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Asthma is characterized by an increase in the contraction and inflammation of airway

muscles, resulting in airflow obstruction. The prevalence of asthma is lower in females

than in males until the start of puberty, and higher in adult women than men. This sex

disparity and switch at the onset of puberty has been an object of debate among many

researchers. Hence, in this review, we have summarized these observations to pinpoint

areas needing more research work and to provide better sex-specific diagnosis and

management of asthma. While some researchers have attributed it to the anatomical

and physiological differences in themale and female respiratory systems, the influences of

hormonal interplay after puberty have also been stressed. Other hormones such as leptin

have been linked to the sex differences in asthma in both obese and non-obese patients.

Recently, many scientists have also demonstrated the influence of the sex-specific

genomic framework as a key player, and others have linked it to environmental, social

lifestyle, and occupational exposures. The majority of studies concluded that adult

men are less susceptible to developing asthma than women and that women display

more severe forms of the disease. Therefore, the understanding of the roles played

by sex- and gender-specific factors, and the biological mechanisms involved will help

develop novel and more accurate diagnostic and therapeutic plans for sex-specific

asthma management.
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INTRODUCTION

According to the most recent National Health Interview survey data, current asthma patients
represent about 8% of the United States population (1). Asthma is an inflammatory lung disease
characterized by an increase in the contraction and inflammation of the airway and relatedmuscles,
resulting in airflow obstruction. In adults, the prevalence of asthma in females is higher than that of
males (10.7 vs. 6.5% globally, and 9.8 vs. 6.1% in the US, respectively). While asthma prevalence is
greater in male children than in females, it reverses at age 13 (which is mostly the onset of puberty)
and continues to about age 65–70 years of adulthood (2). In 2019, the global prevalence of asthma
was 136 per million in females, and 127 per million in males (3). In addition, females have been
consistently shown to have a higher death rate due to asthma than males (1, 4, 5).

Airway remodeling and hyperresponsiveness in asthma have been documented long ago by
many researchers to be the anatomical and physiological alterations that occur in the airway of
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an asthmatic individual. Some of the pro-inflammatory responses
that trigger airway remodeling include the infiltration of
eosinophils into the airway, recruitment of inflammatory
cells, increase in the secretion of interleukins, increase in
immunoglobulin E, shedding of epithelial layers, thickening of
the subepithelial layer, increase in smoothmuscle mass, increased
secretion and sizes of mucous secreting cells, changes in blood
vessels associated with the airway, and wearing-off of the soft
bones of the airway (6–11). In general, males are known to
be less prone to certain immunological illnesses compared to
females and the role of sex hormones has been highlighted
extensively (12–15). In both human and animal studies, clear
sex distinctions have been documented in airway remodeling
in asthma. The reasons for these differences have not been
fully elucidated, but many studies have implicated the role
of hormonal, immunological, occupational, and environmental
factors (13, 16, 17). Hence, the purpose of this review is to
discuss both sex and gender differences in airway remodeling
in asthma, using data available from clinical and animal studies.
Understanding the mechanisms underlying these disparities
will guide the development of novel sex- and gender-specific
diagnosis and therapeutic options for themanagement of asthma.

SEX DIFFERENCES IN THE STRUCTURE
AND FUNCTION OF THE RESPIRATORY
SYSTEM

In clinical studies, researchers have attributed the sex differences
in airway remodeling to anatomical and physiological differences
in the structure and function of the respiratory system (Table 1).
Others argue that the observed differences are majorly due
to contributions of sex hormones and other sex-specific
biochemical processes. Some of the anatomical observations
reported are in the nasal cavity and floor, which is lower in
females compared to males (18), and cranial airways which seem
smaller in females than males (19). It has also been shown that
the upper airway compliance during non-rapid eye movement
sleep is lower in females than males though it was observed that
the neck circumference and surface area of the body are also
involved (20). Some earlier studies also reported observations in
the pharynx, which is smaller in size and cross-sectional area and
has low resistance in females than in males (21–23). These are
areas of the respiratory system that are known to humidify and
warm the inspired air, as most of them are lined with columnar
epithelial cells that secrete mucus. They also participate in the
mucocilliary clearance process when aerosol particles are inhaled,
which makes them very important in allergic airway diseases.
Overall, while the lung of adult males is bigger than that of
females, it is also said to be age and stature-dependent (25).
The size of the lungs influences the total lung capacity (TLC)
of an individual, as TLC is directly proportional to the size of
the lung. TLC also reflects the amount of air that goes in and
out of the lungs, which is affected in asthma. Additionally, the
number of alveoli is higher in adult males than females. Since the
alveoli are the major sites where the exchange of gases occurs
in the respiratory system, males having a larger surface area

TABLE 1 | Sex differences in the respiratory system structure and functions.

Respiratory system

structures/functions

Females (vs. Males) References

Nasal cavity and cranial airway

Length Shorter (18, 19)

Size Smaller

Width Wider

Upper airway Compliance Lower (20)

Pharynx (21–23)

Size Smaller

Cross-sectional area Smaller

Resistance Lower (24)

Lung

Size Smaller (25)

Alveoli

Count Lower (26, 27)

Surface area Smaller

Immune cell populations

Regulatory T cells Lower (28, 29)

CD4+ and CD4+/CD8+ ratio Higher

for gaseous exchange when compared to females, can influence
asthma risk (25, 30, 31).

SEX DIFFERENCES IN IMMUNE
RESPONSES IN ASTHMA

Sex dimorphism in immune response has been reported by
many researchers both in animal and human studies. Innate
and adaptive immune responses were said to be lower in males
than in females. Many scientists have attributed the observed
difference as being influenced by sex hormones. For instance, in
animal studies, the activities of macrophages were lower in males
compared to that of females attributing this to the protective
role of male sex hormone (32). This report was substantiated
with that the finding that antibody and cell-mediated responses
were low in males than in females only when their testosterone
level was at its peak (33, 34). In animal studies, regulatory
T cells have been shown to play vital roles in mechanisms
of inflammation in allergy, by preventing the production of
cytokines such as TGF-beta and interleukin (IL)-10 (35), and
proliferation of T cells (36), though the mechanisms involved
are not clearly understood. These cells are very few in the
lungs of female mice compared with that of the males (26, 27).
Moreover, the subsets of CD4+ and CD8+ T cells were found
to be numerous in the peripheral blood and lung tissue of
asthmatic patients (37, 38). Inflammation mediated by allergens
is said to be dependent on CD4 and CD8 cells rather than the
previous belief that solely implicates immunoglobulin E and B
cells since the lungs of knockout mice for immunoglobulin E
and B still produce an allergic-mediated inflammation with house
dust mite sensitization (39). CD8+ T cells are known for the role
they play in immune tolerance, and they are a good source of
proinflammatory cytokines in asthma (40) CD4+ cells and the
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ratio of CD4+/CD8+ cells (a marker of chronic lung disease)
(41) are lower in males than females throughout adulthood
(28, 29). Lamson et al. concluded that female mice express genes
associated with adaptive immune response, while male mice
express genes associated with innate immunity (42). Combined,
these features may contribute to the observed sex differences in
airway remodeling in asthma.

SEX-DIFFERENCES IN THE HORMONAL
INTERPLAY OF AIRWAY REMODELING IN
ASTHMA

In clinical studies, a strong link has been established between
the hypothalamic-gonadal-pituitary axis and the lungs (43).
Many physiological functions of the lungs have been linked
to the influence of different hormones throughout the life
span. For instance, the influence of hormones on physiological
surfactant secretion, lung development, and inflammatory
markers production and functions have been documented by
many researchers (28, 44–49). Estrogen has been named a key
player in the quick maturation of surfactant-producing cells;
this explains the faster development of female lungs compared
with that of males (50–52). The production of surfactants also
decreases as estrogen levels decline in females with an increase
in age. On the other hand, androgens have an inhibitory effect
on the production of surfactants at a young age (53). The
role of surfactants has also been suggested in the recruitment
of inflammatory cells in asthma (54). Similarly, a strong
correlation between the production of surfactant and eosinophil
counts has been shown, suggesting that it may serve as an
immunomodulator (54).

Estrogen and its receptors (alpha and beta) have been
demonstrated in human studies to play a vital role in the
regulation of anatomical and physiological functions of the
airway (55–59), as reviewed by us in (60). However, the role
of estrogen and its receptors in airway remodeling in asthma
has been controversial (61). Earlier animal studies reported
suppression of the immune system with the increase in estrogen
levels in the circulatory system (62). Hormonal fluctuations in the
mouse estrous cycle influenced the expression of inflammatory
genes in ozone-challenged female mice (63). Estrogen was
also found to increase airway inflammation by enhancing the
activities of the T-helper cells type 2 in asthma (14). Thus, it has
been suggested that the role of estrogen can be both destructive
and advantageous depending on whether the alpha or the beta
estrogen receptor signaling pathway is in use.

The nuclear estrogen receptors alpha and beta are both found
in the respiratory system but different proportions (62). One
study reported that the activation of the beta estrogen receptor
showed a reduction of extracellular matrix in asthmatic humans
by suppressing the activity of the NF-kB pathway (58). Another
study showed that beta estrogen receptor activation led to the
proliferation of airway smooth muscle cells by inhibiting the
activities of the platelet cells (55). The same study showed that
estrogen inhibits smoothmuscle contraction by reducing calcium
ion influx during inflammation in asthmatic conditions (57).

Another female hormone, progesterone, and its receptors
(alpha and beta receptors) have been implicated in sex
differences in asthma (16). This hormone is present in both
males and females, but the level is higher in females than
in males (64). Many decades ago, progesterone was found to
enhance the dilation of bronchi (65–67). However, there is
little information available for the role it plays in the allergic
immune response. Some researchers have documented that
progesterone contributes to the effects of other sex hormones.
For instance, it is known to have a high affinity for the enzyme
5-alpha reductase that helps in the conversion of testosterone
to active 5-dihydrotestosterone (64). Other studies have shown
that testosterone is inactive in the presence of progesterone
(68). In postmenopausal women undergoing hormonal therapy,
the combination of progesterone and estrogen increases their
risk of developing asthma, though the associated mechanisms
have not been studied (69). A positive correlation of serum
progesterone and peak flow rate in different menstrual phases
was also found (70). Also, progesterone was said to regulate the
production and activities of IL-17 which was enhanced in women
with severe asthma (71). Similarly, human airway epithelial cells
treated with progesterone display a reduced frequency of cilia
movement, indicating that progesterone negatively affects the
functions of the micro ciliary apparatus (72). Since the levels
of this hormone are higher in females than in males, it is
possible that progesterone fluctuations in females contribute to
asthma susceptibility.

Regarding male hormones, testosterone and its associated
metabolites also play a significant role in modulating T
cell activity, which helps provide an equilibrium between
hypersensitivity reactions and the body’s defense system.
Testosterone is classified as an immune-protective hormone,
along with 5-alpha dihydrotestosterone (5-alpha DHT). Both
help reduce airway inflammation in asthma by reducing the
response of the innate and adaptive immunity (14).

Adipose tissue is known for its ability to store energy in
form of triglycerides, recently, it becomes a recognized endocrine
organ. It is known to secrete hormones such as adiponectin,
C1a-TNF related protein 9, retinol-binding protein 4, leptin,
and omentin (73, 74). This group of hormones is referred to
as the adipokines in addition to the proinflammatory and anti-
inflammatory cytokines secreted by the same tissue. All these
go into the circulatory system where they mediate the activities
between adipose tissue and other tissues/ organs of the body (75).
The ability of the adiponectin to produce more than one effect
makes it an interesting adipokine to study among researchers.
It is a general belief that it has an anti-inflammatory property.
This was demonstrated in the research of (76), though it was
not in lung disease cardiovascular system disease. Adiponectin
is known to carry out its anti-inflammatory effect by acting on
the macrophages through the prevention of progenitor myeloid
cells differentiation (77, 78). It also possesses the ability to alter
the activities of themacrophages and toll-like receptor 4 (79). The
role of some adipokines in pulmonary diseases has been reviewed
by (80).

Leptin is a hormone of great interest in airway remodeling in
asthma, as its levels are known to be enhanced during allergic
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reactions (81). A few studies tried to implicate this hormone
as a key player in the strong association existing between
obesity and asthma. However, there are very few studies on
the roles of this hormone and its mechanisms of action. There
is a great expression of leptin receptors (alpha and beta) in
bronchoalveolar epithelial cells and alveolar macrophages (82–
84), as well as in other immune cells (85, 86). Decades ago,
leptin was shown to stimulate the release of IL-6 and tumor
necrosis factors from adipose tissue cells (87, 88). Interleukin 6
is known for its role in the release of the inflammatory marker,
C-reactive protein, from the liver in inflammatory conditions
(89, 90), as well as in mediating interferon production in T helper
1 cells (91, 92). In mice, the level of macrophage inflammatory
protein-2 was directly proportional to the serum level of leptin
in ozone-induced airway inflammation (93). Leptin has also been
found associated with lung injury and asthma (94). The levels of
leptin were found to be higher in children with asthma compared
with healthy controls (95). In the same study, the non-asthma
group displayed sex differences in leptin levels, whereas no sex
differences were observed in the asthma group. In mouse studies,
leptin administered exogenously led to an increase in secretions
of tumor necrosis factor, IL-6, and IL-12 (95).

Multiple researchers have demonstrated the role of hormones
and their various receptors in airway remodeling in asthma using
experimental animals. Of great interest, the role of estrogen
and its receptors, alpha, and beta, have been documented. The
importance of both receptors was seen in lung maturation and
the size of alveoli, but the beta estrogen receptor was found to
contribute to a larger extent than the alpha in lung elasticity. The
effect was more pronounced in male vs. female mice knockout
for the beta estrogen receptor (49). In addition, gonadectomized
ovalbumin-asthma-inducedmice showed a significant increase in
infiltration of eosinophils, lymphocytes, and some interleukins
in their airway compared to control mice. Dimitropolou et al.
also demonstrated the role of estrogen in mouse isolated trachea
rings sensitized with serum from asthma and healthy patient (96).
Contraction occurred in the trachea ring sensitized by asthmatic
serum when carbachol was added but when the same sample
was pretreated with estrogen, the contraction was abolished.
The authors concluded that the estrogen beta receptor was
activated, decreasing the contraction through the stimulation of
potassium channels. Other researchers reported sex differences
in airway remodeling and attributed the effects to sex hormones.
In one study by Riffo-Vasquez et al. female mice that have
undergone ovariectomy before being sensitized with ovalbumin
showed a reduction in IL-5 levels, eosinophil infiltration, and
hyperresponsiveness to methacholine compared to control mice
(97). Similarly, Takeda et al. reported a reduction in eosinophil
counts, production of serum IgE and hypersensitivity of the
airway in ovariectomized mice challenged with ovalbumin or
house dust mites (98). Also, in ovalbumin-sensitized females, an
increase in airway hyperresponsiveness was observed with no
effect on inflammation of the airway after the activation of the
alpha estrogen receptor (99).

The role of progesterone and its receptors on airway
remodeling in asthma has not been widely studied in
experimental animals. Administration of progesterone

contraceptives to females in an influenza A mouse model
helped to enhance lung function and the repair of the damaged
epithelium caused by the infection and inflammation (100). In
contrast, Hellings et al. rather reported a worsened airway disease
in mice following the exogenous administration of progesterone
as it led to an increase in infiltration of eosinophils to the airway
and hyperresponsiveness of the airway (101). In type 2 helper
cell-mediated immune responses, progesterone stimulates the
production of some proinflammatory cytokines (102). This study
also confirmed that the female sex hormones play important
roles in airway remodeling in asthma.

Male sex hormones have been also documented to play
a role in inflammation of the airway mediated by type 2
cells in animal studies. A study by Yu et al. investigated
the role of male sex hormones and their derivatives on
airway remodeling in asthma (103). By adding DHEA
(dehydroepiandrosterone) to the diet of house dust mite
sensitized mice, they observed a significant increase in the
resulting airway inflammation and infiltration of eosinophils and
interleukins into the airway compared to mice eating normal
chow, though there was no change in the immunoglobulin E
level of both groups (103). The study did not consider sex as a
biological variable.

SEX DIFFERENCES IN BIOMARKERS OF
TYPE 2 INFLAMMATION IN ASTHMA

Sex differences in biomarkers of type 2 inflammation expressed in
asthma have been widely investigated (Table 2). Clinical studies
have reported sex differences in asthma control by measuring
such inflammatory biomarkers, blood eosinophils, exhaled nitric
oxide, and serum E levels, and indicated a significantly high
symptom control in males compared to the females in the same
age group (104, 110). Other researchers found no differences
in C-reactive protein in asthma (108). In animal studies of
ovalbumin-induced asthma, infiltration of eosinophils, as well
as the concentration of serum immunoglobulin E (IgE) and
IL-3., were found to be increased in the lungs of female mice
when compared to males (98, 111). Similarly, in studies where
sex differences in airway-remodeling were hypothesized, the
serum concentration of IgE was found to be increased in the
female vs. male lungs in two different asthma models used
(ovalbumin challenge and house mite dust exposure) (109).
The responsiveness of the airway to methacholine was also
higher in females than in males. Card et al. also observed that
male mice displayed higher airway hyperresponsiveness during
methacholine challenge than females (112). This study is one
of very few whose observations reflect that male lungs are
more affected by asthma than females. The studies of Melgert
et al. (26) and Okuyama et al. (113) support the fact that
females are more susceptible to airway inflammation caused by
ovalbumin challenge than males (26, 113). Both studies observed
an increase in airway hyperresponsiveness, eosinophil, T, and
B cell counts, and level of cytokines in female vs. male mice
challenged with ovalbumin. Moreover, Treg cells (known for
their vital role in the prevention of inflammation in allergy)
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TABLE 2 | Sex-difference in biomarkers of type 2 inflammation: comparing male

and female responses.

Type 2 Inflammatory markers Responses in

Females (vs. Males)

References

Infiltration of eosinophils Increased (26, 104)

(105)

Expression of interleukins Increased (105–107)

Group 2 innate lymphoid cell count Increased (14)

T-helper cells (type 2) Increased (55)

Extracellular matrix Decreased (55)

Platelet cells activities Decreased (57)

Smooth Muscle Contraction Decreased (43)

Expression of inflammation genes Increased (72)

Micro ciliary apparatus activity Decreased (104)

Exhaled Nitric oxide Increased (104)

Serum Immunoglobulin E levels Increased (108)

C-reactive Protein No

significant difference

(26, 109)

Responsiveness of the lugs to

methacholine

Increased (26)

were found lower levels in the lungs of female mice compared
to males (26).

The recently discovered type 2 innate lymphoid cells (ILCs)
have been reported to increase in peripheral blood (114, 115)
and sputum (116) of patients with asthma. They are known
to mediate allergy responses in the lungs (117–119). This
was further substantiated by a study reporting an increase in
circulating type 2 ILCs counts in women compared with men in a
population with moderate to severe asthma (105), where 5-alpha
DHT decreased these cell counts and expression of IL-5 and IL-
13, both involved airway inflammation and hyperresponsiveness
(117). These type 2 ILCs have an inflammatory subset that is
found in the lungs and can move in the different mucous-
producing sites during airway remodeling in asthma (120). One
of the major roles of these cells is the expression of GATA
binding protein 3 and inflammatory cytokines. In the lungs, the
transformation of precursor ILCs to type 2 ILCs depends on the
GATA binding protein 3. Interestingly, these cells are found to be
more numerous in females than males (121). The inflammatory
subset of type 2 ILCs activates the lectin receptor G1 (116), which
is also higher in females. This special subset of type 2 ILCs is
known for its role in cytokine production, and it also increases in
number with age. To explain the sex difference observed, studies
in gonadectomized and estrogen alpha knock-out mice showed
that male sex hormones, but not female hormones, regulate the
proliferation and function of type 2 ILCs (121). This agrees with
the findings of Warren et al. who observed an increase in IL-
33 production by type 2 ILCs in female vs. male mice sensitized
with ovalbumin (106). Moreover, Laffont et al. showed that the
androgen receptor signaling reduced type 2 ILCs proliferation
(122). They also observed a sex disparity in the lymphoid cell
counts, which was abolished, and type 2 mediated inflammation
restored, after orchiectomy.

SEX DIFFERENCES IN THE ASSOCIATION
OF ENVIRONMENTAL, OCCUPATIONAL,
AND SOCIAL FACTORS WITH ASTHMA

Several epidemiological studies have attributed the sex
differences in airway remodeling in asthma to environmental,
occupational, and social factors. Hence, it is important to
distinguish sex as a biological factor vs. gender as a social
construct in these analyses (123). Female gender and tobacco
smoke have been greatly associated with severe refractory
asthma (124).

Occupational factors have also been implicated in the
observed sex differences of airway remodeling in asthma.
Gendered roles and changes in occupations traditionally
performed by men or women can influence asthma development
(125). Recently, females were reported to work in highly polluted
places like hospitals, homes, and schools, and thus display a
higher frequency of work-related asthma was observed in females
than in males (126). Interestingly, women are also known to have
more pets at home (127), and are negatively affected by secondary
exposure to tobacco smoke (127) than men.

Another factor potentially contributing to sex differences in
asthma is exercise (128). While a few studies have documented
sex differences in immune cell counts (129–131), plasma cytokine
levels (129, 131), and lymphocyte apoptosis (132) with different
kinds of exercise, others reported no differences, particularly in
treadmill running, bicycle, and strength training (133–135). In
women, a few studies have linked immune response changes
during exercise to the menstrual cycle. For instance, a study
in cyclists observed an alteration in leukocytes and cytokine
expression in female cyclists during the menstrual phase (134).
Others found that regulation of inflammatory genes depends
on the time and duration of exercise during the menstrual
phase in females (136). In this context, female athletes were
found to exhibit severe exercise-induced bronchoconstriction
in the luteal phase of the cycle (137). A potential mechanism
for this involves differential expression of pro-inflammatory
genes. Northoff et al. found that proinflammatory genes are
upregulated in the follicular phase, while anti-inflammatory
genes are downregulated in the luteal phase in females compared
with males (136). Women in the mid-luteal phase also display
worsened lung function and exacerbated bronchoconstriction
induced by exercise (138). These changes in the mid-luteal phase
were associated with an increase in progesterone levels, although
the exact mechanism remains unknown (137).

OBESITY, BODY MASS INDEX, AND SEX
DIFFERENCES IN ASTHMA

Obesity, body mass index, and serum IgE have been associated
with asthma across the life span (139, 140). A study in a
mixed population of smokers without any respiratory disorders
showed a strong association between fat distribution and normal
lung function (141). Other studies have shown sex specific
associations, including a strong association between new asthma
symptoms and high body mass index only in females (142, 143),
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and a higher prevalence of obesity in women with vs. without
asthma (124, 144). In a study of 4,197 asthma patients from the
2012 National Health Interview Survey, a positive association of
obesity and body mass index with asthma (overall and allergic)
was found (145). The authors also reported that the association
of class III obesity (BMI≥40) and asthma was stronger in
women. Similarly, epidemiological studies have shown that
asthma occurring with obesity (also known as “obesity-associated
asthma) is more difficult to treat, more severe, and more
prevalent in women (146–148). Finally, mouse models of asthma
have also shown that high fat diet and the consequent weight
gain contribute to the progression of allergic asthma with females
displaying airway remodeling phenotypes at earlier stages than
males (149, 150).

The interaction between genetics and environmental factors
has also been documented as a contributing aspect in
females with asthma and obesity (127, 151, 152), or males
(153, 154). However, some studies have reported that the
association between asthma and obesity is not gender-based
(155). Though this association has been an issue of debate
among many researchers (156–158) there is a need to determine
the physiological parameters and hormonal influences on
airway remodeling and asthma. As indicated earlier, leptin
levels correlate with body mass index (92, 159), and human
adipose tissue expresses inflammatory cytokines (87, 160). The
mechanism through which obesity is linked to asthma has not
been fully understood as very few or no animal studies have been
carried out in this area.

INFLUENCE OF THE GENETIC
FRAMEWORK IN SEX DIFFERENCES IN
AIRWAY REMODELING IN ASTHMA

There is a paucity of data concerning the influence of genetic
framework and pathways on sex differences in airway remodeling
in asthma. The genomic framework of males and females
with asthma displays numerous differences as described in
Figure 1. Gautam et al. identified differentially expressed genes
(n = 32), as well as both male and female-specific genes
(males = 439; females = 299) (161), of which five are
impaired in the regulation of physiological processes during
asthma. Of these genes, four were male-specific while only one
was female-specific (161). They discovered that the majority
of these genes were found in the airway epithelium. The
four genes specific to the males included FBXL7, ITPR3,
RAD51B, and ALOX15; three of them were found in the
airway epithelial tissue, while only ALOX15 was found in
the blood. All these genes are upregulated in asthma except
RAD51B. The only gene that was specific to the female is
HLA_DQA1 (downregulated) and also found in the airway
epithelial tissue.

Some biological pathways influence the sex difference
observed in asthma, and these include HIF- alpha 1 and IL-17
signaling. The HIF- alpha 1 signaling pathway has been mostly
identified in male-specific differentially expressed genes (161).

This pathway is known to play a role in the regulation of pro-
inflammatory cytokines, chemokines in processes of infection
and allergy. However, the role of this pathway in asthma,
and specifically sex differences in airway remodeling has not
been studied. Regarding IL-17 pathways, they have been found
upregulated in females with asthma (161–163), but negatively
correlated with airway hyperresponsiveness to methacholine
(164). This IL-17 signaling pathway is known for its role in
stimulating the cells of the epithelium to produce cytokines
that help to recruit neutrophils to the inflammation site (165).
Excess production of IL-17A has been linked to the risk of
developing severe asthma (166–169). This was substantiated by
the research of Laan et al. where it was reported that stimulation
of the human epithelium with IL-17A led to greater expression
of CXCL8 mRNA, which in turn enhanced neutrophils migration
to the inflammation site. Meanwhile, Busse et al. documented
that IL-17A does not affect the severity of asthma when patients
were treated with brodalumab, a human anti-IL-17 receptor A
monoclonal antibody (170).

Many studies focused on sex differences in asthma after
adolescence identified that changes in DNAmethylation in blood
and lung tissue could play a role in the observed disparities (171–
178). Furthermore, the interaction between sex-specific and sex-
stratified genomes has also been found associated with childhood
asthma (179). In this regard, the 17q12-21-asthma locus was
highlighted to be associated with asthma in both males and
females but was widely significant in females (179). Similarly,
the ligand-dependent nuclear receptor co-repressor-like gene,
located within the regulatory region was highlighted in males
only (179). This gene peculiar to the males only is known to play
a vital role in the determination of height and sperm production.

Asthma risk alleles have also been identified in a genome-
wide interaction study. Four (2q23.3, 2q34, 6q27, and 17213.3)
of these alleles are specific to females, and two (5q31.1 and
10q26.1) are specific to males (180). Some single nucleotide
polymorphisms (SNPs) that are sex-specific and associated with
asthma were discovered in beta 2 adrenergic receptors (181)
and thymic stromal lymphopoietin (TSLP) (182). The beta
2 adrenergic receptor was observed to have genetic variants
that are associated with the development of severe asthma
(181). On other hand, TSLP is a cytokine similar to IL-17
produced by the cells of the epithelium during an allergic
reaction. It is known to be associated with serum IgE in girls.
It is also known to play a crucial role in the regulation of
allergic responses, specifically, airway inflammation in animal
models (183). Recently, this observation was substantiated in
TSLP knockout mouse studies (184, 185). The specific SNPs
discovered in TSLP include rs1837253, associated with the
risk of asthma in males, and r2289276 in females only (182).
Gauderman et al. also identified two other loci, GRIA2 and
TNTRSFIIB associated with gene sex and childhood asthma
using a genome-wide interaction scan in children exposed to
traffic air pollution (186). The influence of sex-interact in the
association between interferon-gamma gene, a protein-coding
gene, and childhood asthma was also reported (187). This study
showed that genotype-sex interactions on asthma were only
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FIGURE 1 | Sex differences in the expression of genes associated with asthma.

significant at rs2069727 and rs2430561interferon gamma SNPs
though the link was not additive. These genes have shown effects
on interferon’s response to bacterial infections and developing
asthma in early childhood (187). Some researchers have argued
that the genotype-sex interaction and asthma were different
in each race. For instance, a gene variant known as KCNMBI
was specifically identified in the African American race and is
known to play a role in the contraction of bronchial smooth
muscle, hence, influencing the pulmonary function (188). This
gene has some other variants, of great interest is the 8,187
allele that was seen to decrease the lung function concerning
low FEV1% recorded; the damaging effect of the allele was
suppressed through an estrogen-mediated upregulation of the
high conductance voltage calcium-potassium channel in animal
experiments (188).

THE ROLE OF EPIGENETIC CHANGES IN
SEX DIFFERENCES IN AIRWAY
REMODELING IN ASTHMA

Epigenetics include changes in the genetic materials that
not affect the DNA sequence (189). These changes are
characterized by methylation of DNA, modification of histones,
and microRNAs (190). Epigenetic changes can be caused
by diet, air pollution exposure, tobacco smoking, and drug
administration, among other factors, and can occur in any
stage of life (190). The external environment is in direct
contact with the lungs, hence epigenetic alterations occur in the
respiratory tract. Associations of epigenetic changes, including
DNA hypermethylation or hypomethylation have been identified
with asthma (191–193). The hypomethylated or hypermethylated
level in specific genes varies depending on the asthma phenotype.
For example, hypermethylation of genes such as ARG1, ARG2
and ADAM33 in buccal cells and bronchial epithelial cells have

been correlated with asthma phenotypes (194, 195). On the
other hand, DNA hypomethylation has been associated with
IL6 and ADAM33 expression in bronchial fibroblasts and the
nasal epithelium (194, 195). As recently reported in a review by
Chowdhury et al. certain CpG sites located in the interferon-
related developmental regulator 1 (IFRD1) gene have been linked
to sex-specific effects in asthma (140). However, there are very
few studies that discussed the issue of sex differences in asthma
associated with epigenetics. One of such research include the
Ascaris exposure that was said to lower lung function and
increase the risk of asthma development at a higher rate in males
than females (196).

SEX-DIFFERENCES IN miRNA
EXPRESSION IN ASTHMA ASND AIRWAY
REMODELING

The major characteristics of asthma are airway remodeling
with evidence of airway inflammation, increased production of
mucus, increased migration of eosinophils to the airway, and
airway hypersensitivity. These processes are highly regulated
by the expression of inflammatory genes. MiRNAs are a class
of small non-coding RNAs that play important roles in gene
expression regulation (197). miRNAs are known to be associated
with many respiratory disorders including asthma (198, 199)
by serving as a biomarker, and mediating interactions among
cells (200–202). There is a paucity of data about the sex-specific
miRNA expression in asthma. However, immune responses have
been known to be sex-specific and miRNAs are said to play a
role in this sex bias as shown in Figure 2. Animal studies of
ozone-induced lung inflammation reported sex differences in
lung miRNA expression (203). In this study, nine sex-specific
miRNAs were found in the ozone-induced inflammation group
(203). Six of the identified miRNAs were greatly expressed
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FIGURE 2 | Sex-specific miRNAs associated with airway inflammation and remodeling.

(upregulated) in males (miR-338, miR-222-3p, miR-130b-3p, let
7i-5p, miR-195a-5p, miR-144-3p) while five were highly expressed
(upregulated) in females (miR-301b-3p, miR-694, miR-669h-3p,
miR-384-5p, miR-9-5p). Only one was downregulated in females
(miR-30d5p). They also noted that there were two miRNAs (miR-
712-5p, miR-106a-5p) that were expressed in both males and
females exposed to ozone but with different patterns by sex. They
suggested the role of hormones in the pattern of expression.
In a study by another group of animals exposed to smoke
in utero, three miRNAs (miR-153-2; miR-196a; miR-184) were
identified in both sexes but they were differentially expressed
only in males during normal lung development (204). Also, using
serum from asthma patients, Kho et al. identified 22 miRNAs
that were associated with lung function, nine of which were
solely expressed in males (miR-139-5p; miR-156-5p, miR-186-5p,
miR-342-3p; miR-374a-5p, miR-409-3p, miR-454-3p, miR-660-5p;
miR-942-5p) while only three were expressed in females (miR-1290;
miR-142-3p; miR-191-5p) (205). In addition, miR-126 was found
to be expressed in both sexes (206). Other researchers have also
identified miRNAs associated with immune system regulation
(207, 208), type 2 immunity (209), regulation of allergic-induced
inflammation in asthma (210), and asthma pathogenesis (211).
The sex-specific expression of these miRNAs suggests their role
in the sex-disparity of airway remodeling in asthma.

CONCLUSION

Asthma is a lung inflammatory disease with clear sex differences
in incidence, prevalence, and severity across the life span. In
both clinical and animal studies, airway remodeling in asthma
is known to be characterized by the alterations in the airway
leading to obstruction of airflow. The prevalence of asthma

suddenly changes at the onset of puberty. Whether this switch is
also reflected in airway remodeling has been an issue of debate
among researchers over many decades. Many scientists have
attributed it to the differences in the structure and functions
of the respiratory system, including the nasal cavity, upper
airway compliance, lung size, alveoli, and the population of
immune system cells in males and females. In great curiosity,
many studies linked these sex disparities to changes in sex
hormones at puberty, since there is usually a great alteration
in the level of these hormones majorly at the onset of puberty.
The role of estrogen, testosterone, and progesterone alongside
their receptors has been well documented to date. Another
hormone implicated in this observation is leptin, although there
is still a paucity of data concerning the mechanisms involved
and the role it plays in airway remodeling in asthma. The sex
differences in biomarkers of type-2-inflammation have also been
reported, many of which were suggested to be protective in
the male respiratory system, suggesting that females are more
susceptible to asthma than males. More recently, researchers
have tried to link the observed sex differences in asthma to
the genomic frameworks of males and females. This led to the
discovery and identification of many sex-specific genes, gene
variants, and miRNAs that are directly linked to lung function,
lung inflammation, and asthma in general, thoughmuch research
is still ongoing in this area. Another major concern is the strong
link between asthma and each of occupational, environmental,
and lifestyle factors that are stronger in females than in males.
Many of these observations were from epidemiological studies,
thus more experimental studies in this area are highly needed
to identify sex-specific mechanisms and pathways involved.
However, it is very important to review lessons learned from both
clinical and animal studies as this helped us identify the gaps
that are needed to be filled to justify the sex difference of airway
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remodeling in asthma. This will help to intensify efforts in such
areas to identify proper sex-specific diagnosis and therapeutic
pathways in the management of asthma.
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