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In animals and humans, offspring of allergic mothers have increased responsiveness
to allergen and the allergen-specificity of the offspring can be different than that of the
mother. In our preclinical models, the mother’s allergic responses influence development
of the fetus and offspring by elevating numbers of cells in dendritic cell subsets. A
major question is the identity of maternal factors of allergic mothers that alter offspring
development of responsiveness to allergen. Lipids are altered during allergic responses
and lipids are transported to the fetus for growth and formation of fetal membranes.
We hypothesized that pro-inflammatory lipids, that are elevated in allergic mothers, are
transported to the fetus and regulate fetal immune development. We demonstrate in
this report that there was a significant 2-fold increase in B-glucosylceramides (BGlcCer)
in allergic mothers, the fetal liver and her offspring. The BGlcCer were transported from
mother’s plasma, across the placenta, to the fetus and in breastmilk to the offspring.
Administration of GlcCer to non-allergic mothers was sufficient for offspring responses
to allergen. Importantly, maternal administration of a clinically relevant pharmacological
inhibitor of pGlcCer synthase returned BGlcCer to normal levels in the allergic mothers
and her offspring and blocked the offspring increase in dendritic cell subsets and offspring
allergen responsiveness. In summary, allergic mothers had increased BGlcCer that was
transported to offspring and mediated increases in offspring DCs and responsiveness to
allergen. These data have a significant impact on our understanding of mechanisms for
development of allergies in offspring of allergic mothers and have the potential to lead to
novel interventions that significantly impact risk for allergic disease early in life.

Keywords: allergy, B-glucosylceramide, dendritic cell, eosinophils, fetal liver, lipidomics, maternal, neonate

INTRODUCTION

The prevalence of allergic diseases and asthma have dramatically increased in the last 40 years
(1-3). In animals and humans, offspring of allergic mothers have increased responsiveness to
allergen (4-11). Most reports for child asthma indicate an association with maternal rather than
paternal asthma (4). In humans (4) and mice (5-11), the allergen that the offspring responds to is
not necessarily the same allergen that induces allergic responses by the mother. The offspring of
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FIGURE 2 | B-monohexosyl ceramides are increased in maternal and fetal tissues of allergic moms. Allergic moms were generated as in the timeline in Figure 1A.
Tissue B-monohexosyl ceramides were measured by mass spectrometry in (A) mom plasma, (B) mom liver, (C) placenta, and (D) fetal liver on gestational day 18 of
OVA-treated and saline-treated mothers. (E) Lipidomics bubble plot of fold change and significantly greater in OVA than saline treated groups for B-monohexosyl
ceramides, ceramides, and sphingomylins. B-monohexosyl ceramides include both B-glucosyl and B-galactosyl ceramides. Dot size corresponds to fold change
between OVA and saline group. n = 8-10 mice per group for a representative experiment of two experiments. *p < 0.05 greater in OVA than saline group, crimson red
highlighted chain lengths are above the panels.
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FIGURE 3 | B-glucosyl ceramides are increased in the fetal livers of allergic moms. Mice were treated as in the timeline in Figure 1A. On gestational day 18, fetal liver
(A) B-glucosyl ceramides and (B) p-galactosyl ceramides were separated by column chromatography and then analyzed by mass spectrometry. n = 8-10 mice per
group for a representative experiment of two experiments. “o < 0.05, crimson red highlighted chain lengths are above the panels.

fetal resorption. Additional controls included non-injected non-
allergic dams sensitized and challenged with saline and included
non-injected OVA-allergic dams (Figure 5A). To determine dose
dependent responses, two doses of BGlcCer were administered
to dams as a mixture of 16:0, 18:0, 18:1, and 24:1 because these
chain lengths are commercially available. The daily dose of 16:0
in mixture 2 was 8.8 pg/dam in Figure 5B because in Figure 4
injection of D3 BGlcCer 16:0 (13 pg/dam) increased mom plasma
to 4,100 pmoles/ml, which is about twice that of endogenous
allergic mom plasma BGlcCer in Figure 6C. Then, the ratios of
18:0, 18:1, and 24:1 to the 16:0 were set similar to the ratios for
concentrations in mom plasma in Figure 6C. The mixture 1 was
at half the dose of mixture 2 (Figure 5B). As previously described
for enhanced sensitivity of pups of allergic mothers (4-6, 13,
14, 53, 54), the pups received suboptimal allergen sensitization
(by one instead of two intraperitoneal OVA/alum injections)
and challenged with inhalation of OVA as in Figure 5A. The
lung eosinophilia was examined at 24 h after OVA challenge as
previously described (5, 12-14) because eosinophilia after OVA
challenge increases at 24 h and is sustained up to 9 days with a
gradual clearance of lung eosinophilia by 2 weeks (55).

The data demonstrate that there was a dose dependent
increase in pup broncho-alveolar lavage eosinophils and
monocytes (Figure 5C) and pup serum anti-OVA-specific
IgE (Figure 5D) in the pups of BGlcCer-injected non-allergic
mother. These levels of inflammation were similar to the
level in pups of allergic mothers (Figure5C). There was
also increased pup lung gene expression of the cytokine IL5
and chemokine CCL24 (Figures 5E,F), which are critical for

eosinophil development and recruitment, respectively. The
administration of BGlcCer to non-allergic mothers elevated
BGlcCer in the mom plasma, pup stomach and pup lung
(Figures 5G-I), indicating that elevating maternal PGlcCer
increases offspring PGlcCer. There was little to no increase
in mom or offspring PBGalCer (Supplementary Figure 4),
ceramides  (Supplementary Figure5), or sphingomyelin
(Supplementary Figure 6). Thus, increased maternal pGlcCer
was sufficient to enhance offspring lung eosinophilia in response
to allergen.

Inhibition of BGlcCer Synthase Reduced
fHexCer of Allergic Mothers to the Levels

in Non-allergic Mothers

The data in Figure5 established that elevation of maternal
BGlcCer was sufficient to promote pup lung eosinophilia in
response to allergen. It was next determined whether this increase
was necessary for the responsiveness to allergen in pups of
allergic mothers. To address this, maternal BGlcCer plasma
concentrations in allergic mothers were reduced to the level
in non-allergic mothers by P4rr, a glucosylceramide transferase
inhibitor (56, 57) in a P4 derivative class of fGlcCer inhibitors
used in clinical trials as this class has high specificity for GlcCer
and low toxicity (57-61). P4rr was administered by subcutaneous
injection daily (57-59, 62) during pregnancy (GD5-GD20) and
during nursing (PND3-13) to allergic mothers (Figures 6A,B).
The P4rr was started on GD5, which is 6-7 days after the last
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FIGURE 4 | Deuterated C16:0 GlcCer is transported through mom plasma
and milk to offspring. (A) D3 GicCer 16:0 (arrow, deuterium position). (B=F) On
GD18, mothers (timeline Figure 1A) received a subcutaneous injection with
D3 GicCer 16:0 (13 pg/dam) in ethoxylated castor oil or an intraveneous
injection with D3 GlcCer 16:0 (18 pg/dam) in autologous plasma. (G,H) On
PND14, mothers received a subcutaneous injection with D3 GlcCer 16:0 (13
ng/dam) in ethoxylated castor oil. n = 3-5 mice per group for a representative
experiment of two experiments. *p < 0.05 compared to the other groups.

OVA challenge to the mothers, a time after the OVA-induced 2-
5 days peak in eosinophilia and when IL4 and IL5 have resolved
in OVA-challenged adult mice (55, 63). The P4rr inhibitor was
chosen rather than the D-PDMP inhibitor because P4rr is more
selective for BGlcCer transferase than D-PMDP and doesn’t have
the D-PMDP side effects of increased ceramide storage (60).
As controls, a group of allergic mothers received the inactive
(S,S) enantiomer, P4ss, at the same dose (59). These doses of
P4rr have been shown to reduce plasma BGlcCer by 1/3 to %
in other models without adverse effects (57-59), and this is
the level of reduction needed to bring plasma and fetal liver
BGlcCer in allergic mothers to the level of BGlcCer in non-allergic
mothers (Figures 2, 3). The pups were suboptimally sensitized
[by one instead of two intraperitoneal OVA/alum injections (4-
6, 13, 14, 53, 54)] and challenged with inhalation of OVA as
in Figure 6A.

The maternal and offspring tissues were examined for
BHexCer and PBGlcCer. For tissue PBHexCer, maternal
administration of P4rr, but not the inactive control P4ss,
reduced allergic mother plasma pHexCer (C14:0, C16:0, C18:0,
C18:1, C20:0, C22:0, C24:0, C24:1, C26:0, and C26:1), allergic
mother placenta fHexCer (C14:0, C18:0, C18:1, C20:0, C22:0,
C24:0, C24:1, C26:0, and C26:1), and allergic mother fetal

liver PHexCer (C14:0, C16:0, C18:0, C18:1, C20:0, and C26:1)
(Supplementary Figure 7). In the OVA-challenged pups of
allergic mothers, maternal administration of P4rr reduced pup
liver BHexCer (C18:0, C18:1, and C20:0) and pup lung pHexCer
(C18:1) (Supplementary Figure 8).

For tissue PGlcCer, maternal administration of P4rr
(Figures 6A,B) reduced the amount of PGlcCer on GDI18
in plasma of allergic mothers (C14:0, C16:0, C18:0, C20:0, C22:0,
C24:0, and C24:1) (Figure 6C) and lungs of allergic mothers
(C14:0, C16:0, C18:0, C18:1, C20:0, C22:0, C24:0, C24:1, and
C26:0) (Figure 6D) which is the site of allergic inflammation
in the mothers, but there were minimal effects of P4rr on
amount of BGlcCer in the liver of allergic mothers (Figure 6E).
Placentas of allergic mothers had elevated amounts of BGlcCer
(C14:0, C16:0, C18:0, C18:1, C20:0, C22:0, C24:0, C24:1, and
C26:1) and this was inhibited by maternal treatment with P4rr
but not P4ss (Figure 7A). Fetal livers of allergic mothers had
elevated amounts of BGlcCer (C14:0, C16:0, C18:0, C20:0, C22:0,
C24:0, C24:1, C26:0, and C26:1) and this was inhibited by
maternal treatment with P4rr but not P4ss (Figure 7B). Lungs
of allergen-challenged pups from allergic mothers had elevated
BGlcCer 18:1 (Figure 8A) and maternal P4rr administration
reduced pup lung BGlcCer (C18:0, C18:1, C20:0, and C22:0)
(Figure 8A). Allergen-challenged pups of allergic mothers
had increased liver BGlcCer (C18:0 and C18:1) which was
reduced by maternal P4rr administration (Figure 8B). P4rr
did not alter BGalCer in allergic mother plasma, lung or liver
(Supplementary Figure 9).

Importantly, P4rr is an inhibitor of BGlcCer synthase and
doesn’t affect storage of the other lipid metabolites (60). Thus,
it was necessary to determine whether there were effects of P4rr
on BGalCer, ceramides, sphingomyelins or sphinogosines in this
model. Maternal administration of P4rr did not reduce fetal
liver sphingosine metabolites (Supplementary Figure 3D). With
regards to ceramides, maternal P4rr did not reduce allergic mom
plasma ceramides (Supplementary Figure 10A), allergic mom
liver ceramides (Supplementary Figure 10C), or the majority
of allergic mom lung ceramides except the allergic mom lung
ceramides (C14:0, C18:0, C18:1) (Supplementary Figure 10B).
With regards to sphingomyelins, maternal P4rr did not reduce
sphingomyelins in plasma (Supplementary Figure 11A) or lungs
(Supplementary Figure 11B) of allergic moms; also, there was
no reduction in the majority of sphingomyelins in allergic mom
liver, except the allergic mom liver sphingomyelins C18:0 and
C18:1 (Supplemental Figure 11C).

In placentas of allergic mothers, BGalCer was elevated
and this was reduced by maternal P4rr, but not maternal
P4ss (C14:0, Cl6:0, C18:0, C18:1, C20:0, C22:0, C24:0,
C24:1, C26:0, and C26:1) (Supplementary Figure 12A).
Importantly, in contrast to placentas, fetal liver PBGalCer
was not elevated and P4rr did not reduce fetal liver
BGalCer in allergic mothers (Supplementary Figure 12B).
For offspring of allergic mothers, maternal P4rr did not
reduce ceramides in placentas (Supplementary Figure 13A),
fetal  livers  (Supplementary Figure 13B), and  pup
lungs  (Supplementary Figure 13C), but reduced only
ceramide Cl18:0 in pup liver (Supplementary Figure 13D).
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FIGURE 5 | OVA/alum. At PND10-12, pups in all groups received 3 challenges with OVA. For experiments with mom and pup analysis, tissues were collected on
PND13. (C) Bronchoalveolar lavage (BAL) leukocytes of postnatal day 13 OVA-challenged pups from saline (non-allergic) mothers that were non-treated or treated
with vehicle or BGlcCer mix 1 or mix 2. Positive controls are pups from allergic mothers. (D) Pup serum anti-OVA IgE as determined by ELISA. (E) Pup BAL IL5, and
(F) Pup BAL CCL24 were determined by ELISA. Tissue B-glucosyl ceramides (G-l) and p-galactosyl ceramides (Supplementary Figure 4) were separated by
column chromatography and then analyzed by mass spectrometry. n = 810 mice per group for a representative experiment of two experiments. *p < 0.05 compared
to saline or vehicle group, crimson red highlighted chain lengths are above the panels.
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FIGURE 6 | P4rr decreased B-glucosyl ceramides in plasma, lung and liver of allergic mothers. (A) Mothers were sensitized and challenged with OVA or saline and
then mated. Mothers received daily subcutaneous (s.c.) injections of (B) P4rr or the inactive (S,S) sterecisomer. P4rr or P4ss were administered during pregnancy
(GD5-GD20) and during nursing (PND3-13) to allergic mothers. At postnatal day 3 (PND3), pups in all groups received one intraperitoneal (i.p) sensitization with
OVA/alum. At PND10-12, pups in all groups received 3 challenges with OVA. For experiments with maternal and fetal analysis, tissues were collected on GD18. For
experiments with pup analysis, tissues were collected on PND13. Tissue B-glucosyl ceramides (C-E) and p-galactosyl ceramides (Supplementary Figure 9) were
separated by column chromatography and then analyzed by mass spectrometry. (C) Mom plasma. (D) Mom lung. (E) Mom liver. n = 8-10 mice per group for a
representative experiment of two experiments. *p < 0.05 compared to NT, OVA allergic mother, crimson red highlighted chain lengths are above the panels.

In offspring of allergic mothers, maternal P4rr had P4rr is reported to inhibit activity of BGlcCer synthase. It
minimal reduction in sphingomyelin (C16:0) in placentas  was also determined whether expression of enzymes of the
(Supplementary Figure 14A) and did not alter sphingomyelins ~ ceramide pathway were not altered. There were no effects of
levels in fetal liver (Supplementary Figure 14B), pup  allergen or P4rr on expression of enzymes for de novo synthesis
lung  (Supplementary Figure 14C), and  pup  liver  of ceramide (DEGS gene encodes dihydroceramide desaturase),
(Supplementary Figure 14D). expression of PGlcCer synthase (UGCG), or enzymes for
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FIGURE 7 | P4rr decreased B-glucosyl ceramides in placenta and fetal liver of allergic mothers. Moms were treated as in Figure 6A and tissues were collected on
GD18. Tissue B-glucosyl ceramides (A,B) and p-galactosyl ceramides (Supplementary Figure 12) were separated by column chromatography and then analyzed by
mass spectrometry. (A) Placenta. (B) Fetal liver. n = 8-10 mice per group for a representative experiment of two experiments. *p < 0.05 compared to NT, OVA allergic

degradation of PGlcCer to ceramide (GBA gene encodes
p-glucosidase) (Supplementary Figure 15). Thus, the pGlcCer
synthase inhibitor P4rr reduced maternal BGlcCer without
altering the ceramide pathway enzyme gene expression and
without global effects on fetal or pup levels of GalCer, ceramides,
or sphingomyelins.

Inhibition of fGlcCer Synthase Blocks
Allergen-Induced Lung Eosinophilia in
Offspring of Allergic Mothers

The pups from Figure 6A, were examined for allergen-induced
lung eosinophilia. There were no effects of P4rr, P4ss, or allergen
treatments on pup body weight (Figure 9B), pup numbers, or
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FIGURE 8 | P4rr decreased B-glucosyl ceramides in lung and liver of pups of allergic mothers. Moms were treated as in Figure 6A and pup tissues were collected on
PND13. Tissue B-glucosyl ceramides were separated by column chromatography and then analyzed by mass spectrometry. (A) Pup lung. (B) Pup liver. n = 8-10
mice per group for a representative experiment of two experiments. *p < 0.05 compared to NT, OVA allergic mother, crimson red highlighted chain lengths are above

gender distribution (data not shown). In allergen-challenged
offspring of allergic mothers, maternal administration of P4rr,
but not the inactive enantiomer P4ss, blocked the allergen-
induced increases in bronchoalveolar lavage eosinophils and
monocytes and the low levels of lymphocytes and neutrophils

(Figure 9A). In allergen-challenged offspring of allergic mothers,
maternal administration of P4rr blocked the increase in pup
blood eosinophils (Figure 9C) and blocked the increase in
pup lung IL-5 (Figure9D), which mediates bone marrow
differentiation and recruitment of eosinophils to the lung
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FIGURE 9 | P4rr decreased lung lavage inflammation and inflammatory mediators in OVA-challenged pups from allergic mothers. (A) Bronchoalveolar lavage (BAL)
leukocytes of postnatal day 13 OVA-challenged pups from allergic and saline (non-allergic) control mothers that were non-treated (NT) or treated with P4rr or P4ss. (B)
Body weight. (C) Pup blood eosinophil numbers. (D) Pup BAL IL5, (E) Pup BAL CCL11, (F) Pup BAL CCL24 as determined by ELISA. (G) Pup serum anti-OVA IgE as
determined by ELISA. n = 8-10 mice per group for a representative experiment of two experiments. *p < 0.05 compared to the pups of the OVA-treated moms and

in allergic responses (64). Pups of allergic mothers had
elevated CCL11 and CCL24 but this was not affected by P4rr
(Figures 9E,F). The offspring of non-allergic mothers did not
respond to allergen challenge and the P4rr did not alter the low
levels of leukocytes in these offspring of non-allergic mothers
(Figure 9A). Also, P4rr, but not the inactive P4ss control, blocked
the allergen-induced increased in anti-OVA specific IgE in pups
of allergic mothers (Figure 9G).

The fetal livers and lungs of allergen-challenged pups of
allergic mothers have elevated numbers of resident DCs (13,
14). Therefore, it was determined whether this increase in
DCs was blocked by P4rr as determined by immunolabeling
(13, 14) (Figure 10A) and flow cytometry. The fetal livers
of allergic mothers had elevated numbers of DCs with the
phenotype of resident DCs and plasmacytoid DCs (pDCs) and
this increase in DCs was blocked by maternal P4rr (Figure 10B).
Lungs of allergen-challenged pups of allergic mothers had

increased numbers of resident DCs, inflammatory DCs and
pDCs (Figure 10C). Maternal administration of P4rr reduced
the numbers of the resident DCs in pup lungs (Figure 10C).
Thus, P4rr reduced fetal liver BGlcCer, pup lung PGlcCer,
pup liver BGlcCer, OVA-specific IgE, and the pup allergen-
induced allergic inflammation, consistent with the P4rr-mediated
reduced numbers of resident DCs in the fetal liver and pup
lungs and demonstrating that pGlcCer was necessary for the
increased allergen-induced lung eosinophilia in offspring of
allergic mothers.

DISCUSSION

We demonstrated that in allergic mothers, increased maternal
BGlcCer is necessary and sufficient to increase offspring lung
eosinophilia in response to allergen. In allergic mothers on GD18,
there was an increase in several isoforms of $GlcCer in mom
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FIGURE 10 | P4rr treatment of allergic mothers inhibited the increase in numbers of dendritic cells in the fetal livers and lungs of pups of allergic mothers. The fetal
livers or the pup lung tissues were collected from mice treated as in Figure 6A. Tissue dendritic cells were immunolabeled and examined by flow cytometry. (A) Chart
of phenotype of lung CD11c+ subsets analyzed in the fetal livers and pup lungs. (B) Numbers of CD11c+ DC subsets per millibon fetal liver cells. (C) Numbers of
CD11c+ DC subsets per million pup lung cells. n = 8-10 mice per group for a representative experiment of two experiments. **p < 0.05 compared to pups of NT,
saline mother. *p < 0.05 compared to pups of NT, OVA allergic mother.

plasma and mom lung. The increased maternal plasma BGlcCer  P4ss, on levels of BGlcCer and there was no effect of P4ss on
was transported to the fetus, fetal liver, and breast tissue, and was ~ allergen responsiveness in offspring of allergic mothers. These
in the pup stomach. Increasing maternal BGlcCer of non-allergic ~ data indicate that elevated BGlcCer in allergic mothers function
moms was sufficient for elevated offspring lung eosinophilia in  as a maternal factor that is transported to offspring in utero and
response to allergen. Furthermore, the increase in fetal liver  during nursing. This then elevates offspring development of DCs
PGlcCer elevated numbers of fetal liver resident phenotype of  and allergen induced offspring lung eosinophilia (Figure 11).
DCs because the increase in BGlcCer in allergic mothers and their The lipids pHexCer and SIP are reported to have pro-
offspring was inhibited by maternal administration of a clinically ~ inflammatory properties in allergy (20, 21) and in other models
relevant inhibitor of BGlcCer synthase, P4rr, during pregnancy,  of inflammation (20, 21, 37, 38). Reports indicate that in adults,
and nursing. The P4rr had high specificity for BGlcCer because ~ S1P is elevated during allergic responses (20), is transported
it significantly reduced BGlcCer but had little to no effect on ~ on HDL/LDL (33, 34), and regulates dendritic cell function
ceramides, sphingomyelins, or sphingosines. P4rr did not alter (20, 35). However, despite S1P being increased in plasma
pGalCer in mom lung, mom plasma, mom liver, fetal liver or pup ~ of allergic mothers, it was not increased in the placenta or
stomach but had some inhibitory effect on placental pGalCer.  fetal liver of allergic mothers, which suggests that the fetus is
P4rr also did not alter mom lung gene expression of the ceramide ~ protected from increases in maternal S1P during development.
pathway enzymes. Importantly, the maternal administration of =~ The increase in a metabolite of S1P, sphingosine, in the
the BGlcCer synthase inhibitor blocked allergen induced lung  placenta is consistent with the high levels of sphingosine-1-
eosinophilia in the offspring of allergic mothers, consistent with ~ phosphate phosphatase in the placenta as compared to other
the reduction of BGlcCer in allergic mothers and their offspring  tissues (50).

to levels of BGlcCer in the non-allergic groups. There was During offspring development, maternal lipids are
no effect of an inactive stereoisomer of the same molecule, transported on LDL and HDL particles that cross the placenta
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FIGURE 11 | Model for Maternal BGlcCer enhancement of offspring allergen
responsiveness. Mothers with allergic lung inflammation have increased
BGlcCer that is transported to the placenta and the fetal liver, where the
immune system develops in the fetus. This increases DCs of resident DC
phenotype in the fetal liver and neonates have elevated numbers of resident
DCs in the pup lungs. These neonates of allergic mothers develop allergic lung
inflammation in response to allergen sensitization and allergen challenge. The
neonate response to allergen is mediated by altered dendritic cell development
since DCs of offspring of allergic mothers are sufficient for the allergen
responsiveness (4, 12). In contrast, offspring of non-allergic mothers do not
have elevated pGlcCer and don’t respond to allergen.

Allergic
offspring

to the fetus (19) and are in the mother’s milk during nursing
(30-32). LDL and HDL bind the lipid metabolite BGlcCer
(65, 66). Lipid metabolites regulate DC differentiation/function
(26-29), and DCs mediate initiation of allergic disease (4, 12).
It is reported that BGalCer is required for hematopoiesis (67)
and that ceramide is elevated in allergic non-pregnant female
mice (68). In our studies, pGalCer and ceramide was present
but not elevated in the allergic mothers and their offspring.
In another disease, graft vs. host disease, administration of
PGlcCer enhances IL-4 (38) and in the graft vs. host disease,
the immunomodulatory effects of BGlcCer are dependent
upon DCs (38). In contrast, one report suggests that allergic
inflammation can be reduced by very high doses of a GlcCer
administered 14 times to the lung, using pGlcCer of unreported
chain lengths and source (41). In our studies, the endogenous
synthesis of BGlcCer in allergic mothers elevated fetal liver
DCs, pup lung DC subsets and pup lung eosinophilia. The
increase in numbers of fetal liver DCs of the resident phenotype
was mediated by PGlcCer from allergic mothers because the
increase in these DCs was blocked upon inhibiting the increase
in BGlcCer by maternal administration of the BGlcCer synthase
inhibitor. Of note, mammalian HexCer are  enantiomers.
In contrast, a enantiomers of HexCer are synthesized by
bacteria and bind to CD1d on dendritic cells (69). The
regulatory functions of maternal BGlcCer on development
of offspring DCs and neonate allergic responses are novel.
The ligands for BGlcCer during regulation of differentiation
of DCs in the fetal liver are unknown and are currently
under investigation, although a manuscript is in preparation
describing BGlcCer regulation of dendritic cell differentiation
in vitro.

It is reported that the adoptive transfer of splenic dendritic
cells (but not macrophages) from neonates of allergic mothers
to recipient neonates from non-allergic mothers transfers
allergic responsiveness to the recipient neonates (4, 12). This
indicates that DCs are sufficient for this transfer of allergen
responsiveness. We have demonstrated that the fetal liver
and offspring of allergic mice have increased numbers of
distinct CD11b+ subsets of CD11lc+ DCs (13, 14). In this
report, the increase in CDI11b+ subsets of CDllc+ DCs
was blocked by treatment of the allergic mothers with a
BGlcCer synthase inhibitor. Thus, maternal BGlcCer elevates
offspring DCs and allergen responsiveness. This is consistent
with reports that offspring of allergic mothers have increased
responsiveness to allergen (4-11) and consistent with most
reports indicating that offspring allergy is associated with
maternal asthma rather than paternal asthma (4). It is
acknowledged that other maternal factors may function in
concert with BGlcCer for regulation of offspring responsiveness
to allergen. We are currently investigating other maternal
lipids, especially decreases in anti-inflammatory lipids in
allergic mothers.

Mediators of allergic disease include allergen-specific IgE,
chemokines that recruit eosinophils and IL-5 that induces
eosinopoiesis. OVA-specific IgE and IL-5 were increased in
allergen-challenged offspring of allergic mothers but not in non-
allergic mothers, and both the IgE and IL-5 were significantly
reduced by the BGlcCer synthase inhibitor, consistent with
regulation of DCs that are critical for the initiation of
allergic responses. The increase in eosinophils in the blood of
neonates of allergic mothers and the regulation by BGlcCer
synthase inhibitors, suggests that PGlcCer regulates signals
for production of IL-5 from immune cells that then induces
bone marrow differentiation of eosinophils, resulting in the
increased numbers of eosinophils in the lungs of the neonates
of allergic mothers. In contrast, there was minimal effect
of BGlcCer on CCL24 mRNA expression in the lung tissue
because there was only a 1.5 fold increase in lung CCL24
mRNA in pups of non-allergic mothers administered BGlcCer
as compared to a large 7 fold increase in CCL24 in lung
BAL of pups of allergic mothers. Furthermore, levels of CCL11
and CCL24 protein in pup lung BAL were not regulated
by the PGlcCer synthase inhibitor. These data suggest that
the production of CCL24 by epithelial cells in response to
OVA exposure is induced by a pathway largely independent
of BGlcCer.

Interestingly, at 18 days after the last allergen challenge of
the mothers, BGlcCer was increased in the plasma of allergic
mothers and fetal livers. Moreover, increased PGlcCer was
present in the offspring of allergic mothers at PND14 which
was 5 weeks after the last allergen challenge of the mother.
Furthermore, the maternal BGlcCer was transported to the
breast tissue and was in the milk in stomach of nursing
pups. BGlcCer is also present in human milk (70), and further
studies are in progress to examine association of BGlcCer
with allergic disease in humans. In comparing human ages
with pup age for the treatments in this report, at PND3 the
pups are similar to infants, at PND13 the pups are similar
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to early childhood (71, 72), which is a stage at which infants
and children are exposed to allergens on the skin and can
develop allergy to foods. The levels of BGlcCer in human
plasma of offspring of allergic mothers is in a manuscript
in preparation.

It is important to emphasize that, in these studies, all
pups of allergic mothers and all pups of non-allergic mothers
received the allergen but only pups of allergic mothers had
elevated BGlcCer and developed allergic responses, indicating
the specificity of this response in offspring of allergic mothers.
The increase in PGlcCer in allergic mothers was lipid specific,
because in the fetus and neonates of allergic mothers, there
was not an increase in BGalCer, ceramides, or sphingomyelins.
The total amount of each isoform of BGlcCer varied, but the
abundance of isoforms likely equates to specific functions of
the isoforms in membranes and cell signaling; this is currently
under investigation. The isoforms of BGlcCer that were most
often elevated in mothers and offspring were the short to
medium chain length isoforms of BGlcCer. The experiments with
transport of deuterated BGlcCer demonstrates that BGlcCer is
readily transported to the fetal liver. The P4rr-induced reduction
in levels of BGlcCer in fetal livers of allergic mothers to the level
in fetal livers of non-allergic mothers resulted in inhibition of
the development of allergy in the offspring and mitigated the
increase in DCs in the fetal liver. The BGlcCer isoforms have
different concentrations in the tissues but concentration does not
reflect potency; studies addressing functional concentrations of
the isoforms in vitro and in vivo are ongoing and beyond the
scope of this manuscript.

In summary, our innovative studies on allergic inflammation
provide evidence that endogenously synthesized maternal lipid
metabolites of allergic mothers have regulatory functions in their
offspring. The allergic mothers had elevated lung and plasma
BGlcCer that were transferred across the placenta to the fetal liver
and in milk to the neonate. This increase in BGlcCer mediated
an increase in fetal liver resident phenotype DCs and neonate
lung DCs as well as allergen responsiveness in the neonates.
In conclusion, our studies identify PGlcCer as a maternal
factor that is induced in the mother by environmental allergen
exposure. This is a critical novel insight into the understanding
of the complex interactions of environmental factors and genetic
factors in allergy and asthma (73). Whether the regulation by
PGlcCer extends beyond allergy should be addressed in future
studies. The identification of BGlcCer as a maternal factor from
allergic mothers and identification of mechanisms that regulate
development of allergy and asthma in offspring of allergic
mothers significantly advance this field and may have impact
on potential novel approaches for prevention or intervention in
asthma and allergies.
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