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The mechanisms underlying corticosteroid insensitivity in severe asthma have not

been elucidated although some indirect clinical evidence points toward a role of

mast cells. Here, we tested the hypothesis that mast cells can drive corticosteroid

insensitivity in airway smooth muscle cells, a key player in asthma pathogenesis.

Conditioned media from resting or FcεR1-activated human lung mast cells were

incubated with serum-deprived ASM cells (1:4 dilution, 24 h) to determine their impact on

the anti-inflammatory action of fluticasone on ASM cell chemokine expression induced

by TNFα (10 ng/ml). Conditioned media from FcεR1-activated mast cells (but not that

from non-activated mast cells or control media) significantly reduced the ability of 100 nM

fluticasone to suppress ASM TNFα-dependent CCL5 and CXCL10 production at both

mRNA and protein levels. In contrast, fluticasone inhibition of CXCL-8 production by

TNFα was still preserved in the presence of activated mast cell conditioned media.

Transcriptomic analysis validated by individual qPCR assays revealed that activated mast

cell conditioned media dramatically reduced the number of anti-inflammatory genes

induced by fluticasone in ASM cells. Our study demonstrates for the first time that

conditioned media from FcεR1-activated mast cells blunt the anti-inflammatory action

of corticosteroids in ASM cells by altering their transactivation properties. Because

infiltration of mast cells within the ASM bundles is a defining feature of asthma, mast

cell-derived mediators may contribute to the glucocorticoid insensitivity present in

severe asthma.

Keywords: severe asthma, corticosteroid resistance, mast cell (MC), growth factors, gene array

INTRODUCTION

Both preclinical and clinical studies indicate a central role for mast cells in the pathogenesis
of asthma, through their unique ability to produce an array of mediators capable of regulating
key features of both the innate and adaptive immunity in the lungs (1). Activation of mast cells
by both allergic and non-allergenic stimuli has been traditionally linked to the initiation and
perpetuation of the allergic inflammation cycle via the secretion of different Type 2 (or Th2)
cytokines. Interleukin 4 (IL-4) and IL-13 regulate Th2 cell proliferation and B cell production of
allergen-specific IgE, while IL-5 drives eosinophilic inflammation, all key features of the allergic
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responses in asthma. Other mast cell mediators also contribute
to key structural/clinical features of asthma such as mucus
hypersecretion, epithelium permeability, airway hyper-
responsiveness (AHR), bronchoconstriction and airway
remodeling (1). Multiple triggers contribute to mast cell
activation in asthma including stimulation of the high affinity
IgE receptor FcεRI by allergens, ligands of the Toll like receptors,
and cytokines activating the alarmin receptors (TSLP, IL-33) (1).
These different triggers, likely acting in concert, lead to both the
acute and chronic mast cell activation that is observed in severe
asthma, an important feature that is present irrespective of the
clinical phenotype (2).

Asthma is also characterized by the presence of mast cells
within different compartments of the airways. Infiltration of
mast cells has been described within the epithelium, submucosa
layer and airway smooth muscle and has been shown to
correlate with disease severity [reviewed in (3)]. Bidirectional
interactions between human lung mast cells, and structural
airway tissues have been demonstrated using a co-culture
model system with mast cells being able to drive pro-asthmatic
responses in airway smooth muscle (ASM) cells including loss
of β2-adrenoceptor function indirectly via the paracrine action
of secreted TGFβ (4), or following direct cell-cell physical
interaction (5, 6). Similarly, β2-adrenoceptor dysfunction can
also be observed in human lung mast cells as a result of the
autocrine action of secreted SCF (5, 7). These different studies
show that activation of mast cells within the airways can alter
the therapeutic response of lung structural cells to current anti-
asthma therapies.

In this study, we tested whether mast cells could also
alter the therapeutic response to glucocorticoids (GCs). This
hypothesis is part supported by studies showing a marked
reduction in the use of both inhaled and oral GCs in
severe allergic asthmatics following treatment with omalizumab
therapy, an anti-IgE monoclonal antibody (8–10). MacDonald
and colleagues, when looking at the overall clinical impact of
omalizumab of 42 clinical studies, confirmed that omalizumab
treatment for >2 months or longer led patients to either
reduce or stop their usage of inhaled/oral GCs (11). How
mast cells regulate patients’ response to GC therapy remains
unknown but the possibility that mast cell mediators directly
or indirectly modulate GC sensitivity of lung structural cells
is an interesting hypothesis. Here we provide compelling
evidence that mediators released by activated mast cells can
contribute to disease severity by blunting the therapeutic
response of GCs in human ASM cells via mechanisms
involving a reduced GRα transactivation (i.e., expression of anti-
inflammatory genes).

MATERIALS AND METHODS

Study Participants
All participants gave written informed consent, and the study was
approved by the Leicestershire, Northamptonshire, and Rutland
Research Ethics Committee (references: 4977, 04/Q2502/74
and 08/H0406/189).

Culture of Human Airway Smooth Muscle
Cells
Primary human ASM cells were isolated from endobronchial
biopsies as previously described (12).

Mast Cell Isolation, Culture and Stimulation
Isolation of Human Lung Mast Cells (HLMC) was performed
as described in our previous articles (13). HLMCs (106 cells)
were either left untreated (used as controls) or activated using
the anti-FCεR1 antibody at 1:300 dilution (MAB6678, R&D
Systems) for 24 h at 37◦C and the supernatants were collected
after centrifugation and frozen until later use.

Treatment of ASM Cells With HLMC
Conditioned Media
Treatment of ASM cells with HLMC conditioned media was
performed as described previously (4, 5). The analysis of
bronchial biopsies revealed a mean mast cell density in asthmatic
ASM bundles of ∼4 ASM cell:1 HLMC, therefore we treated
serum-deprived ASM cells with different conditioned media at
a dilution of 1:4 (25% v/v) including (i) FCεR1-activated mast
cells, (ii) non-FCεR1 activated mast cells (control for mast cell
activation) (iii) mast cell media (control for mast cell media) for
24 h at 37◦C and 5% CO2. The next day, media were discarded
and ASM cells were washed twice with ITS media before new
ITS media was added to the ASM cells containing 10 ng/ml
TNFα alone, or in the presence of fluticasone propionate (FP)
(100 nM) and further incubated for 24 h at 37◦C and 5% CO2.
The supernatants were then collected and stored at −20◦C for
later use.

ELISA
ELISA for the different chemokines was performed as described
previously (14) with 50 µl cell supernatants using the R&D
SystemsDuoSet kits according to themanufacturer’s instructions.

RT2 Profiling PCR GC Signaling Array
Targeted transcriptomic analysis was performed as described
in our previous study (15). We choose a PCR array that
analyses the expression of a focused panel of 84 genes
known to be induced by glucocorticoids. cDNA from
healthy ASM cells was pre-amplified using the RT2 first
strand cDNA kit, according to the manufacturer’s instructions
(SabBioscience, Qiagen). A RT2 profiler human Glucocorticoid
signaling PCR array (PAHS-154Z) was used for quantitative
PCR in the Strategene MX3000P system according to the
manufacturer’s instructions. Results were calculated using
the 2−11Ct method with normalization to two housekeeping
genes (16).

Quantitative PCR
Quantitative PCR was performed as described previously (17).
Primers were GILZ forward: 5-TCTGCTTGGAGGGGATG
TGG-3 and reverse: 5-ACTTGTGGGGATTCGGGAGC-3;
MKP-1 forward: 5-GACGCTCCTCTCTCAGTCCAA-3 and
reverse: 5-GGCGCTTTTCGAGGAAAAG-3; GAPDH forward:
5-TGCACCACCAACTGCTTAGC-3 and reverse: 5-GGC
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ATGGACTGTGGTCATGAG-3; CCL5 forward: 5-AGTCG
TCTTTGTCACCCGAA-3 and reverse: 5-TCCCAAGCTAGGA
CAAGAGCA-3; CXCL8 forward: ACTGAGAGTGATTGAGA
GTGGAC and reverse: AACCCTCTGCACCCAGTTTTC
CXCL10 forward: 5-GGATGGACCACACAGAGGCTGC-3
and reverse: 5-GCCCCTTGGGAGGATGGCAGT-3; FKPB5,
TNFAIP and PIK3R1 primers were ordered from QIAGEN as
proprietary information.

Statistical Analysis
All data are presented as mean ± SEM. Statistical analysis
was performed by two-way or one-way ANOVA with
Bonferroni’s correction for multiple comparisons. Differences
were considered significant when P < 0.05. Statistical analysis
was performed using GraphPad Prism 6 (GraphPad software,
USA). For the RT2 profiler PCR array, student’s t-test was applied
and followed by 5% False Discovery Rate (FDR) with two-stage
step-up procedure of Benjamini, Krieger, and Yekutieli.

RESULTS

Effect of Activated and Non-activated Mast
Cell Condition Media on TNF-α Induced
Chemokine Expression in Healthy ASM
Cells
We looked first at chemokine expression with and without
TNF-α stimulation (10 ng/ml, 24 h) in healthy ASM primed
with control media (as used for mast cell culture), and mast
cell supernatants collected over 24 h (both non activated and
FcεRI-activated). Levels of CCL5 at basal conditions were 1.07,
0.84, and 0.51 ng/ml, which were significantly increased by
TNF-α to 12.22, 10.63, and 8.65 ng/ml in ASM primed with
control (mast cell media), 24 h non-activated and activated mast
cell supernatant, respectively (Figure 1A). Similarly, CXCL10
concentrations were 4.25, 3.04, and 2.07 ng/ml at basal levels,
which were significantly increased by TNF-α to 17.51, 18.29,
and 16.16 ng/ml, respectively. (Figure 1B) CXCL8 production
at the basal levels was 14.91, 8.21, and 7.46 ng/ml which was
induced significantly by TNF-α stimulation to 83.03, 88.83, and
89.99 ng/ml in healthy ASM primed with control (mast cell
media), 24 h non-activated and activated mast cell supernatant,
respectively (Figure 1C). Finally, concentrations of CCL11 were
150.4, 300.6, and 244.5 pg/ml at basal levels which were
increased to 668.2, 710.2, and 686.9 pg/ml in the presence
of TNF-α in ASM primed with control mast cell media, 24 h
non-activated and activated mast cell supernatant, respectively
(Figure 1D).

When we compared the net increase of the different
chemokines induced by TNF-α, there was no significant
difference between ASM primed with control (mast cell
media), 24 h non-activated and activated mast cell supernatants,
respectively. This suggests that activated or non-activated mast
cell supernatant does not affect chemokine production in ASM
cells induced by TNF-α.

Effect of Activated and Non-activated Mast
Cell Condition Media on Fluticasone
Inhibition of TNF-α Induced Chemokine
Protein Production
We next investigated whether conditioned media from
activated and non-activated mast cells may modulate the
anti-inflammatory action of corticosteroids by assessing the
ability of fluticasone to inhibit chemokine production by TNF-
α. Healthy ASM cells were primed with either control mast
cell media, non-activated or activated mast cell-conditioned
media for 24 h. This time point was selected to match our
previous studies showing that a 24-h pre-treatment time with
different cytokines [some of which are known to be produced
by activated mast cells such as TNFα or IFNγ (18)] was able to
alter corticosteroid sensitivity in ASM cells (19). ASM cells were
then stimulated with 10 ng/ml TNF-α alone or in the presence
of 100 nM fluticasone for 24 h, an experimental approach
that allowed us to uncover the factors capable of affecting
corticosteroid responsiveness in ASM cells (17). Fluticasone
strongly inhibited TNF-α-induced-CCL5 production reaching a
71.1 ± 11.57% reduction in ASM cells pre-treated with control
mast cell media. Interestingly, while the inhibitory action of
fluticasone was not affected in cells primed with non-activated
mast cell-conditioned media (61.61 ± 12.28% inhibition of
CCL-5 production), incubating ASM cells with activated mast
cell-conditioned media reduced fluticasone suppressive action to
48.84 ± 14.98% (p < 0.05) (22.27 ± 6.16% loss compared to the
response in control media) (Figure 2A). Similarly, fluticasone
reduced TNF-α-induced CXCL10 by 74.16 ± 9.76% in cells
pre-treated with control mast cell media. However, fluticasone
suppressive action was reduced to 53.65 ± 13.5% for CXCL10
in cells primed with activated mast cell-conditioned media.
Furthermore, the action of fluticasone was not affected in ASM
cells primed with non-activated mast cell conditioned media
(Figures 2B,C).

Lastly, it was interesting to note that the suppressive action
of fluticasone on TNFα-induced-CXCL8 was not affected in
cells primed with either activated or non-activated mast cell
conditioned media (85.84± 4.15% and 82.56± 2.28% inhibition,
respectively) when compared to the inhibitory response of
fluticasone seen in ASM cells primed with control mast cell media
(82.25± 5.35%) (Figure 2C).

These studies show that conditioned media from activated
mast cells can impair the anti-inflammatory action of fluticasone
in ASM cells in a gene-specific manner.

Effect of Activated and Non-activated Mast
Cell Condition Media on Fluticasone
Inhibition of TNF-α Induced Chemokine
MRNA Expression
We next investigated whether mast cell-conditioned media
affected the inhibitory action of fluticasone on chemokine
expression at the transcriptional level. Hence, as before, ASM
cells pre-treated with different mast cell-conditioned media were
then stimulated with 10 ng/ml TNF-α alone or in the presence of
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FIGURE 1 | TNFα-induced chemokine production in ASM cells treated with control and 24-h mast cell conditioned media. Healthy ASM cells were pre-treated with

control MC media, 24-h non-activated and activated mast cell conditioned media for 24 h. ASM cells were then washed and stimulated with TNF-α (10 ng/ml). The

chemokine levels of CCL5 (A), CXCL8 (B), and CXCL10 (C) were assessed by ELISA. Data were presented as ng/ml of protein as Means ± SEM of n = 6 different

cell lines. Comparisons between conditions were made using paired t-test (*p < 0.05).
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FIGURE 2 | Inhibition of TNFα-induced-chemokines by fluticasone in ASM cells pre-treated with conditioned media from 24-h activated mast cells. Healthy ASM cells

were pre-treated with control mast cells media, 24-h non-activated and activated mast cell conditioned media. ASM cells were then washed and stimulated with TNFα

(10 ng/ml) with or without fluticasone (100 nM) for 24 h. Expression of CCL5 (A), CXCL10 (B), and CXCL8 (C) was assessed by ELISA with data presented as % of the

chemokine responses in cells treated with TNFα alone (Means ± SEM of n = 6 different cell lines) (*p < 0.05). Comparisons between groups were made using

one-way ANOVA and Tukey Test correction.

100 nM fluticasone for 6 h before mRNA isolation was carried out
for qPCR analysis.

Figure 3A shows fluticasone inhibited TNF-α-induced CCL5
mRNA expression by 80.47± 7.45% in healthy ASM cells primed
with control, an effect that was not affected in cells pre-treated
with 24 h non-activated mast cell-conditioned media (77.91 ±

8.84% inhibition) while priming ASM cells with conditioned
media from activated mast cells dramatically reduced the
inhibitory action of fluticasone to 48.46 ± 15.25% (P < 0.05).
Activated mast cell conditioned media led to an overall 32.01%
reduction in the fluticasone inhibitory action on CCL5 mRNA
expression when compared to its effect in ASM cells pre-treated
with control mast cell media.

Similarly, TNF-α-induced CXCL10 mRNA expression was
inhibited by fluticasone by 88.15 ± 1.96% and 86.96 ± 1.86%
in ASM cells primed with control mast cell media or 24 h non-
activated mast cell conditioned media, respectively. In ASM

cells first pre-treated with activated mast cell conditioned media,
fluticasone inhibitory action was significantly reduced to 57.63
± 11.5% (P < 0.05 vs. control mast cell media condition)
(Figure 3B). Activated mast cell conditioned media led to an
overall 30.52% reduction of fluticasone inhibitory action on
CXCL-10 mRNA expression when compared to its effect in ASM
cells pre-treated with control mast cell media.

Lastly, the inhibition of TNF-α-induced CXCL8 mRNA
expression by fluticasone was not modulated by any of the mast
cell conditions when compared to the response seen in cells
treated with control mast cell media. Fluticasone led to 59.65 ±

5.57%, 58.36± 15.68% and 65.43± 14.27% reduction in TNF-α-
induced CXCL8mRNA expression in ASM cells that were primed
with control mast cell media, non-activated or activated mast cell
conditioned media, respectively (Figure 3C).

These data show that conditioned media from activated
mast cells impair the anti-inflammatory action of fluticasone
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FIGURE 3 | Inhibition of TNFα-induced chemokine mRNA expression by fluticasone in ASM cells pre-treated with conditioned media from 24-h activated mast cells.

Healthy ASM cells were pre-treated with control mast cell media, conditioned media from 24-h non-activated, or 24-h activated mast cells for 24 h. ASM cells were

then washed and stimulated with 10 ng/ml TNF-α with or without 100 nM fluticasone for 8 h. Chemokine expression of CCL5 (A), CXCL10 (B), and CXCL8 (C) was

assessed by real-time PCR. Data are presented as % inhibition from chemokine responses in cells treated with TNFα alone (Means ± SEM of n = 5 different cell lines,

*p < 0.05). Comparisons between groups were made using one-way ANOVA and Tukey Test correction.

by reducing its ability to suppress gene expression at the
transcriptional level.

TGFβ Impaired the Ability of Fluticasone to
Inhibit TNFα-Induced Gene Expression
We and others have shown that TGFβ was an important growth
factor released by activated by mast cells (4) and capable of
inducing corticosteroid resistance in lung epithelial cells (20).
We found that in the presence of TGFβ, fluticasone inhibition
of TNFα-induced chemokine production was reduced from 64.3
± 3.9 to 48.5 ± 3% for CCL5 (Figure 4A) and from 56.4 ± 2.8
to 28 ± 9 (Figure 4B, P < 0.05), respectively. These data suggest
a potential role of TGFβ in mediating corticosteroid insensitivity
induced by mast cell conditioned media, although it is likely that
other mediators may also be involved.

Effect of Activated Mast Cell Conditioned
Media on Fluticasone-Induced Gene
Expression
We next performed RT2 Profiler PCR Arrays focused on 84 key
glucocorticoid inducible genes (Qiagen) to determine whether
mast cell-conditioned media affected the fluticasone response by
altering its transactivation properties. As shown in Figures 5A,B,
fluticasone was able to induce the significant expression of a
number of different genes with a log2 fold change ranging from
2.63 to 6.64 for the 10/84 genes which passed the false discovery
rate (FDR). The genes that were significantly induced included
FKBP5, TSC22D3, PER1, CTGF, DUSP1, SLC19A2, ERRFI1,
GLUL, DDIT4 and PIK3R1. Some genes were either upregulated
(Figure 5B) or down-regulated (Figure 5D) but none passed
the false discovery rate (FDR). Fluticasone-dependent gene
expression was significantly impaired in ASM cells pretreated
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FIGURE 4 | TGFβ impaired the capacity of fluticasone to inhibit TNFα-induced chemokine production. Healthy ASM cells were pre-treated with TGFβ (10 ng/ml) for

24 h before being stimulated with 10 ng/ml TNF-α with or without 100 nM fluticasone for 24 h. Chemokine expression of CCL5 (A) and CXCL10 (B) was assessed by

ELISA with data presented as Means ± SEM of n = 3 different cell lines. Data are presented as % inhibition from chemokine responses in cells treated with TNFα

alone or TNFα/TGFβ (Means ± SEM of n = 5 different cell lines, *p < 0.05). Comparisons between groups were made using paired student t-test.

with conditioned media from activated mast cells (Figures 6A,B)
with only two genes (FKBP5 and TSC22D3) then passing the false
discovery rate (FDR) with log2 fold changes of 5.62 and 4.64,
respectively. The vast majority of genes induced by fluticasone in
the presence of mast cell conditioned media did not change from
baseline (Figure 5C) or were either upregulated (Figure 6B) or
down-regulated (Figure 6D) but none passed the false discovery
rate (FDR).

We next validated the 3RT2 profiling gene array using
individual qRT-PCRs (Figure 7A). Both methods showed that
four genes among the top 10 upregulated by RT2 profiling
gene array (FKBP5, TSC22D3, DUSP1, PIK3R1) had equal
equivalent induction levels by qRT-PCRs (Pearson correlation
coefficient R2

= 0.99, P = 0.0003). We also used the RT-PCR
data to demonstrate the inhibitory effect of mast cell-conditioned
media on fluticasone-induced transactivation (Figure 5). We
confirmed that the induction of TSC22D3 (also known as GILZ)
(Figure 7B), DUSP1 (also known asMKP-1) (Figure 7C), FKBP5
(Figure 7D) and PIK3R1 (Figure 7E) by fluticasone in ASM cells
treated with mast cell media were significantly reduced in cells
pre-treated with conditioned media from activated mast cells.

DISCUSSION

One of the major issues faced by patients with severe asthma (5-
10%) is their poor response to the current asthma management
guideline therapies that include GCs (21). The underlying
mechanisms driving this poor response to GCs have not been
identified although defects in the cellular response to GCs in

both immune (22) and lung structural cells (23) have been
proposed. The link between mast cells and a poor response to
asthma medication can be implied from studies showing that
omalizumab therapy can improve not only asthma symptoms
(and pulmonary function) but also reduce the need for high dose
inhaled or oral GCs (24). Our present study demonstrates that
activated mast cells can blunt the anti-inflammatory action of
GC in human ASM cells, a key dysfunctional component of the
airway wall in asthma.

Our conditioned media approach revealed that mediators
released from FCεR1-activated mast cells can alter the anti-
inflammatory action of GC, as no effect was seen in ASM cells
treated with culture media or conditioned media from resting
(non-activated) mast cells. Indeed, we found that the repression
of TNFα-induced protein and mRNA expression of CLL5 and
CXCL-10 expression by fluticasone (∼70-80% inhibition) could
be significantly reduced in cells following a 24-h incubation with
conditioned-media from FcεRI-activated mast cells (Figure 2).
Our previous study, using a similar experimental approach,
demonstrated that media from activated mast cells (but not
from non-activated mast cell media) could lead to a drastic
reduction of β2-adrenoceptor function in ASM cells as a result of
receptor phosphorylation on tyrosine residues (4).We and others
have also confirmed that mast cell mediators can affect multiple
responses in ASM cells including migration (25), contractility
(26, 27) and cytokine production (28, 29). Although the nature
of the mediators capable of altering ASM response to GC in our
study has not been investigated, a number of cytokines (TNFα,
IFNγ, IL-17, IL-4, IL-13, macrophage migration inhibitory
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FIGURE 5 | Volcano plot and heatmap of fluticasone inducible genes in ASM cells detected using the PCR array in cells pre-treated with control media. Data are

presented as statistical significance (p-value) vs. fold change (log2 fold) on the y-axis and x-axis, respectively, in response to 100 nM fluticasone for 6 h in ASM cells first

pre-treated with control mast cell media (A). All genes were normalized to housekeeping genes (GAPDH and beta-actin and presented as fold Change (2−11Ct, log2

fold). (B) Genes upregulated that did pass or did not pass FDR, (C) genes with no expression change, and (D) genes that were downregulated but did not pass FDR.

Student’s t-test was used for statistical significance. All the data (p-value) were then adjusted using the False Discovery Rate approach (FDR) with a cut off P < 0.05.

factor), alarmins (TSLP), growth factors (TGFβ) produced by
activated mast cells have been shown to dampen GC response
when tested individually in other asthma relevant cells [reviewed
in (3)]. Among those, IL-4, IL-13, IL-17, TNFα, IFNγ, TSLP,
TGFβ have been reported to possess functional receptors on ASM
cells raising the possibility that these cytokines, most likely acting
in concert, could be involved in reducing GC responsiveness
induced by activated mast cell media. Indeed, we showed for
example that a combination of TNFα/IFNγ was capable of
inducing GC insensitivity in healthy ASM cells (14, 19, 30).
It is unlikely that TNFα/IFNγ is responsible for the loss of
GC response induced by activated mast cell media as CXCL8
was also affected by this cytokine combination (Figure 2). We
now show exogenous TGFβ had the capacity on its own to
reduce fluticasone response (Figure 4), in line with recent studies
identifying TGFβ as a novel player in mediating corticosteroid
sensitivity through its action on airway epithelial cells (20).
We have previously reported that TGFβ was among the top
growth factors released by activated mast cells alongside GM-
CSF, HGF, or IGF-II although many others were also increased

but did not reach significance due to small sample size and/or
sensitivity of the assay (4). Whether TGFβ alone plays a critical
role in mediating the reduced corticosteroid sensitivity driven
by mast cell conditioned media is unlikely for various reasons.
Exogenous TGFβ affected corticosteroid responses in ASM cells
at >10 ng/ml, a concentration which is significantly greater than
levels usually being produced by activated mast cells [pg-low
ng/ml range (27)]. In addition, low concentrations of TGFβ (0.5-
1 ng/ml range) have been described to effectively trigger various
cellular responses in ASM cells including cell proliferation (31),
and modulation of chemokine production such as eotaxin (32),
or fractalkine (33). In epithelial cells, very low concentrations
of TGFβ (4-100 pM) induced corticosteroid resistance (20). The
ability of mast cells to produce multiple mediators that have the
capacity to alter corticosteroid response (discussed above), raises
the question of whether the impaired response to corticosteroids
induced by mast cell conditioned media results from a combined
action of multiple mediators. Rather than trying to tease out the
possible ones involved (which will be a daunting task knowing
the various mediators produced bymast cells), we tried instead to
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FIGURE 6 | Volcano plot and heatmap of fluticasone inducible genes in ASM cells detected using the PCR array in cells pre-treated with activated mast cell

conditioned media. Data are presented as statistical significance (p-value) vs. fold change (log2 fold) on the y-axis and x-axis, respectively, in response to 100 nM

fluticasone for 6 h in ASM cells first pre-treated with control mast cell media (A). All genes were normalized to housekeeping genes (GAPDH and beta-actin and

presented as fold Change (2−11Ct, log2 fold). (B) Genes upregulated that did pass or did not pass FDR, (C) genes with no expression change, and (D) genes that

were downregulated but did not pass FDR. Student’s t-test was used for statistical significance. All the data (p-value) were then adjusted using the False Discovery

Rate approach (FDR) with a cut off P < 0.05.

focus on the mechanisms by which mast cell-conditioned media
altered GC response in ASM cells.

We found that while conditioned media from activated
mast cells impaired the capacity of fluticasone to repress
CCL5/CXCL10 production by TNFα, suppression of CXCL8
was still preserved. This may be explained, at least in part,
by the fact that regulation of CXCL8 by fluticasone, but not
that of CCL5 or CXCL10, involved mechanisms acting at both
transcriptional and translational levels. Indeed, the magnitude of
CXCL8 inhibition by fluticasone at the protein level was found
to be significantly greater compared to that at the mRNA level
(82.25 ± 5.35 vs. 59.65 ± 5.57% inhibition, p = 0.0174). In
lung fibroblasts or airway epithelial cells, CXCL8 repression by
dexamethasone was also reported to be complex and involve
transcriptional regulation atmultiple levels (34, 35). This suggests
that the overall effect of mast cell conditioned media on the
sensitivity of GCs may be gene-specific due to the nature of
their anti-inflammatory mechanisms involved. The fact that

CXCL8 remained a GC-responsive gene, despite the presence of
conditioned media from activated mast cells, was an unexpected
observation. High CXCL8 levels have been reported in treatment-
refractory asthma patients (36–38), implying that mechanisms
driving CXCL8 productionmay be insensitive to GC therapy. The
apparent discrepancy about CXCL8 sensitivity to GCs between
our in vitro data and these in vivo observations may be explained
by different factors. First, the increased CXCL8 levels observed
in some steroid-refractory patients have been usually reported
in sputum, serum, and BAL fluids which could originate from
multiple cellular sources, including the epithelium and other
structural/infiltrated immune cells. Second, the role of mast
cells in the pathogenesis of these patients where high levels
of CXCL8 have been detected was not investigated. Assessing
whether markers of mast cell activation correlate with steroid-
refractory features, such as CXCL8 production, would answer
this question. Third, we and others demonstrated that CXCL8
production by ASM cells obtained from severe asthmatics
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FIGURE 7 | Individual real time PCR analysis confirmed the inhibition of fluticasone-induced gene expression by activated mast cell conditioned media. Healthy ASM

cells were pre-treated with control mast cell media, conditioned media from 24-h non-activated, or 24-h activated mast cells for 24 h before cells were washed and

stimulated with or without 100 nM fluticasone for an additional 6 h. Expression of anti-inflammatory genes of GILZ (A), MKP-1 (B), FKBP5 (C), and PIK3R1 (D) was

assessed by real-time PCR. Data were normalized to the housekeeping gene (GAPDH) and presented as fold change over the basal condition using the 2−11ct

method as Means ± SEM, n = 7 different cell lines (*p < 0.05, **p < 0.01). (E) Validation of the gene array data using individual PCR. The log2 fold induction of the 5

genes shows a strong correlation with the results found using Qiagen RT2 profiling gene array and qRT-PCR, (R2
= 0.99, P = 0.0003).

was indeed insensitive to GCs (when compared to cells from
healthy/non-severe asthmatics) (17, 39, 40). Altogether, these
different studies suggest that the development of GC resistant
features in ASM cells may result from a combination of
different mediators originating from mast cells and others
pro-asthmatic triggers known to impact corticosteroid therapy
(i.e., viruses, cytokines) (3) but also the overall GC anti-
inflammatory mechanisms.

We made the observation that GC insensitivity present in
ASM cells derived from severe asthma was also reported to
be gene-specific with CCL5, IL-6 and CCL11 being resistant
to dexamethasone (or fluticasone), while CXCL10 still being
repressed by either GCs (17, 39, 41). These results suggest that
mast cell mediators repressed some but not all anti-inflammatory
mechanisms driven by the GC receptor (GRα) which involve
two main mechanisms that include transactivation (i.e., ability
of GCs to induce expression of anti-inflammatory proteins) to
an transrepression (i.e., ability to interfere with the expression
of pro-inflammatory mediators) (22). Transactivation was shown
to play an essential role in the therapeutic action of GCs in
various cell types including ASM cells (42), where induction
of some anti-inflammatory proteins such as TSC22D3 (GILZ)
and DUSP1 (MKP1) were reported to mediate the inhibitory
actions of GCs (43–45). Our gene array approach revealed that
out of 84 GC-inducible genes examined, 10 genes (FKBP5,
TSC22D3, PER1, CTGF, DUSP1, SLC19A2, ERRFI1, GLUL,
DDIT4 and PIK3R1) were significantly induced by fluticasone

in cells treated with control conditions (all passed FDR cut off
P<0.05) (Figure 5B). Some of these GC-inducible genes were
also reported in BEAS-2B cells treated with budesonide (ERRFI1,
FKBP5, PER1, TSC22D3) (46), in ASM cells treated with
dexamethasone (FKBP5, PERR1, PI3KR1, GLUL, TSC22D3) (47)
or in lung epithelial cells treated with fluticasone, where FKBP5
and TSC22D3 were among the most highly induced genes (48).
We made the interesting observation that only 2 out these 10
genes (namely FKBP5 and TSC22D3, albeit reduced) remained
significantly up-regulated by fluticasone following treatment
with activated mast cell-conditioned media (Figure 6B). Our
real time PCR analysis allowed us to demonstrate a similar
fold induction between array and qPCR data when looking
at 5 randomly selected genes (R2

= 0.99, p = 0.0003,
Figure 7A). The qPCR assays also confirmed that fluticasone-
induced gene expression was indeed reduced by activated mast
cell-conditioned media (Figures 7B-E), further supporting a
defective GC-induced GRα transactivation property by activated
mast cells. An impaired GRα transactivation was also reported as
a mechanism for explaining the differential GC insensitivity seen
in ASM cells from severe asthmatics (17). Increased expression
level of the protein phosphatase 5 (PP5) driving a decreased
GRα phosphorylation was previously described as the main
underlying mechanism (17). Unfortunately, we failed to detect
any changes in PP5 expression following treatment with activated
mast cell-conditioned media arguing against a PP5-dependent
defect in GRα phosphorylation. Future studies are required to
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determine how activated mast cells blunt GC transactivation
responses in ASM cells and whether a similar effect is occurring
in other lung cells.

This study supports the new concept that activation of mast
cells in the lungs can decrease the anti-inflammatory action of
GCs in ASM cells by affecting GRα transactivation. Because
infiltration of mast cells within the ASM tissues is a defining
feature of asthma, our data suggest that the persistence of GC-
insensitive features in the lungs of severe asthmatics may result
from their interaction with lung structural cells.
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