR3 ~0.61 0.14 0.000°*
MaxT lag2 0.49 0.28 0.079
MaxRH lag2 -0.19 0.05 0.000+%*
MAL 0.87 0.12 0.000*
ARIMAXT (0, 0, SARL 0.70 0.12 0.000*
1) (1,0,0)4 MaxT lag2 0.11 002 | 0000
MaxRH lag2 -0.01 0.01 0.015*

*: Significant at 5% level of significance; **: Significant at 1% level of significance; ***:

Significant at 0.1% level of significance.

square root transformed data. This model is referred to as ARIMAX-T.
The estimate of parameters, its SE, and the respective p-values are also
presented in Table 8.

Random Forest relies on two key algorithms: bagging and
random feature selection. Bagging involves selecting a specified
number of samples (ntree) from the dataset using simple random
sampling with replacement (SRSWR) to construct multiple trees.
Random feature selection determines the number of variables
(mtry) to consider at each split. The hyperparameters of the fitted
Random Forest model are provided in Table 10. The Random
Forest model also evaluates the % increase in node impurity
(IncNodePurity) to identify important variables. For predicting
the mean incidence of yellow mite, rainfall and MaxT at a 2-week
lag are identified as significant weather variables, as shown in
Figure 3. Similarly, for predicting the jute semilooper incidence,
rainfall and MaxT at a 2-week lag are also recognized as important
weather variables, as shown in Figure 4. The key weather variables
identified from the variance importance plot in the Random Forest
model, rainfall and MaxT at a 2-week lag, are used as exogenous
variables in both the SVR and TDNNX models.

For both pests, the SVR model is trained with the mean
incidence as the dependent variable and rainfall and MaxT at a 2-

TABLE 10 Hyperparameters of the Random Forest model for both
yellow mite and jute semilooper incidences.

Yellow Jute
Hyperparameters : .
mite semilooper

Type of Random Forest Regression Regression

Number of trees (ntree) 500 500

No. of variables tried at each split 5 s
(mtry)

Mean of squared residuals 27.62 32.36

TABLE 9 Residual diagnostics test for time series models of jute semilooper incidence.

SARIMA ARIMA-T ARIMAX ARIMAX-T
Diagnostic test
Test statistic p-value Test statistic p-value Test statistic p-value Test statistic p-value
Box-Ljung 5.60 0.69 2.76 0.95 522 0.73 6.97 0.54
Shapiro-Wilk 0.86 0.0001%% 0.88 0.0006** 0.92 0.007+ 0.92 0.008*
ARCH LM 272 0.95 192 0.98 434 0.82 4.94 0.76

*: Significant at 5% level of significance; **: Significant at 1% level of significance; ***: Significant at 0.1% level of significance.
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FIGURE 3
Variable importance plot of the Random Forest model for yellow mite incidence.
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FIGURE 4
Variable importance plot of the Random Forest model for jute semilooper incidence.

week lag as the exogenous variables. The hyperparameters of the  weather variables selected from the Random Forest model. In the

fitted SVR model are provided in Table 11.
The TDNNX model is fitted between the mean incidence of pest
with its lagged values up to the significant order and exogenous

TDNNX (p,k) model, p and k indicate the number of nodes in the
input and hidden layer, respectively. For both yellow mite and
semilooper incidences, there are five nodes in the input layer that

TABLE 11 Hyperparameters of the SVR model for both yellow mite and jute semilooper incidences.

No. of support

Kernel t Epsilon

erne Cost (C) psilon (g) vectors
Yellow mite eps-regression Radial 1 ‘ 0.5 ‘ 0.1 39

Jute semilooper eps-regression Radial 1 ‘ 0.5 ‘ 0.1 37
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TABLE 12 Hyperparameters of the TDNNX model for both yellow mite correspond to lagged values of mean pest incidence up to the order

and jute semilooper incidences. of three and two exogenous weather variables. The hyperparameters

Number of Number of of the fitted TDNNX model are presented in Table 12.

input nodes hidden nodes

Exogenous @ Activation

(o) k) variables function
Model validation
Rainfall at a 2- Sigmoid (input
5 5 week lag layer) The predictive abilities of different time series and machine
MaxT ata 2- Linear (output learning models are compared using RMSE and RMdSE as the
week lag layer)

evaluation criteria for both training and testing dataset, and the

TABLE 13 Predictive abilities of different models for both yellow mite and jute semilooper incidences.

Training Testing Training Testing

Yellow mite ARIMA (0,0,1) 4.50 2.11 2.60 1.72
SARIMA-T (0,0,1) (1,0,0) 4 4.72 2.25 2.06 1.06
SARIMAX-T (0,0,1)(1,0,0)4 4.14 1.85 1.89 1.76
SVR 4.52 1.33 2.14 0.98
Random Forest 2.28 2.92 1.41 2.46
TDNNX 1.39 0.60 0.85 0.39
Jute semilooper SARIMA (0,0,1) (1,0,0)4 4.23 1.01 1.95 0.87
ARIMA-T (2,0,1) 3.43 291 1.18 2.83
ARIMAX (3,1,0) 3.35 7.47 1.81 7.07
SARIMAX-T (0,0,1) (1,0,0), 391 4.82 1.13 2.34
SVR 4.86 3.10 242 2.40
Random Forest 2.40 3.96 1.78 0.45
TDNNX 0.82 2.49 0.30 091
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FIGURE 5
Plot of observed vs. fitted values by SARIMAX-T, SVR, and TDNNX models for yellow mite incidence.
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FIGURE 6

Plot of observed vs. fitted values of SARIMA, Random Forest, and TDNNX models for semilooper incidence.

TABLE 14 Out-of-sample forecast for the mean incidence of yellow mite and jute semilooper for the year 2024 using forecasted weather data.

Forecasted rainfall

Forecasted MaxT @ Yellow mite mean incidence

Jute semilooper mean incidence

at lag2 at lag2 (n/cm?) (% infestation)
35 73.84 31.50 1.93 0.05
45 77.21 31.50 235 1.77
55 78.19 31.50 217 7.81
65 78.47 31.50 2.06 1530

TABLE 15 Out-of-sample forecast for the mean incidence of yellow mite and jute semilooper for the year 2024 using average weather data from

2013 to 2023.
Average rainfall at Average MaxT at

DAS lag2

lag2

Yellow mite mean incidence
(n/cm?)

Jute semilooper mean incidence
(% infestation)

45 51.9 31.6 2.42 141
55 88.5 31.7 2.12 8.12
65 97.4 31.6 2.05 12.60

results are presented in Table 13. For the mean incidence of yellow
mite, TDNNX is found to be the best fitted model followed by SVR
and SARIMA-T on the basis of RMSE and RMdSE values. Similarly,
for jute semilooper, it is observed that the TDNNX model produces
the least RMSE and RMdSE value for the training dataset followed
by Random Forest, but for the testing dataset, SARIMA has the least
RMSE values followed by Random Forest and TDNNX. However,
the residuals of the fitted SARIMA model are not normally
distributed, and therefore, model assumptions are violated. Thus,
by considering both RMSE and RMdSE values, TDNNX may also
be considered as the best fitted model for prediction of the mean
incidence of jute semilooper followed by Random Forest and
SARIMA. The plots of observed vs. fitted values for the mean

Frontiers in Agronomy

incidence of yellow mite and jute semilooper across different models
are shown in Figures 5 and 6, respectively.

Forecasting of pest incidence

The out-of-sample forecasts for pest incidence of yellow mite
and jute semilooper are obtained using the TDNNX model for the
year 2024 at 35, 45, 55, and 65 DAS. The forecasts are obtained
using forecasted values of weather variables, i.e., rainfall and MaxT
at a 2-week lag, from the ARIMA model, and the results are
presented in Table 14. Additionally, out-of-sample forecasts of
pest incidence are also made using the average values of weather
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variables (rainfall and MaxT at a 2-week lag) for the period from
2013 to 2023, and the results are presented in Table 15.

Conclusion

The study found that the peak mean incidence of jute semilooper
and yellow mite occurs at 45 and 55 DAS, respectively, with
seasonality observed only in jute semilooper. Among the crop years
studied, the peak mean incidence of yellow mite was recorded in 2014,
while for jute semilooper, it occurred in 2022. The study also revealed
that incidence of yellow mite has a significant positive correlation with
maximum temperature at a 2-week lag while the correlation with
maximum relative humidity at a 1- and 2-week lag is highly significant
in a negative direction. This suggests that dry weather with high
temperatures 2 weeks prior leads to higher yellow mite infestations at
present. Consequently, if such weather conditions are observed, there
is a likelihood of increased mite infestation in the following 2 weeks.
This information can assist farmers in better preparing for pest
emergence and in making informed decisions regarding pest control
measures. Among the different time series and machine learning
models, the TDNNX model was found to be the most accurate for
predicting the mean incidence of both yellow mite and jute semilooper
using weather variables.
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