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Asthma is a common chronic respiratory disease that affects millions of people

worldwide. Patients with allergic asthma, the most prevalent asthma endotype, are

widely considered to possess a defective immune response against some respiratory

infectious agents, including viruses, bacteria and fungi. Furthermore, respiratory

pathogens are associated with asthma development and exacerbations. However,

growing data suggest that the immune milieu in allergic asthma may be beneficial

during certain respiratory infections. Immunomodulatory asthma treatments, although

beneficial, should then be carefully prescribed to avoid misuse and overuse as they can

also alter the host microbiome. In this review, we summarize and discuss recent evidence

of the correlations between allergic asthma and the most significant respiratory infectious

agents that have a role in asthma pathogenesis. We also discuss the implications of

current asthma therapeutics beyond symptom prevention.
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INTRODUCTION

Chronic conditions such as diabetes, obesity, cancer and illnesses affecting the heart, lungs, brain,
and kidneys plague modern society. In fact, the Centers for Disease Control and Prevention (CDC)
estimate that 60% of adults in the United States have at least one chronic disease while 40% have
two or more (1). Afflicting over 300 million people worldwide, asthma is indeed a common chronic
condition of the pulmonary system with clear nexus between genetic and environmental factors.
The term “asthma” yields >2.5 million hits on Google and over 200,000 articles on PubMed
(at writing) indicating that it is a major topic of interest to the lay public and scientists alike.
Despite centuries of characterization and garnering knowledge on initiation and pathogenesis of
this condition, a cure remains elusive. As a component of the atopic march, asthma develops in
early childhood, can affect individuals throughout life (2), andmay overlap with chronic obstructive
pulmonary disease (COPD) with age (3). Considered a syndrome, asthma is mainly endotyped
as type 2 (T2) and non-T2 based on immune bias towards TH2-type immune profile. Asthma
symptoms allow for further classification based on severity ranging from mild to severe (4). Of the
T2 endotype, allergen-induced eosinophilic (allergic) asthma is the most prevalent form resulting
from sensitization to airborne environmental allergens, has high incidence, occurs across the
ages, and correlates with other chronic conditions like obesity, and therefore will be the focus in
this review.
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GRAPHICAL ABSTRACT | Interplay between infectious agents and allergic milieu. Respiratory infections caused by viruses, bacteria and fungi play an important role

in asthma pathogenesis. The immune milieu in allergic asthma may be both defective and protective during respiratory infections. Some bacteria are linked to

steroid-resistant neutrophilic asthma and an aberrant immune response. Thermotolerant fungi generally induces a T2 immune response in asthma and are linked to

asthma severity and higher corticosteroid requirement. Steroid-resistant neutrophilic asthma is associated with increased airway bacterial burden and reduced

bacterial diversity. Corticosteroids and antibiotics induce dysbiosis in asthmatics, which may cause immune system alterations. Biologics and antivirals may be

beneficial in some patients. However, the effect of eosinophil depletion on antiviral immunity in asthmatics remains unknown. Influenza and COVID-19 vaccination are

recommended in asthmatics, but pneumococcal vaccine benefits are still under debate.

Proposed in 1989, the hygiene hypothesis suggested that
early childhood infections are protective against allergic diseases
later in life (5). Among the studies of the protective influence
of farming exposure in allergy, the Amish and Hutterites
studies stand out, as they demonstrate that certain microbial
exposures shield against asthma development (6). However, it is
evident that not all microbial exposures are protective, as some
viruses and bacteria are associated with asthma development
instead (7–11).

Indoor and outdoor air are brimming with innocuous and
pathogenic infectious agents (12, 13). Despite physical, secreted,
and cellular pulmonary defenses in place, some environmental
agents infiltrate these safeguards and cause disease (14). This
may be particularly problematic in asthma, as the epithelial cell
barrier in asthmatics is disrupted, thus facilitating the entrance
of allergens and pathogens (15). Moreover, the levels of anti-
inflammatory and immunoregulatory factors produced by airway
epithelial cells including secretoglobin (SCGB)1A1 are decreased
in patients with asthma (16), and airway epithelial cells in
asthmatics contain micro-RNA (miRNA) changes implicated
in regulation of epithelial cell differentiation (17). The role
of the airway epithelium during T2 immune disease has been
reviewed extensively (18–20) and therefore will not be the focus
of this review.

With anti-inflammatory and pro-reparative functions (21),
the TH2 immune profile in allergic asthma is commonly
considered to be incompetent toward intra- and extra-cellular
environmental pathogens like viruses, bacteria, and fungi (22).
However, the growing incidence of asthma despite seasonal and
pandemic respiratory infections indicate that this immune bias in
asthmatics could be either host-protective or pathogen-tolerant.
Herein, we explore the literature over the past 15 years focused on
the correlations between common respiratory infectious agents
and allergic asthma, as hosts with T2 asthma may hold hitherto
unidentified anti-pathogen properties that may be of benefit to
the modern-day patient.

FUNCTIONAL IMPACT OF VIRAL
INFECTIONS ON ASTHMA PATHOGENESIS

Respiratory viral infections are a leading cause of morbidity
and mortality worldwide in pediatric and adult populations
with infection severity varying from asymptomatic or mild
upper airway infections to bronchiolitis or pneumonia (23).
The airway epithelium plays an important role as a first barrier
to prevent unrestricted access to environmental pathogens
while serving as an initiator of immune responses in the
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FIGURE 1 | Differing effects of respiratory infections on asthma. Viral, bacterial

and fungal respiratory infections are associated with asthma onset and

exacerbation. The immune response in allergic asthma is defective against

respiratory viruses and bacteria in some scenarios and promote antiviral and

antibacterial immunity in other contexts. Allergy and respiratory pathogens

may also synergize to increase inflammation and damage in asthma. On the

contrary, some bacteria are able to suppress allergic inflammation. Specific

bacteria are linked to T2-low asthma, steroid resistance and immune response

impairment. Fungal sensitization/infection in allergic asthma is associated with

disease severity and higher corticosteroid requirement.

lungs (14, 24). However, allergens and viruses are able
to disrupt the epithelial barrier thereby facilitating allergen
sensitization and increasing infectious susceptibility (20, 25).
In particular, viruses cause junctional protein dysfunction by
inducing morphological alterations of epithelial cells such as
cytopathic effect or formation of syncytia (18). Respiratory
RNA viruses of the families Paramyxoviridae (respiratory
syncytial virus, parainfluenza virus and metapneumovirus),
Orthomyxoviridae (influenza virus), Picornaviridae (rhinovirus)
and Coronaviridae (coronavirus) are the most common cause of
asthma exacerbations (26), being associated with approximately
80% of exacerbation episodes in both children and adults (27).
In the next section we summarize and discuss the current
understanding of asthma and its relationship with the most
important respiratory viral infections (Figure 1).

Respiratory Syncytial Virus (RSV)
Paramyxoviridae family member RSV, is an enveloped negative-
sense single-stranded (ss) RNA virus that invades ciliated
bronchial epithelial cells using G and F proteins on its envelope
(28). Being a major cause of respiratory tract (RT) infections
in pediatric populations, RSV is the most common viral
cause of pneumonia with peak incidences during winter (29,
30). Globally, RSV causes 33 million episodes of acute lower

respiratory infection, leading to ∼3.2 million hospitalizations
and up to 200,000 deaths in children <5 years old per
year (31). Moreover, many of the admitted children develop
acute respiratory distress syndrome (ARDS), an acute life-
threatening pulmonary condition (32). Additionally, there is a
well-established association between severe RSV bronchiolitis
in early life and asthma development in later childhood (7),
where both the timing (infection during infancy) and the
severity (hospitalization) are important predictors of asthma
development (33). This association is more significant in
sensitized children, suggesting a synergy between allergy and
RSV to promote later asthma (34). However, RSV prevention in
healthy preterm infants do not reduce clinically relevant asthma
symptoms at 6 years old age (35).

Allergy may induce a defective antiviral immune response in
asthmatics as peripheral blood mononuclear cells (PBMC) from
asthmatic allergic adults secrete less interferon (IFN)-α compared
to healthy controls (36). Furthermore, eosinophils in asthmatics
have a reduced ability to bind and possibly inactivate RSV
compared to healthy controls (37). In contrast, mouse models
have shown a protective role of allergy during RSV infections.
Aspergillus fumigatus-sensitized and challenged mice infected
with pneumonia virus of mice [a virus related to RSV inducing
similar pathology as severe RSV infection in children (38)],
were protected of lethal infection (39), an effect mediated by
recruited eosinophils. Interestingly, OVA-allergic animals were
not protected when infected with this virus (39), suggesting that
allergen-induced protection from respiratory viral diseasemay be
strongly dependent on immunogenic properties of the allergen.

Parainfluenza Virus (PIV)
Members of the Paramyxoviridae family like PIVs are enveloped,
negative sense, ssRNA viruses that utilize hemagglutinin
neuraminidase glycoprotein for host cell attachment and F
protein for viral fusion (40). PIV has a type-specific pattern
of seasonal circulation wherein PIV1 peaks in autumn and
PIV3 during the spring-summer (29). PIVs are a major cause
of respiratory infections in immunocompromised patients and
infants. In fact, PIV is the second most common cause of acute
RT infection among children <5 years, just after RSV (41).

Similar to its protective effect during RSV infections, allergy
confers host defense against PIV infection. OVA-allergic mice
infected with PIV have reduced viral RNA in the lungs
compared to non-sensitized mice due to antiviral effects of
eosinophilic nitric oxide (42). Nonetheless, as PIVs trigger
asthma exacerbations, it is possible that eosinophils, despite
their antiviral activity, exaggerate TH2 immune responses in
asthmatics after PIV infection (42).

Human Metapneumovirus (hMPV)
Another member of the Paramyxoviridae family, hMPV was
first isolated in 2001 from children with RT infections (43, 44).
The F protein binds to cell surface integrin αvβ mediating
membrane fusion (45). With annual rates of hospitalization of 1
per 1000 children <5 years and 3 per 1000 infants <6 months
in age, hMPV is a significant health threat to the pediatric
population (46). Clinical features of hMPV infection are similar
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to other respiratory viruses, including upper RT symptoms like
rhinorrhea and cough, and lower respiratory illnesses such as
pneumonia and bronchiolitis (43).

Similar to RSV, hMPV infections are associated with asthma
exacerbations (47) and children hospitalized with hMPV are
more likely to have asthma (46). Moreover, hMPV has been
linked to asthma development in children (8) and hMPV
infection induces longterm pulmonary inflammation and airway
hyperresponsiveness (AHR) in experimental models (48). In
contrast to reduced IFN production by epithelia from asthmatics
in response to human rhinovirus (49), nasal and tracheal
epithelial cells from atopic individuals with wheeze or asthma
do not display defective type I or III IFN responses after hMPV
infection (50, 51). However, nasal epithelial cells from subjects
with mild-to-moderate asthma show elevated hMPV replication
compared with infection in cells from healthy individuals, a
mechanism mediated by apoptosis inhibition via heat shock
protein 70 (51).

Influenza Virus
Influenza viruses are enveloped viruses with a negative sense
segmented ssRNA genome, belonging to the Orthomyxoviridae
family (52). Influenza virus hemagglutinin binds to sialic acid
residues on host cells for viral entry, while neuraminidase cleaves
sialic acid to release virions (53). Of the four types of influenza
virus, A, B, C and D, influenza A virus (IAV) is the most
common and pathogenic (54). Annually, IAV causes seasonal
epidemics with ∼3-5 million cases of severe respiratory illness
and around 650,000 deaths worldwide (55), in addition to global
pandemics (56).

Allergic inflammation is traditionally associated with
influenza immunity. Similar to human rhinovirus (57),
plasmacytoid dendritic cells (pDCs) from allergic asthmatics
secrete less IFN-α after influenza A or B exposure (58).
Furthermore, FcεRI cross-linking on pDCs before virus
challenge interferes with IFN-α secretion, TLR7 expression and
virus-induced upregulation of pDC co-stimulatory molecules
(58). In contrast to the immune protection from seasonal IAV
immunized non-allergic mice, immunized allergic mice are
susceptible to infection with pandemic IAV (59). However,
other experimental and epidemiological studies have shown a
different scenario. During the 2009 influenza pandemic, patients
with chronic diseases (including asthma) were among the most
commonly hospitalized (60) albeit with less severe outcomes
related to viral infection compared with non-asthmatics (61).
Bronchial epithelia from asthmatics were resistant to IAV-
cytopathology and did not have a defective IFN response
compared to cells from health donors (62). Experimental models
of allergic asthma and influenza have effectively recapitulated
that allergic immunity protects the host from severe influenza
(62–68). This protective effect has been attributed to enhanced
NK cell activation (63), CD8+ T cell support provided by
eosinophils (62, 65), transforming growth factor (TGF)-β1-
induced reduction of inflammation (64), CD11b+ DCs (67), and
most recently, eosinophil-mediated enhancement of epithelial
barrier responses (68). The timing of IAV infection in relation
to asthma induction and the state of the allergic airways during

infection are crucial for disease outcome. The induction of
allergic airway inflammation in formerly IAV-infected mice
generated enhanced lung pathology (66) while pre-existing
allergic airway inflammation was protective from upcoming
IAV infection (66). Infection with IAV during acute allergic
inflammation with eosinophilia leads to better outcomes
(maintenance of body weight and epithelial barrier and quicker
viral clearance) compared to infection during the remodeling
phase of allergic asthma (62). These host responses may be site
specific as nose-only allergen stimulation and subsequent IAV
infection results in increased influenza morbidity and mortality
compared to controls (69), a finding that is contrasting to
aforementioned studies performed in lower airway inflammation
mouse models.

Human Rhinovirus (hRV)
Genetically classified as types A, B, and C, hRV is a
non-enveloped positive sense ssRNA virus belonging to the
Picornaviridae family (70). hRV-A and hRV-C are particularly
relevant as they are more frequent and cause a more severe
respiratory illness in infants compared to hRV-B (71). Most hRV-
A and -B serotypes bind to intracellular adhesion molecule-
1 receptors on host cells for infection; the minor serotypes
bind to the low-density lipoprotein receptor (70). On the other
hand, hRV-C attaches to cadherin-related family member 3 (72).
Clinical symptoms of hRV infection range from asymptomatic
and mild self-limiting in immunocompetent hosts, to more
severe manifestations such as bronchiolitis and pneumonia in
infants and the immunosuppressed (70). While hRVs cause
respiratory illness throughout the year they are most frequent
during spring and autumn, and disease severity increases in
winter (71). Importantly, hRV infection is the most common
trigger of viral asthma exacerbations (73), especially hRV-
C, which causes the greater number of asthma attacks in
children, often with greater severity than hRV-A or hRV-B (74).
Furthermore, a clear relationship is established between early
life hRV-induced wheezing and asthma development in later
childhood (7, 9).

Allergic sensitization may be a risk factor for wheezing during
hRV infection (73, 75). Compared to non-atopic asthmatic
children, atopic asthmatic children are more likely to present
severe viral disease and loss of asthma control after hRV infection
(75). Infants and children admitted for wheezing from hRV have
higher levels of serum IgE compared to non-wheezing controls
and 84% of children with wheezing were sensitized to at least
one aeroallergen (73). Furthermore, allergic individuals may have
impaired antiviral immunity to hRV. In vitro studies have shown
that the epithelial inflammatory response to hRV of asthmatics is
abnormal and is associated with increased viral replication and
virus-induced cytotoxicity (76). Individuals with allergic asthma
have baseline differences in gene expression compared to healthy
controls including a decreased expression of viral replication
inhibitors and gene dysregulation following hRV infection (77).
Moreover, patients with atopic asthma have impaired IFN type I
and III responses during hRV infection, although not all studies
are in agreement (49). Anti-T2 therapies may be beneficial for
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such patients, to reduce hRV-induced viral exacerbations and
restore impaired antiviral responses (49).

Coronavirus (CoV)
Coronaviruses are enveloped, positive sense ssRNA viruses
belonging to the Coronaviridae family. The membrane protein
(M) and the envelope protein (E) participate in virus assembly,
whereas the spike protein (S) mediates viral entry (78). A novel
CoV infection outbreak in Wuhan China occurred in 2019 and
rapidly spread across the world causing 290 million infections
and 5.4 million deaths to date (79), and is now the most severe
pandemic of the 21st century. Perhaps because CoVs are able to
induce asthma exacerbations (80) and because some asthmatics
have deficiencies in antiviral immunity (49), patients with
moderate-to-severe asthma were listed at the beginning of the
pandemic to be at risk for severe coronavirus disease (COVID)
(81). However, the global initiative for asthma (GINA) reported
that people with asthma do not seem to have an increased risk
of infection from severe acute respiratory syndrome (SARS)-
CoV-2, the causative agent of the ongoing COVID-19 pandemic,
or present with severe COVID-19 (4). Early findings suggest
that like during the 2009 influenza pandemic T2-high asthma
endotype may be protective in COVID-19 infection (82). Patients
with asthma with absolute eosinophil counts (AEC) ≥150 cells
µL are less likely to be admitted (83). Several hypotheses have
been presented to date to explain these findings. Patients with
allergic asthma have lower expression of angiotensin-converting
enzyme (ACE)-2, the primary receptor for SARS-CoV-2 (84),
raising the possibility of a reduced risk of SARS-CoV-2 infection.
The anti-inflammatory effect of inhaled corticosteroids (ICS)
and T2 cytokines have also been proposed as explanations (85).
Another possibility is eosinophil antiviral activity (86), which
has been reported to other ssRNA respiratory viruses (87, 88).
In fact, eosinopenia correlates to poor outcome in patients
with COVID-19, and the restoration of eosinophil numbers is
linked to disease improvement (89) and T2-low asthma endotype
may correlate with severe COVID-19, as IL-17 (a cytokine
that participates in T2-low asthma pathogenesis) drives the
immunopathogenesis of ARDS in patients with severe COVID-
19 (82).

IMPACT OF BACTERIAL INFECTIONS IN
ASTHMA PATHOGENESIS

Bacterial infections are associated with pathogenesis,
exacerbations and chronicity of asthma (90, 91). The knowledge
of the relationship between bacteria and asthma continue to
grow rapidly, in part due to the utilization of new technologies
for bacterial identification, particularly 16S ribosomal RNA
gene sequencing (92). Appreciation of the human microbiome,
especially the lung microbiome [considered sterile until recently
(93)], allowed researchers to recognize the impact of specific
bacteria in different pulmonary disorders (94) and their
interactions with viral infections in the context of asthma (95).
In the following section we discuss the participation of the most
significant bacteria linked to asthma (Figure 1).

Streptococcus pneumoniae (Spn)
Pneumococcus is a Gram-positive bacterium with a
polysaccharide capsule that plays a critical role in its virulence
(96) and is the most common cause of bacterial pneumonia
in children (30). Invasive pneumococcal disease [includes
bacteremic pneumonia, meningitis, and bacteremia (97)] is a
more serious manifestation of Spn infection which usually causes
otitis media, sinusitis and bronchitis (98, 99). Antimicrobial
resistance in pneumococci is an ongoing problem and about one
million children die of pneumococcal disease every year (99).

As a commensal in the upper RT, a large proportion of the
population, including asthmatics, carries Spn asymptomatically
(98, 100, 101) albeit carriage is more common in asthmatics
(101). Infants with higher Streptococcus abundance in the
nasopharynx are more likely to wheeze at 5 years of age
(9, 10). Additionally, Spn infection is linked to asthma
exacerbations (102) and its colonization increases in asthmatics
that experienced recent exacerbations (103, 104).

Immune responses to Spn in allergic hosts may be age-
dependent as neonate Spn-infected mice had elevated airway
neutrophils, more severe lung inflammation, enhanced AHR,
and increased IL-17A production after OVA sensitization and
challenge in adulthood (105). In contrast, Spn infection in
adult mice before OVA challenge induces a regulatory T cell
(Treg) influx, which correlates with suppression of allergic
airways inflammation (105, 106). Infection or treatment with
killed Spn or its components reduce OVA-induced eosinophilic
inflammation, T2 cytokine release, mucus hypersecretion
and AHR (106–110). Furthermore, pneumococcal conjugate
vaccine suppressed the critical features of allergic airways
inflammation when administered intranasally through induction
of Tregs (111) and pharyngeal Spn colonization suppresses
the pathophysiology during acute asthma exacerbations in
children (112).

Allergic airways inflammation can also play a protective
role against Spn lung disease. OVA- or HDM-induced allergic
lung inflammation confers protection against an otherwise
lethal pulmonary pneumococcal infection with reduced
bacterial burden and neutrophils (113). Aspergillus fumigatus-
induced allergic mice infected with Spn survived the infection
as opposed to over 50% mortality in controls potentially
through IL-6 regulation of airway barrier integrity (114). In
contrast, HDM-induced allergic mice are unable to mount an
effective antibacterial response, as allergy impairs neutrophil
recruitment resulting in bacterial invasion and dissemination
(115). These differences in antibacterial immunity may be
due to methodological variations such as the use of different
allergen models, different Spn serotypes, and infectious doses
and regimens used (116).

Haemophilus influenzae (Hi)
Haemophilus species are Gram-negative coccobacilli broadly
classified into typeable (encapsulated) and non-typeable (non-
encapsulated) strains. Encapsulated bacteria are further subtyped
(a through f) by capsule antigenicity (117). While H. influenzae
type b (Hib) was one of the most frequent causes of lower
respiratory infection, its incidence has decreased largely due to
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vaccination, while that of non-typeableH. influenzae (NTHi) has
increased (118). A variety of clinical manifestations such as otitis
media, sinusitis, conjunctivitis and pneumonia can be caused by
NTHi especially in children. Newborns or immunocompromised
individuals can also present with invasive infections, including
bacteremia and meningitis (119).

As commensals of the lower RT, Haemophilus spp. can
be found in healthy individuals (120). However, Hi is more
frequently associated in patients with asthma (93) and Hi
colonization in neonates is a risk factor of asthma development
early in life (10). Experimental studies have confirmed this
observation wherein NTHi infection in 3-day-old mice increases
granulocyte infiltration, elevated mucus production, T2
cytokines and AHR following OVA-challenge (121).

There are multiple associations between NTHi infection and
neutrophilic asthma. Infection of mice with NTHi during OVA-
induced inflammation suppresses T2-mediated eosinophilic
inflammation and while enhancing neutrophilic inflammation
through IL-17 (122). Furthermore, the combination of NTHi
infection and allergic airways inflammation resulted in a steroid-
resistant disease, a feature that resembles neutrophilic asthma
in humans (123). In accord, Hi (124, 125) or members
of the Haemophilus genera (126, 127) have been found in
sputum of patients with neutrophilic asthma. Interestingly, the
combination of Hi infection and allergic inflammation in mice
impairs airway macrophage and neutrophil activation resulting
in chronic bacterial infection (123). Similarly, impaired alveolar
or monocyte-derived macrophage phagocytosis of Hi has also
been reported in patients with severe asthma (128).

Moraxella catarrhalis (Mcat)
As a Gram-negative diplococcus human-restricted commensal
of the upper RT, Mcat is pathogenic to both upper and
the lower RTs (129, 130). Also functioning as a causative
agent of acute otitis media in children, Mcat is a frequent
cause of COPD exacerbations in adults (130). Besides its
association with asthma development (10), Mcat colonization
is linked to loss of asthma control (131) and wheezing
episodes (112, 132). Moreover, Moraxella is the reported
dominant species in nasal passages of children who develop
asthma exacerbations, is stably maintained in their airways
(133), and found more commonly in acute respiratory
infections (9).

Both neutrophilic and eosinophilic inflammation can result
after Mcat infection (95). In patients with neutrophilic asthma,
high abundance of Moraxella and Haemophilus taxa have
been identified in sputum samples (126, 127). Moreover,
sputum neutrophils positively correlate with the relative
abundance of Moraxella (127), and Mcat colonization have been
associated with prolonged and more severe airway obstruction in
treatment resistant severe asthma (126). The relative abundance
of upper RT Moraxella species correlates positively with
systemic and airway eosinophilia (134) and elevated levels of
eosinophil cationic protein in nasal samples (133). PBMCs from
asymptomatic infants that developed asthma by age 7 secrete
higher levels of T2 cytokines (IL-5 and IL-13) and IL-17 when
exposed to Mcat or NTHi (135), and Mcat promotes IL-8 and

IL-33 gene upregulation in A549 human alveolar epithelial cells
(133). Infection during HDM sensitization in mice induced
airway neutrophilia, eosinophilia, and IFN-γ+, IL-17+, and
IL5+/IL13+ T CD4+ cells, in addition to goblet cell hyperplasia
and mucus production compared to allergic mice without Mcat
infection (136).

Mycoplasma pneumoniae (Mp)
Mycoplasma species possess unique characteristics. They are
the smallest prokaryotes, which allow them to pass through
cell filters and because they lack cell walls they are insensitive
to cellular antimicrobial agents and Gram-staining (137, 138).
A member of the Mycoplasmataceae family, Mp predominates
among disease causing Mycoplasma species (138). While Mp
infections can occur worldwide at any time of the year, incidence
is higher in summer or early autumn (139). Like many other
respiratory pathogens, Mp can asymptomatically colonize the
RT (140) but have the ability to cause upper and lower
respiratory complications including pneumonia (139, 141) and
may be responsible for 4–8% of community-acquired bacterial
pneumonias, with increases up to 70% during epidemics,
affecting groups of all ages, especially children and young
adults (141).

The association between Mp and asthma is longstanding
where Mp infections have been linked to asthma inception
(11) and exacerbations (139). Community-acquired respiratory
distress syndrome (CARDS) toxin produced by Mp has been
reported to induce allergic airways inflammation in mice,
characterized by eosinophilia, mucus production and T2 cytokine
secretion (142). Moreover, history of asthma and atopic
sensitization are risk factors for refractory Mp pneumonia
requiring steroid therapy in children (143) and Mp detection is
involved with worsening chronic asthma (140).

Multiple experimental studies have evaluated the role of Mp
infection in allergic asthma. Low dose Mp infection enhances
IL-4 and eotaxin-2 expression in allergic mice (144) and
CARDS toxin exacerbates asthma in OVA-induced allergic mice
(145). In contrast, Mp infection before OVA challenge reduces
airway mucin secretion through toll-like receptor (TLR)-2/IFN-
γ signaling pathway (146). Surfactant protein A (SP-A), the
most abundant of the pulmonary surfactant proteins, binds and
opsonizes pathogens, including Mp (147). Interestingly, SPA−/−

allergic mice infected with Mp have significantly decreased
Mp burden compared to controls, a mechanism attributed to
eosinophil-mediated killing of Mp, and limited by SPA (148).
On the other hand, it has been reported that allergy impairs
the immune response against Mp. OVA-allergic mice infected
with Mp have higher bacterial burden than non-allergic mice due
to inhibition of TLR2 expression and IL-6 production in lung
cells (149), and reduced expression of bactericidal/permeability-
increasing protein fold-containing family member A1 (150),
a protein with antimicrobial properties against bacteria (151)
including Mp (152).

Chlamydia pneumoniae (Cp)
The bacterial family Chlamydiaceae includes the human
pathogen Chlamydophila pneumoniae, a Gram-negative obligate
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intracellular bacteria that is a common cause of acute respiratory
infections (153). Pneumonia and bronchitis are the most
common clinical manifestations, with approximately 10% of
community-acquired pneumonia (CAP) cases and 5% of
bronchitis cases (153).

Also associated with asthma exacerbations (154), early-life
chlamydial infection enhances allergic characteristics in OVA-
sensitized mice (155). Moreover, Cp is found more frequently in
asthmatics (156) and the age at which Cp infection occurs seems
to be crucial for asthma development as chlamydial infection
during early-life (neonatal and infant), but not adult, increases
IL-13 expression, mucus-secreting cell numbers and AHR (155).
Moreover, infant infection, but not neonatal, increases airway
eosinophilia, T2 cytokines and changes in hematopoietic cells,
leading to more severe allergic airways disease in later life (155,
157).

Similar to NTHi, Cp-induced airway inflammation is
predominantly T2-low. Current chlamydial infection during
OVA-induced allergic disease induces neutrophil influx
associated with TH1/TH17 immune responses while attenuating
eosinophil recruitment and T2 response (158). Chlamydia-
induced severe steroid-insensitive allergic airways disease in
mice induces lungmRNA expression of TH1 and TH17 associated
molecules (Tlr2, Stat1, Ifng, Cxcl9, Cxcl10, Tnf, Il17, Il6, Tgfb,
and Il1b) and reduction of TH2 associated genes (Il5 and Il13)
(159). Elevated IL-8 levels and airway lavage fluid neutrophils
are reported in Cp positive asthmatic children (160), and Cp
infection may drive increased steroid resistance (161).

EFFECTS OF FUNGAL
SENSITIZATION/INFECTION ON ASTHMA
PATHOGENESIS

As with viruses and bacteria, fungi participate in asthma
development and exacerbations (162) despite considerably
less information available regarding causation. The fungal
microbiome, or mycobiome, has been increasingly appreciated
as an important player in health and disease (162, 163), which
is evidenced in asthma by the airway fungal alterations in
asthmatics compared with healthy subjects (164–166). Fungi
that participate in asthma are divided into thermotolerant
(allergenic and potentially infectious), and not thermotolerant
(mesophilic), which are allergenic but typically not infectious
(167). In this segment, we summarize the current understanding
of the relationship between the most important thermotolerant
fungi and asthma pathology (Figure 1).

Aspergillus
The genus Aspergillus consists of a variety of ubiquitous
opportunistic filamentous mold species although only some are
human pathogens (168). Inhaled Aspergillus conidia are removed
by the mucociliary escalator and resident alveolar macrophages
in healthy individuals (169). However, Aspergillus conidia can
germinate and cause invasive infection in immunocompromised
individuals (169, 170).

Sensitization to Aspergillus species is associated with severe
asthma (171, 172), and greater corticosteroid requirement (172).
Sensitization to A. fumigatus is related to reduced lung function
(173), bronchiectasis (174), and asthma exacerbations in children
and adults (175). Aspergillus is implicated in epithelial barrier
impairment as the alkaline protease 1 of A. fumigatus causes
disruptions between airway smoothmuscle cells and extracellular
matrix and promotes AHR (176). Host defense againstAspergillus
in asthmatics is predominantly associated with T2 responses.
Mice sensitized and challenged with A. fumigatus conidia
develop allergic pulmonary inflammation and AHRwith elevated
serum IgE and pulmonary IL-4 (177), inhalation of Aspergillus-
associated proteases by naïve mice promotes airway eosinophilia
through protease-activated receptor-2 engagement (178), and
chitin promotes eosinophil recruitment (179, 180). Consistently,
enrichment of Aspergillus in the airways is associated with T2-
high asthma in humans (166).

Pulmonary aspergillosis can be divided in chronic pulmonary
aspergillosis, invasive pulmonary aspergillosis, and allergic
bronchopulmonary aspergillosis (ABPA) (181) that principally
affects patients with cystic fibrosis and asthma (182). It is
estimated that 9% of cystic fibrosis patients (183) and 2.5%
of adult asthmatics (184) suffer from ABPA. Furthermore,
nearly 35–50% of patients with cystic fibrosis (183) and 24%
of patients with severe asthma (185) have sensitization to A.
fumigatus. Although many fungi are associated with the disease,
A. fumigatus is by far the most common cause of ABPA
(186) due to its marked thermotolerance and small size and
surface properties of its conidia that can reach terminal airways
(187, 188). The inflammatory response in patients with ABPA
is characterized to be T2-biased caused by hypersensitivity to
A. fumigatus, which includes high levels of total serum IgE
and peripheral eosinophilia (189). Eosinophil extracellular traps
(EETs) have been identified in bronchial mucus samples of A.
fumigatus positive asthmatics with ABPA (190, 191). However,
since EETs do not affect fungal viability, it is possible that EETs
contribute to ABPA pathology by the formation of sticky mucus
and granule-mediated epithelial damage (190, 192). In addition,
eosinophils contribute to elevated morbidity and decreased A.
fumigatus clearance to invasive fungal infection in mice (179).
In contrast, eosinophil antifungal activity has been demonstrated
against Aspergillus species in experimental studies such that
mouse eosinophils are important contributors of A. fumigatus
clearance in vivo and are able to kill the fungus in vitro (193).
Similarly, T2 allergic inflammation has a protective role against
A. niger infection in mice, while in vitro experiments showed that
eosinophils possess anti-fungal activity (194).

Penicillium
Penicillium species, members of the Trichocomaceae family, are
common indoor fungi that can be found in a diverse range of
habitats (187, 195). Exposure to Penicillium has been linked to
asthma (187). Increased levels of Penicillium is associated with
increased exacerbation of current asthma symptoms in children
and adults (175). Individuals sensitized to P. chrysogenum and
A. fumigatus have lower lung function compared to those
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sensitized to Candida albicans (a thermotolerant yeast) or non-
thermotolerant fungi (196). Additionally, children with asthma
sensitized to thermotolerant fungi, including Penicillium, have
worse lung function, greater systemic corticosteroid requirement,
higher total serum IgE and FeNO, and greater sputum
eosinophils compared to asthmatic children not sensitized to
thermotolerant fungi (197). As such, Penicillium species are
significantly enriched in patients with asthma, particularly with
atopic asthma (166).

Candida
Candida genus is composed of approximately 200 species, only
few of them being implicated in human diseases (198, 199).
Included in the mycobiome Candida is able to colonize the skin,
oropharynx, genitourinary and gastrointestinal tracts (187, 198)
and when pathogenic (as with C. albicans) can quickly progress
from superficial mucosal manifestations to life-threatening
systemic infections (198, 199). Candida species participate in
allergic diseases such as atopic dermatitis and asthma (187), are
common etiologic agents of allergic bronchopulmonary mycosis
(ABPM) (200), and are linked to severe asthma (201).

A high relative abundance of Candida in neonatal stool
samples is linked to an increased risk of atopy at 2 years
and physician-diagnosed asthma at 4 years (202). The
use of antibiotics, which has been associated with asthma
development (discussed below), triggers bacterial and fungal
imbalances resulting in immune dysregulation (162). In an
experimental study, antibiotic treatment in allergen-induced
airway inflammation resulted in C. parapsilosis overgrowth
in the gut, which correlated with airway inflammatory cell
influx (203). Candida overgrowth-induced plasma prostaglandin
E2 promotes lung macrophage polarization to M2, resulting in
enhanced allergic airway inflammation. Moreover, oral treatment
with human-isolated C. albicans, C. glabrata or C. tropicalis after
antibiotic treatment exacerbates airway inflammation (203).
In addition to fungal proteases that are known to drive T2
responses and elicit airways disease (204), it was recently
demonstrated that C. albicans peptide toxin candidalysin is able
to induce allergic disease (205). Candidalysin activates platelets
stimulating the release of Dickkopf-1 peptide, which in turn
coordinates TH2 and TH17 development during C. albicans
airway mycosis (205).

Cryptococcus
C. neoformans and C. gattii are the etiologic agents
of cryptococcosis (206). Cryptococcus species possess a
polysaccharide capsule that participates in their virulence
and differentiate it from other pathogenic yeasts (207, 208). C.
neoformans has a worldwide distribution and it is disseminated
by bird droppings (206, 209). While healthy individuals are able
to clear the fungi or establish an asymptomatic infection after
inhalation of spores or fungal cells, Cryptococcus can either cause
pneumonia (210) or disseminate causing conditions such as
meningoencephalitis (206) in immunosuppressed patients.

C. neoformans can induce a TH2 polarization associated with
a non-protective antifungal immunity (211, 212). C. neoformans
infection exacerbates OVA-induced allergic inflammation in

rats with increased eosinophils, IgE titers, goblet cells and
AHR compared to controls (213). Following infection with C.
neoformans, IL-13−/− mice show higher survival, lower fungal
burden, lower mucus production and reduced AHR compared
to IL-13Tg+ and wild-type mice (214). On the other hand, IL-
4Rα−/− mice are protected to C. neoformans infection, depicted
by 100% survival compared with 100% mortality of wild-type
mice (215). IL-4Rα−/− mice show reduced lung fungal burden
compared with controls, in addition to absence dissemination to
the brain, and decreased allergic inflammation and AHR (215).
Interestingly, it has recently been reported that C. pseudolongus
is more abundant in patients with asthma than in healthy
individuals, and may play a role in asthma pathogenesis, which
requires further investigation (216).

CURRENT TREATMENT STRATEGIES FOR
ASTHMA SYMPTOM PREVENTION AND
THEIR IMPACT ON IMMUNITY TO
RESPIRATORY INFECTIONS

Asthma is a multifaceted disease with a varied response
to therapy. Although patients with asthma usually respond
well to standard therapies, some patients continue to have
persistent symptoms (217). Comorbid conditions (e.g. obesity),
environmental triggers, and asthma phenotypes are important
factors to consider when selecting the optimal therapy for
personalized patient care (218, 219). Moreover, increased
knowledge about functions of airway and gut microbiota in
respiratory diseases (94) obtained in the last decade adds a new
level of complexity to effective asthma treatment (Figure 2). In
this section we summarize the current known information about
asthma therapy and discuss unknowns and areas that could
benefit from further research.

Corticosteroids
The use of inhaled (ICS) or systemic corticosteroids are
recommended by the international asthma management
guidelines for the control of asthma symptoms and exacerbations
(4). In spite of being an effective treatment for most asthmatics,
not all patients are responsive. In fact, patients with asthma
can be clinically classified depending on the administered CS
efficacy into steroid-sensitive and steroid-resistant patients
(207). Importantly, CS can cause important adverse effects that
can be life-term such as osteoporosis, diabetes, and respiratory
infections (220). Furthermore, CS seem to decrease SCGB1A1
expression (221), and they only modestly correct the alterations
of airway epithelial cell miRNA levels found in asthmatics (17).
The transglutaminase 2, wingless/integrase 5a and secretory
phospholipase A2 cascades have been associated with steroid
resistance in normal human bronchial epithelial cells and nasal
polyp tissues (222), therefore drugs targeting these pathways
may be a personalized therapeutic choice for patients with
steroid-resistance (222).

Neutrophils, unlike eosinophils, are resistant to CS-induced
apoptosis (223), and therefore neutrophilic asthma is steroid-
resistant (224). Significant differences in the microbiome of
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FIGURE 2 | Complex interactions between asthma, asthma therapeutics, and vaccination. Corticosteroids are commonly used for asthma symptom

control/prevention, but they alter the airway microbiome. Biologic therapy approved for asthma targets T2 immune response, but their effect during respiratory

infections remains unclear. Antivirals may be useful for some asthma patients. Antibiotics cause alterations in the microbiome, are implicated in asthma development

and severity, and cause impaired immune responses during viral and bacterial respiratory infections. Influenza vaccine is recommended for patients with asthma,

although the usefulness of pneumococcal vaccination is controversial.

steroid-resistant and -sensitive asthmatics have been reported
(225, 226). The baseline composition of bronchial bacterial
microbiota from ICS responsive (enriched in Streptococcaceae,
Fusobacteriaceae and Sphingomonodaceae) is different from
ICS resistant patients (enriched in Microbacteriaceae and
Pasteurellaceae) and more similar to healthy controls (226). In
fact, a member of the Pasteurellaceae family, Haemophilus, is
linked to steroid-resistant neutrophilic asthma (124, 225). In
addition, Hi and Cp, bacteria related to neutrophilic phenotype,
drive a steroid-resistant TH1/17-associated neutrophilic allergic
airways disease in allergen sensitized mice (123, 159, 227).
Furthermore, differences in the microbiome between asthma
endotypes are reported (226, 228). Patients with neutrophilic
asthma have increased airway bacterial burden and reduced
bacterial diversity compared to non-neutrophilic asthmatics
(228). Similarly, patients with COPD, a chronic disease that in
general possess similarities with T2-low asthma phenotype such
as airway neutrophilia (229), display reduced bacterial diversity,
(230) and an increase in Haemophilus and Moraxella (231).
Conversely, patients with T2-high asthma have lower bronchial
bacterial burden than patients with T2-low asthma (226), and
lower eosinophil counts are associated with increased airway
bacterial load in COPD patients (232).

Augmenting differences in the airway microbiome among
asthmatics, CS use is associated with significant changes on the
composition (and probably diversity) of the airway microbiome
in patients with asthma, COPD and chronic rhinosinusitis
(233). Treatment with CS is associated with decreased relative
abundance of Prevotella species and increased Pseudomonas

species in asthmatics (234). Children with persistent asthma
on regular ICS therapy are nearly four times more likely to
have Spn oropharyngeal colonization compared to children not
taking ICS (235). Steroid-sensitive asthmatics have an increased
relative abundance of Neisseria and Moraxella species after ICS
treatment (226). These studies suggest that CS use can affect the
microbiome and neutrophilic inflammation and that the airway
dysbiosis and steroid resistance are interrelated. However, as
there is considerable heterogeneity between studies with respect
to study cohorts, treatment duration, doses and type of evaluated
CS (233), further studies are needed to clarify the impact CS have
in airway dysbiosis during asthma and other respiratory diseases.

Biologics
Currently there are five Food and Drug Administration
(FDA)-approved drugs – omalizumab (anti-IgE), mepolizumab
and reslizumab (anti-IL-5), benralizumab (anti-IL-5Rα), and
dupilumab (anti-IL-4Rα) – for moderate to severe asthma
that can reduce asthma exacerbations in patients with T2-
high asthma (236). These may also be efficacious during viral
infections by improving the antiviral response. For example,
children with allergic asthma treated with omalizumab have
decreased duration and peak level of viral shedding during
hRV infections, and ameliorated hRV illness (237). IgE receptor
activation increases host susceptibility to viral infection and
the use of omalizumab could be beneficial to improve the
antiviral response in asthmatics (49). Intriguingly, IgE receptor
activation on asthma donor pDCs reduces type I IFN secretion
in response to IAV (58), and type I and III IFN release in
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response to hRV compared to pDCs from non-asthmatics (57).
Furthermore, IgE cross-linking on PBMCs exposed to hRV from
patients with asthma treated with omalizumab presented an IFN-
α increased secretion compared with a placebo group (238).
Dupilumab may also improve the antiviral immune response
in patients with T2-high asthma, as IL-4 and IL-13 impair the
viral-induced interferon production and TLR3 expression (239).
In contrast, patients with mild asthma receiving mepolizumab
and challenged with hRV have higher viral loads in nasal
swabs compared to those that receive placebo, suggesting a
protective role of T2 immune response against viral infection
(240). This observation, along with the eosinophil antiviral
activity against ssRNA viruses demonstrated in experimental
studies mentioned above (39, 42, 62, 65, 68), raise the question
whether eosinophil-targeted therapies may have a negative
impact on viral disease and antiviral host defense. However,
currently there are no specific clinical studies that demonstrate
that anti-T2 biologics could be detrimental in patients with
asthma. Moreover, GINA recommends continuing biologic
therapy in patients with severe asthma during the COVID-19
pandemic (4).

Antivirals
Patients that possess defective IFN responses may benefit
from type I and III IFN therapies (241) as these IFNs are
able to suppress the T2 responses implicated in asthma (49).
In fact, IFN therapies have demonstrated protective roles in
experimental models of asthma (241, 242), and a randomized
controlled trial suggests that inhaled IFN-β could be beneficial
in virus-induced asthma exacerbations in severe asthmatics
(243). TLR agonists have also demonstrated positive roles
in asthma (244). Resiquimod, a TLR7 agonist, attenuates
experimentally-induced allergic inflammation (245) and TLR-9
agonists have demonstrated improvement of asthma symptoms
(246). Although palivizumab, a monoclonal antibody against
the RSV fusion protein, may reduce subsequent recurrent
wheezing in premature infants (247), GINA does not support
its use since due to lack of evidence that its effect is
sustained (4).

Antibiotics
Antibiotics are one of the most commonly prescribed
medications for children (248), including those with asthma, of
which in the United States about 17% of them are prescribed
unjustifiably (249). Although antibiotic treatment is crucial
against bacterial infections, and may seem attractive for asthma
treatment given the implication of bacteria in asthma, they
alter the healthy microbiome (250) including the mycobiome
(203). This antibiotic-induced dysbiosis, besides the intrinsic
gut and lung dysbiosis from asthmatics (94, 251), may cause
immune system alterations that are linked to asthma and
other pathologies (91, 250). Animal models have supported
this concept by showcasing the positive correlation between
antibiotic and antifungal treatment and enhanced asthma
severity (203, 252–254). Moreover, several studies report
an association between prenatal and early life antibiotic
exposure in humans and increased risk of asthma development

(251, 255–260). Additionally, antibiotic treatment causes longer
hospitalization stays and higher costs (261), and have not
proven to be beneficial in alleviating asthma exacerbations
in adults (262). In fact, the current GINA guidelines do not
support the routine prescription of antibiotics to treat asthma
exacerbations (unless there is a strong evidence of lung bacterial
infection) and recommend avoiding the prescription of broad-
spectrum antibiotics during the first years of life (4). Despite this,
antibiotics are still commonly used as a general treatment for
asthma (263, 264).

Intestinal antibiotic-induced dysbiosis alters immune
responses during respiratory bacterial and viral infections.
Mice orally treated with broad-spectrum antibiotics and
then intranasally infected with Spn have increased lung
bacterial burden and accelerated mortality compared with
non-treated mice (265). In another study, antibiotic-treated
mice displayed impaired innate and adaptive antiviral immunity
against IAV infection leading to severe influenza compared
to untreated controls (266). Microbe-associated metabolites,
like desaminotyrosine and acetate, enhance antiviral responses
against IAV and RSV in mice through an upregulation of IFN
signaling (267, 268). TLR stimulus provided by bacteria has
also been demonstrated to be important to regulate immune
responses against respiratory infections like IAV (269). Host
protection noted in A. fumigatus-sensitized and challenged
mice that were co-infected with IAV and Spn is lost after
antibiotic-induced airway dysbiosis (270) highlighting the
vast impact antibiotics have on pulmonary host defense.
Consistent with these studies, children under antibiotic therapy
in infancy may have impaired antiviral immunity later in
life (271). Furthermore, a reduction of the bacterial genera
Faecalibacterium, Lachonospira, Veillonella, and Rothia has
a causal role in asthma development (251). Cumulatively,
these studies demonstrate the importance of the gut-lung axis
including the microbiome during respiratory infections and
highlight the necessity to cease antibiotic misuse and overuse.

Macrolides, one of the most extensively used antibiotics,
have been proposed as an attractive therapy for asthma due to
its antimicrobial, immunomodulatory and possibly antiviral
activities (272). In fact, clinical trials report that azithromycin
therapy can reduce asthma exacerbations in adults (273–
275), albeit with conflicting data (262) as airway dysbiosis
in asthmatics may contribute to asthma pathogenesis (94).
Bronchial brushings from asthmatics show a dominance of
Proteobacteria, including families of potential pathogens
such as Haemophilus and Moraxella (276), and this phyla
was associated with epithelial expression of TH17-related
genes and worse asthma control (277). A question that still
remains is if certain antibiotics are able to equilibrate airway
dysbiosis from asthmatics (278), therefore restoring the healthy
microbiome. Unfortunately, antibiotics cannot differentiate
between commensal and pathogenic bacteria, so pathogen-
selective treatments are needed. However, due to antibiotic
resistance (279), gut and airway microbiome alterations (280–
282), and the aforementioned immunoregulation against
respiratory pathogens, antibiotics are not ideal therapies for
asthma in the longterm.
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Allergen-Specific Immunotherapy (AIT)
There are a few options for the management of allergic diseases.
Excluding allergen avoidance, which is not always practical or
possible, conventional pharmacotherapy (e.g. anti-histamines,
anti-leukotrienes, CS, etc.) and AIT are the other available
options (283). Although pharmacotherapy can control allergic
symptoms, they may reappear when medication is interrupted
(284, 285). As a treatment based on the administration of
increasing doses of clinically relevant allergens over a period
of time, AIT represents a promising option through gradual
desensitization and/or tolerance (4, 284), therefore providing
a longterm solution. The induction of regulatory B cells and
Treg and their products (IL-10 and TGF-β) are crucial to
obtain tolerance during AIT (284). More recently AIT efficacy
was shown to reduce allergic inflammation through SCGB1A1
induction (286). The first record of AIT is over a century
old for the treatment of grass pollen-induced hay fever (287).
Since then, the mechanisms behind AIT have been uncovered
in some extent, and currently AIT is used for some allergic
disorders including rhinitis, venom allergies, and allergic asthma
(283). At present, there are two AIT approaches for allergic
asthma, which includes subcutaneous immunotherapy (SCIT)
and sublingual immunotherapy (SLIT) (4, 288), and SCIT has
been shown to successfully alleviate asthma symptoms including
bronchial hyperreactivity consequently decreasing the use of
asthma medications (288). Although SLIT has demonstrated
efficacy as an asthma treatment (289, 290), drawing conclusions is
incumbered by the lack of data on outcomes such as exacerbation
frequencies, pulmonary functions, quality of life, etc. (291). There
are some important disadvantages of AIT such as discomfort
from repeated injections, the prolonged time of therapy, lack
of commitment in patients, absence of biomarkers that are able
to predict the clinical outcome, and importantly, the possibility
of life-threatening anaphylactic reactions (283). Additionally, it
is important to consider that patients may not feel confident
enough to discontinue CS or β-agonist treatments after AIT.
Currently, GINA is reviewing evidence regarding AIT as a
therapy for asthma, and the next update will cover those findings
(4). Therefore, despite its promise as an immunologic solution
to asthma, there may be substantial challenges in broad use
implementation of AIT as a standard therapy for asthma (283).

IMPACT OF VACCINATIONS ON ASTHMA
DEVELOPMENT/EXACERBATION

Influenza Vaccine
Seasonal influenza vaccines are necessary as circulating influenza
strains regularly undergo antigenic drifts. There are two
available influenza vaccine formulations in the United States,
the inactivated influenza vaccines (IIVs) and live attenuated
influenza vaccines (LAIVs) (292). Influenza vaccines are
especially relevant during the SARS-CoV-2 pandemic to decrease
the burden of respiratory illnesses and avoid hospital saturation
(292, 293). Despite this, vaccination coverage in the United States
in 2020-21 is nearly 20 percentage points lower than the
target of 70% (293). Annual vaccination against influenza

virus infection is recommended for all individuals aged ≥6
months who do not have contraindications, especially in
populations at higher risk of infection including patients with
asthma (4, 294). In fact, asthmatic children are 4-fold more
likely to have seasonal influenza-associated hospitalizations
than healthy children (295). Influenza vaccination has proven
safety and efficacy in asthmatics, as it can reduce the risk of
asthma exacerbations, healthcare use, respiratory illnesses, and
medications for asthma (296). However, LAIV is contraindicated
in wheezing children aged 2–4 years, and precautions should
be taken in patients with asthma aged ≥5 years (294) since
it was reported to increase the risk of wheezing episodes in
infants vaccinated with LAIV compared to IIV (297). However,
contraindication of LAIV in asthmatics is not clear since other
studies have not reproduced these findings (298–301) and several
studies showed that LAIV is safe in children and adults with
asthma (301–303).

Pneumococcal Vaccination
Presently, the 13-valent pneumococcal conjugate vaccine
(PCV13) and the 23-valent pneumococcal polysaccharide
vaccine (PPSV23) are available in the United States (304).
Although the CDC recommend pneumococcal vaccination
in asthmatics (305), GINA argues against this due to data
insufficiency (4). It has been documented that asthmatics have an
increased risk for IPD susceptibility (306) although the influence
of the different asthma endotypes is not clear. Interestingly,
despite being vaccinated, children with asthma continue to have
a higher risk for IPD compared to controls (307). Alternatively,
no correlation between IPD-mediated mortality in asthmatics vs.
non-asthmatics is reported (308) and asthmatics with CAP have
a similar clinical outcome and shorter length of stay compared
to the general population (264). Furthermore, asthmatics are not
at increased risk of pneumococcal pneumonia hospitalizations
compared to COPD patients (309). Recent experimental studies
have demonstrated that allergic inflammation confers protection
against Spn (113, 114, 270). Notably, the Spn-protected allergic
mice displayed reduced levels of pro-inflammatory cytokines and
lower levels of airway neutrophils compared to non-protected
non-allergic mice (113). Given the heterogeneity of asthma, it is
possible that patients with different endotypes show contrasting
clinical outcomes to Spn infection. Varying other mechanisms
may contribute to these findings. For example, COPD patients
[also at high risk for IPD (308)], display reduced bacteria
(310) and apoptotic cell (311, 312) phagocytosis. Similarly,
macrophages from steroid-resistant severe asthmatics have
defects in their phagocytic activity (128), and macrophage
efferocytosis is impaired in patients with non-eosinophilic
asthma (312). Thus, it is possible that patients with neutrophilic
asthma or those on the asthma-COPD spectrum may be at
higher risk of bacterial infections.

A subset of asthmatic children with high eosinophil count
had poor antibody titers to Spn, even with complete PCV-13
immunization (313). Specific clinical and preclinical studies are
necessary to determine the efficacy of pneumococcal vaccines in
asthmatics as it is under-investigated, and studies are confounded
by differences in age and other susceptibility factors like
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comorbidity. The need for boosters and their impact on asthma
pathogenesis must also be addressed in greater depth. Therefore,
the decision to administer pneumococcal vaccines to asthmatics,
may need to be done at a more personalized level taking into
consideration the type of asthma, other underlying conditions,
smoking history, and immunomodulatory therapeutics. It is also
important to consider that pneumococcal vaccination has an
impact in the airway microbiome as Spn is found as a commensal
in healthy subjects, and the eradication of Spn vaccine types
may induce airway dysbiosis (314). For example, pneumococcal
vaccination increases Hi carriage in healthy children (315,
316), and NTHi-mediated acute otitis media (317). Overall,
microbial dysbiosis caused by pneumococcal vaccines is worthy
of further investigation.

COVID-19 Vaccination
At the moment, there are 137 and 194 COVID-19 vaccines
in clinical and preclinical development, respectively, and 10
vaccines approved for use by World Health Organization
(318) with considerable protection against SARS-CoV-2
infection and disease (319). Currently, COVID-19 vaccination is
internationally recommended for asthmatics (4) as vaccination
rarely drives allergic reactions (4, 320). However, possible
long-term implications of COVID-19 vaccines in asthmatics are
currently unknown and require further investigation.

CONCLUSION

Immune response “flavor” at steady state is expected to differ
between patients living with underlying chronic diseases and
healthy hosts. Additional deviations of immune responses
are to be expected when considering patients across the age
spectrum. Therefore, invariant treatment strategies may not
be optimally suited for the modern-day patient. Tests that
permit the identification of asthma endotype (blood leukocyte
panel, IgE levels, standard cytokine panel to include TH1, TH2,

and TH17 cytokines, combined with the allergen identification)
should be performed as standard care and results captured
in medical records. Considering altered immune responses
due to underlying chronic conditions, genetic profiles, and
microbial signatures in addition to current parameters of age,
sex, and race, hold promise to improve individualized patient
care. Incorporating information regarding immune response
attributes into standard treatment protocols may help reduce
the overuse of immune-altering medications such as antibiotics
and corticosteroids. Host-pathogen interactions that occur in
patients with underlying allergic asthma when infected with
common airborne pathogens are complex, multifaceted, and
context dependent. Therefore, targeted studies are necessary to
profile these patients for treatment regimens to influence and
improve personalized, efficient healthcare with reduced drug
burden during respiratory infections.
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