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Airway remodeling is an umbrella term for structural changes in the conducting
airways that occur in chronic inflammatory lung diseases such as asthma or
chronic obstructive pulmonary disease (COPD). The pathobiology of
remodeling involves multiple mesenchymal and lymphoid cell types and
finally leads to a variety of hardly reversible changes such as hyperplasia of
goblet cells, thickening of the reticular basement membrane, deposition of
collagen, peribronchial fibrosis, angiogenesis and hyperplasia of bronchial
smooth muscle cells. In order to develop solutions for prevention or
innovative therapies, these complex processes must be understood in detail
which requires their deconstruction into individual building blocks. In the
present manuscript we therefore focus on the role of the airway epithelium
and introduce Drosophila melanogaster as a model. The simple architecture
of the flies’ airways as well as the lack of adaptive immunity allows to focus
exclusively on the importance of the epithelium for the remodeling
processes. We will review and discuss genetic and environmentally induced
changes in epithelial structures and molecular responses and propose an
integrated framework of research for the future.
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Introduction

Airway wall remodeling is a complex pathology that occurs in different chronic

inflammatory lung diseases such as asthma, chronic obstructive pulmonary disease

(COPD), or bronchopulmonary dysplasia in preterm infants and is ill-responsive to

treatment. These conditions involve lasting but variable changes in epithelial, airway

smooth muscle and vascular cells, the subepithelial reticular basement membrane and

deposition of extracellular matrix proteins each to different degrees. Airway

remodeling has for long been thought to result from the long duration of the disease

and concomitant chronic inflammation and therefore represent an advanced stage of

pathology. This notion is now questioned as basal membrane thickening has been
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described already in infants and preschoolers with wheeze (1, 2)

or childhood asthma (3).

Given the many cell types involved and the difficulty in

reversing airway remodeling with therapeutics, the

deconstruction of complex biological processes into cell-

specific events could help to better understand the

pathophysiology and find new targets for intervention.

Following this reductionist approach, this review will focus on

the airway epithelium which constitutes more than just an

interface between the internal and the external environment.

Epithelial cells serve as first line of defense against airborne

pathogens, physical and chemical damage (4–6). Besides their

function as cellular barrier, they provide mucociliary clearance

of the lung and are involved in immune response by releasing

pro- and anti-inflammatory mediators (6–9).

Structurally, mammalian airways are lined by

pseudostratified columnar ciliated epithelium which is

composed of a variety of distinct cell types (Figure 1D),

including basal cells, ciliated cells, club cells and goblet cells

(10–13) and rarer populations such as tuft cells and

ionocytes (14–16). Basal cells serve as progenitors which

differentiate into other cell types, club cells secrete

surfactants, goblet cells secrete mucous and together with

the ciliated cells drive the mucociliary clearance (10, 11). In

addition to these resident cells, a variety of other cells such

as macrophages, mast cells, and dendritic cells, migrate and

reside within the epithelium (17).

The maintenance of epithelial integrity is crucial for lung

homeostasis and cell signaling, whereas the destruction of the

epithelial barrier not only alters the normal function of

epithelial cells but also has important implications for

development and progression of chronic respiratory diseases

such as COPD and asthma (4, 18, 19). Thus, alterations in

the airway epithelial architecture and function are associated

with transcriptional (20, 21) and epigenetic (22–24)

reprogramming of epithelial cells (25–28). For instance,

smoking induces transcriptional reprogramming of the airway

epithelial apical junctional complex architecture thus

disrupting epithelial barrier and increasing epithelial

permeability (21). Moreover, smoking induces transcriptional

upregulation of tuft-like cells and mucin producing cells and a

decrease in ionocytes (29). These changes in gene regulation

lead to goblet cells hyperplasia, reduce mucociliary clearance,

trigger thickening of the basal lamina, smooth muscle

hypertrophy and epithelial disruption (30, 31). Along with

these changes, the epithelium becomes more permeable,

allowing the entry of pathogens into the airway submucosa

(31, 32). In order to restore homeostasis and barrier integrity,

the respiratory epithelium initiates repair processes

immediately after injury. However, repetitive injuries of the

airway epithelium can finally compromise the normal repair

mechanisms thus inducing inflammation associated with

asthma and COPD (33, 34).
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The exact mechanisms leading to such persistent epithelial

changes are still unknown. Human data on dysregulated

epithelial repair is observational and does not allow the study

of the underlying mechanisms and the prospective clinical

relevance (26, 35, 36). Therefore, animal models which will

recapitulate the pathophysiology of the disease and hence

allow the development of new therapy are highly

instrumental. A variety of animal models, such as mice, rats,

guinea pigs, sheep, and cats, have been introduced to reflect

airway disruption, where mice are the most common

mammals used (37–44). Alterations in lung development

upon exposure to allergens like house dust mite (HDM) and

ozone have been investigated in rhesus macaques, where

alveoli number was not only significantly increased compared

to filtered air exposed animals but also their capillary densities

have been higher. This provided insights into early postnatal

events in lung parenchyma very similar to humans (45).

Chronic exposure to allergens like HDM and Aspergillus

fumigatus are now used to mimic airway remodeling in the

context of allergic airway inflammation in murine model (46–

49). Investigating A. fumigatus-induced airway remodeling led

to the assumption that the asthmatic milieu provides optimal

growth conditions for the fungus, whereby from A. fumigatus

produced allergens and metabolic by-products could possibly

destroy the integrity of the epithelium during germination

Mimicking airway remodeling in murine models therefore

may provide insight into the interactions of this fungus with

the epithelium, but cannot provide information about the

function of individual cell types in the epithelium during

fungal infection (49). To mimic not only airway but also

vascular remodeling in asthma, mice were sensitized with

ovalbumin (OVA) leading to development of an IgE-mediated

hyper-reactive airway disease. Yet it remains unclear how

individual cell types react to OVA treatment (50). Similarly,

COPD mouse models have evolved where cigarette smoke or

lipopolysaccharide (LPS) have been used to mimic airway

inflammation and destruction (51–53). Although mouse

models used have provided useful insights into the

development of airway remodeling, a deeper understanding of

the pathogenesis of airway remodeling in asthma and COPD

is complicated by the heterogeneity of the tissue units forming

the airways that are involved in this process (18, 26).

While the mammalian airway epithelium consists of

different cell types such as goblet, multi-ciliated, club, basal

and neuroendocrine cells, Drosophila airways are composed of

a single layer of uniformly arranged epithelial cells,

highlighting the simplicity of the model (54, 55). Therefore, to

improve our insight into airway epithelial barrier dysfunction

in the pathogenesis of asthma and COPD, it is important to

study the normal function and architecture of solely the

airway epithelium. Thus, a simple model such as fruit fly

Drosophila melanogaster would be ideal to study molecular

changes behind the pathogenesis leading to airway remodeling.
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To understand and therefore enable the development of

innovative solutions for prevention and therapies, the complex

mechanisms contributing to disease development must be

understood in detail. This requires dismantling of the

complex processes into fundamental building blocks.

Therefore, it might be advantageous to use less complex

model systems such as the fruit fly D. melanogaster. The

simplicity of this model is also evident in the immune system.

Fruit flies, compared to more complex models such as mice

or rats, lack an adaptive immune system. Therefore, their

immune defense relies completely on innate immune

reactions (55–57). Similar to humans, the epithelial cells of

the fly form an important barrier to harmful environmental

influences, which makes this model very attractive for

studying the pathobiology of airway remodeling (55).

In the current review, we will therefore focus on the airway

epithelium of D. melanogaster as a model system that exhibits a

promising potential for studying the mechanisms implicated in

airway remodeling. We will review and discuss genetic and

environmentally induced changes in the epithelial structures

as well as the molecular responses and propose an integrated

framework of research for the future.
The tracheal system of Drosophila
melanogaster and its use in studying
remodeling processes

The respiratory organ of the fruit fly D. melanogaster is the

tracheal system, which is a network of epithelial tubules. This

network transports gases from the respiratory openings,

termed spiracles, which connect the system to the outside, to

the tissues and organs via tracheal branches ramifying

through the body.

The branching pattern of the tracheal system during the

development is complex, but highly conserved and displays

segmental repetition as well as bilateral symmetry (58).

During the early embryonic development a tracheal sac forms

in each segment by invagination of tracheal precursor cells

(59) (Figure 1A). As the trachea is invaginated, the

progenitor cells of the trachea undergo their final cell division,

giving rise to the approximately 80 cells of the tracheal sac

(59, 61). In each segment, the whole tracheal system is

formed from these 80 cells, which means that no further cell

division or cell death occurs (61). Thus, the tubular system is

built by cell migration as well as changes in cell size, shape

and intercellular contacts (59, 61). One of the main regulators

of tracheal cell identity is the transcription factor Trachealess

(trh), which is expressed in all tracheal cells (62, 63). Without

trh tracheal development is severely compromised (62, 63)

since trh controls a number of other tracheal genes, including

breathless (btl) and rhomboid (rho) (62, 63). While rho is

important for the activation of the epidermal growth factor
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(EGF) signaling pathway, which initiates local cell movements

(64), btl encodes the homologue of mammalian fibroblast

growth factor (FGF) receptor, which enables tracheal cell

migration led by FGF signaling as chemoattractant (59).

Recently it was shown, that impaired FGF- signaling is

strongly associated with reduced growth (65). The knockdown

of btl significantly reduced terminal branching as well as the

total length of tracheae, resulting in hypoxic conditions of

tissues. Further, the tracheal knockdown of btl led to an

altered expression and reduced secretion of Drosophila

insulin-like peptides 2, -3, and -5 from the insulin producing

cells, which finally resulted in an insulin-driven reduced

systemic growth rate (65). The data suggest the fat-body as

the central organ for integration of hypoxia and amino-acid

sensing as well as insulin regulation, thus supporting the

concept of the tracheal system being part of a size-assessment

mechanism. Similar mechanisms are operative in humans, as

EGF was shown to be implicated in the development of

airway remodeling of wheezing infants (66) and FGF signaling

is linked to airway remodeling during early-life rhinovirus

infection of children (67).

From the tracheal sac, six primary branches (Figure 1A)

arise by migration of small groups of tracheal cells, which

organize themselves into tubes (61). In a first step, these cells

form tubes with a 2-cell diameter thereby forming primary

branches (Figure 1A). In the second stage of primary branch

formation, the cells elongate and rearrange from a side-by-

side to an end-to-end localization (61) (Figure 1A), resulting

in unicellular tubes (68). The primary branches that form the

dorsal trunk do not undergo the second step but remain

clustered, forming multicellular tubules (68), while they fuse

with the branches in neighboring segments (61).

All other primary branches, not forming the dorsal trunk,

give rise to secondary branches. Most secondary branches

form at the end of primary branches, and only few arise at

defined internal positions. Each secondary branch is formed

by a single tracheal cell (61), generating a tube by building

autocellular junctions along its length (59). These cells also

shape the third type of tracheal tubes, the tracheal terminal

branches or tracheoles, by growing cytoplasmic extensions

along the surfaces of target tissues and subsequently forming

intracellular lumen (59, 61, 68) (Figure 1A). The process of

terminal branching continues during larval life, resulting in

terminal cells with complex branched structures and dozens

of terminal branches (59). The number of terminal branches

is not limited but rather driven by oxygen availability (58).

More terminal branches are produced under hypoxic

conditions. It could be shown that long-term developmental

response to hypoxia is at least partly induced by the

activation of nitric oxide synthase and the production of nitric

oxide (69). The sprouting of new terminal branches under

hypoxia is mediated by branchless (bnl) FGF signaling (65,

70), which is induced by the accumulation of Drosophila HIF-
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FIGURE 1

Tracheal system of Drosophila melanogaster. (A) Tracheal development begins with the formation of a tracheal sac in each segment (schematic
drawing on the left). From the tracheal sac, six primary branches, namely dorsal branch (db), dorsal trunk anterior (dta), dorsal trunk posterior
(dtp), visceral branch (vb), lateral trunk anterior (lta), and lateral trunk posterior (ltp) arise by migration of small groups of tracheal cells, which
organize themselves into tubes. During ongoing primary branch formation the cells rearrange from an side-by-side to an end-to-end localization
(shown in the enlargements). From the primary branches, secondary branches arise, which generate the fine terminal branches by growing of
cytoplasmic extensions. Figure adapted from (60). (B) Dorsal view of an L3 larvae. The two dorsal trunks connect the anterior spiracle and the
posterior spiracle, while primary branches are branching off in a stereotyped manner, building the typical tracheal ramifications. (C) Cross-section
of a trachea. The tube is built of a single epithelial cell, surrounding the air conducting space. On the basal side of the cell a basal lamina can be
found, while on the apical side a cuticle is secreted by the epithelium which forms taenidial folds, projecting into the lumen. (D) Stages of
human lung development: Embryonic (formation of lung bud major airways, epithelium with progenitor cells), Pseudoglandular (formation of
bronchioles, columnar cells), Canalicular (formation of distal airways and branching, differentiation of ciliated cell), Saccular (expansion of
airspace, basal and goblet cells) and Alveolarization (alveolar cells type 1 and 2). Parts of the figure was created with BioRender.com.
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α homolog Sima that leads to the enhanced expression of btl

(71). Secondary and tertiary branching seem to be dependent

on the expression of hindsight (hnt), a nuclear-zinc finger

protein which possibly acts as a transcription factor to

maintain epithelial integrity and initiate differentiation of the

cuticle to form taenidial folds (72). While primary branching
Frontiers in Allergy 04
occurs normally, hnt-mutants show loss of epithelial

organization accompanied by failure of secondary and tertiary

branching, as well as loss of taenidial folds of the inner cuticle

during the late embryogenesis, suggesting hnt to be a key

factor for tracheal development during this developmental

stage (72).
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In the larvae the two dorsal trunks form the main tubes,

connecting the anterior spiracle in the first thoracic segment

to the posterior spiracle in abdominal segment 8 and thereby

linking the metameric units (58) (Figure 1B). From the

dorsal trunks primary branches are branching off in a

stereotyped manner. Each branch migrates towards its target

tissue (68). The inner primary branches are short and proceed

dorsally, while the outer primary branches form a consistent

lateral trunk, running a jagged course from segment to

segment. Transverse connectives interconnect the dorsal and

lateral trunk in each metamere (58).

During metamorphosis the tracheal system undergoes

drastic reconstructions, to first form the pupal and then the

adult tracheal system. Like in larvae, the adult tracheal system

is stereotyped, with the fine terminal branches being variable

in response to the requirements of target tissues (58).

Histologically each respiratory branch consists of one layer

of epithelium encompassing the air conducting space. The

oxygen is transported through the epithelium to reach target

organs and tissues. On the basal side, the epithelium is

covered by a basal lamina. The apical (luminal) surface of

the epithelium is surrounded by an extracellular matrix, the

cuticle, which is secreted by all epithelial cells. The cuticle

forms taenidial folds projecting into the lumen, which help

to prevent the collapse of the tracheal branches (58)

(Figure 1C). The correct composition of the cuticle is

essential for tracheal development and the function of

epithelia (73). Recently, it was shown that the scavenger

receptor class B Debris buster (Dsb) is a key player for

sorting critical components of the cuticle enabling airway

functionality (74). The airways of Dsb mutants were strongly

affected, especially the dorsal trunk elongation was

disrupted, finally even leading to breaks in the dorsal trunk

of older larvae (74). Unsurprisingly, those larvae died from

hypoxia. This is just one example, underlying the

importance of the integrity of the cuticle for the proper

functioning of the epithelium.

Since the branching pattern of the tracheal system during

development and larval life is highly conserved, the integrity

or remodeling of it can be used as an indicator for the

molecular role of certain risk genes for airway diseases

during development, or to assess the influence of air-born

stressors. For example, it could be shown that animals with

overexpression of the asthma risk gene Orosomucoid-like

(ORMDL) in the airways developed significantly fewer and

shorter terminal branches, than control animals, leading to a

reduced respiratory surface (75). These animals reacted

strongly to the confrontation with hypoxia, and nuclear

translocation of sima could be studied even in normoxia

(75), indicating that terminal sprouting mechanism (71)

might have been activated in these animals. Transcriptome

analysis of the tracheae of ORMDL knock-down and

overexpression animals revealed downregulation of several
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components of the epidermal growth factor receptor (EGFR)

pathway, which is not only associated with a compromised

epithelial barrier during severe asthma (32) but also crucial

for the fate of the airway epithelium (64). In order to

investigate the influence of e-cigarette vapor on the

offspring, adult flies were exposed to e-nicotine (76). The

offspring of these flies showed morphological changes of the

trachea, which were significantly reduced in length. In a

smoke induced Drosophila-COPD model, structural changes

of the airway system, induced by cigarette smoke exposure,

were characterized (77). The animals had a reduced

respiratory surface, caused by the reduction of secondary

and tertiary branches in length and number. Moreover,

RNASeq analysis of isolated airway epithelia revealed

regulation of genes involved in the response to xenobiotics

and reactive oxygen species (ROS), as well as glutathione

metabolism. Other signaling pathways were associated with

stress responses and repair mechanisms. All noticeable

altered expressed genes were related to COPD and disease

progression, underlining Drosophila as a valuable model to

study chronic lung diseases (77).

These examples underline that the characterization of

structural and molecular changes in the airway epithelium of

Drosophila can perfectly be used to identify and investigate

the effects of key players in respiratory disease development.

In addition, the simple structure of the airways with its

single-layered epithelium allows studying the immunologic

mechanisms of respiratory epithelium, which are often

involved in respiratory disease development. It has to be kept

in mind that, despite this seemingly very simple organization

the airway epithelium of flies has to cope with exactly the

same problems and challenges as is the case for the human

airway epithelium. In the latter case, these different tasks are

performed by different cell types. There are first indications

that the complexity of the cells of the Drosophila airway

epithelium is far greater than assumed earlier (78) and that,

in particular, tasks such as mucin secretion can also be

performed by normal airway epithelial cells in Drosophila. It

should also be noted that the biology of airway epithelial

precursor cells is excellently reproduced in the Drosophila

system (79). It follows that the functional performance of the

Drosophila airway epithelium is not too far from that of the

human epithelium and that these performances are, however,

partly provided by different cell types.
Organization of the insect tracheal
immune system

Respiratory organs, whether they are the lungs of vertebrates

or tracheae of insects, serve as ports of entry for microbes (80–

82). Their large surface area is covered by a very thin epithelial

layer, both of which are necessary for effective gas exchange and
frontiersin.org
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as such represent a more or less fixed structure. Therefore,

respiratory systems had to develop very efficient local immune

responses to prevent penetration of the fragile epithelial

barrier by viruses, bacteria, fungi, or other parasites. Innate

epithelial immune responses accordingly play a central role,

particularly in invertebrates and basal vertebrates that rely

solely on such systems. The response to bacteria that invade

airway systems is more complex than previously anticipated

because the host microbiota in healthy lungs must be

tolerated by the host immune system (83, 84); however, for

insects, it is unknown up to now whether the tracheal system

of insects harbors an indigenous microbiota.

In insects, epithelial and systemic innate immunity function

differently. The systemic immune system recognizes pathogen-

associated patterns (PAMPs) via two parallel signaling

pathways: the Toll-like receptor and immune deficiency

(IMD) pathways. Although both signaling pathways activate

NF-κB factors, in epithelial tissues, Toll-signaling is usually

not operative such that epithelial immunity mainly depends

on the IMD pathway (85–88). In contrast to systemic

immunity, the innate immune system of the epithelium is

multifaceted and includes both physical and chemical barriers.

To create an efficient physical barrier, major tasks are

performed by different components working together. In the

vertebrate respiratory system these include (i) effective

filtration systems that prevent inhalation of larger particles;

(ii) a sophisticated mucus layer that intercepts inhaled

microorganisms; and (iii) effective anterograde transport of

this mucus layer to remove trapped particles and

microorganisms (89). Comparable mechanisms are operative

in the insect tracheal system. Presumably, the following are of

greatest relevance with respect to physical barrier function: (i)

a sophisticated filter system that prevents entry of particles

into the tracheal system (90); and (ii) an inner chitinous layer

that protects airway epithelial cells to ensure the physical

stability of the entire system (90, 91). It is not known whether

the insect tracheal system possesses an anterograde transport

system that enables the removal of inhaled particles. Thus,

most potential airborne infections are likely to be prevented

by these exquisite physical barriers within the tracheal system.

Once a microorganism manages to enter the tracheal system,

the next step is invasion through the epithelial barrier; this

process triggers an effective, locally acting immune response

(92, 93) which is mainly based on antimicrobial peptides

(AMPs) that are produced and released locally by

immunocompetent airway epithelial cells. As mentioned

earlier, this highly potent antimicrobial response is mediated

mainly via the IMD pathway (55, 92, 93) (Figure 2).

The most important PAMP sensors that operate in the

airway epithelium are the peptidoglycan recognition receptors

PGRP-LC and PGRP-LE, which interact with IMD to activate

the NF-κB factor Relish. PGRP-LC recognizes diaminopimelic

acid-type peptidoglycans (DAP-type) at the membrane,
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whereas PGRP-LE responds to smaller pattern molecules that

occur intracellularly. Moreover, an additional membrane-

associated PGRP (PGRP-LA) influences the local immune

response as a positive regulator of the IMD pathway (94).

Activation of Relish, which occurs in response to activation of

the IMD pathway, launches a highly potent antimicrobial

response that is mediated primarily by AMP-encoding genes

(Figure 2). Although canonical Toll signaling is not operative

in the insect trachea, two Toll receptor genes, 18-wheeler and

Tollo, are present at high levels in this tissue (55). Tollo does

not form part of the antimicrobial response system in the

trachea, although surprisingly, activation of this signaling

system inhibits the IMD pathway (95). Moreover, Tollo

couples not to MyD88 but to Ect4/SARM, thereby interfering

with IMD-pathway signaling. Apparently, Tollo-dependent

inhibition of IMD signaling is required to dampen the

antimicrobial signature induced in response to IMD-pathway

activation. If not regulated by this inhibitory input, activation

of IMD might cause tissue damage due to unhindered

immune effector activity. It is not clear whether this amounts

to constitutive inhibition of epithelial immunity, or whether it

is a tightly regulated brake (95).

In summary, it can be concluded that the epithelial immune

system of the respiratory tract of Drosophila is a

phylogenetically primordial module that is active in a similar

form in the epithelia of mammals and thus also in the

epithelia of humans. The explicit omission of adaptive

immunity is given and cannot be disregarded. However, this

apparent deficiency opens up a direct view of epithelial

immunity and its importance for the orchestration of

pathological processes without being obscured by complex

feedback systems and mutual influences.
Immune activity induced airway
remodeling

In murine models as well as in human asthma patients, NF-κB

dependent processes occurring in airway epithelial cells have been

identified to be involved in airway remodeling processes (96, 97).

These studies led to the general idea that epithelial NF-κB is a

hub that connects immune responses with airway remodeling

(98, 99). Recently, an immune-induced remodeling phenotype of

the airway was characterized in Drosophila (100). Here,

activation of the IMD-pathway, which is the equivalent of the

TNF-α-pathway, led to substantial airway remodeling comprising

thickening of the airway epithelium, irregular cell-cell junctions,

and impairments of the air-conducting lumen. A detailed

analysis revealed that these remodeling phenotypes could

unexpectedly be attributed to NF-κB activation to a relatively

small proportion. Instead, an alternative signaling pathway is

operative. Here, IMD-pathway signaling at the level of Tak1

realizes a branch to the c-Jun N-terminal kinases (JNK) pathway,
frontiersin.org
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FIGURE 2

IMD pathway. The immune deficiency pathway can be activated by membrane bound pattern recognition receptor PGRP-LC or soluble intra- and
extracellular receptor PGRP-LE. The activation of the pathway finally leads to the phosphorylation and cleavage of the transcription factor relish
(Rel68/Rel49). The expression of antimicrobial peptides is activated by translocation of Rel68 into the nucleus. Figure was created with
BioRender.com.
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which then leads to its activation and which is also responsible for

the vast majority of the structural remodeling of the Drosophila

airways in response to epithelial immune activation (100). This

dual role of Tak1 had been described as a physical link between

immune and stress signaling pathways (101). Moreover,

activation of the JNK pathway is also known as a mechanism to

induce remodeling processes in chronic airway disease models

(102, 103). Thus, we see similar mechanisms between different

lung disease models with respect to the mechanisms underlying

remodeling processes. In Drosophila it was shown that activation

of the epithelial JNK pathway, in turn, leads to the activation of

the transcription factor Forkhead box O (FoxO), which is

responsible for the observed structural changes of the airway

epithelium (100). In this way, this important immune signaling

pathway of airway epithelia controls both the activation of

classical immune responses and the processes leading to
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structural changes. However, the latter only occurs in the case of

chronic, long-lasting activation of these signaling pathways and

thus represents a reaction to being classified as pathological,

which can also be observed in various chronic diseases of the

airways (104). FoxO factors are of particular interest in this

context because, in addition to coordinating these structural

changes, they themselves show an important function in the

context of the immune response, which has been shown for

different epithelia (105–107). Moreover, FoxO factors have

recently been shown to be of central importance for the

pathogenesis of different chronic lung diseases such as idiopathic

pulmonary fibrosis and pulmonary hypertension (108, 109).

Thus, the Drosophila model of immune- and stress-induced

airway remodeling connects the different studies on remodeling

processes, as it delivers a comprehensive understanding of the

underlying molecular mechanisms.
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FIGURE 3

Future directions. The airway epithelium of D. melanogaster offers a great tool for the investment of conserved pathways and target genes. On that
basis, findings can be investigated in mammalian models, such as knock-down (KD) and knock-in (KI) models or disease models. On the other hand,
findings can be transferred to in vitro models using human cell culture systems, histological slices, organoids or organ-on-a-chip approaches.
Figure was created with BioRender.com.
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Limitations of the model

Although we are fully convinced of the many outstanding

benefits of the Drosophila model for the analysis of airway

remodeling, the limitations of this model should also always

be considered. First of all, one always has to keep in mind

that flies are not humans, but the same applies to the

statement that mice are not humans. This means that there

are always differences between animal models and the patient

situation. In the case of Drosophila, it is (1) the lack of

adaptive immunity, (2) the much simpler structured airway

epithelium, as well as (3) the also much simpler subepithelial

structures, which must be particularly considered here. On the

one hand, this means that especially those processes that

depend on adaptive immunity, that are purely directed to cell

subtypes of the airway epithelium and that focus on the role

of subepithelial structures are not optimally represented in the

Drosophila system. It should be noted, however, that the

anticipated simplicity of the Drosophila airway epithelium is

probably not that simple and that processes such as secretion

of mucins could very well be studied in this system. However,

if one is aware of these limitations, the full strength of the
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model unfolds, in which indeed the outstanding importance

of the epithelium can be focused on.
Future directions

Understanding the developmental pathways and

immunological processes involved in airway remodeling is

essential for the development of new therapeutic and/or

preventive approaches. For obvious ethical reasons, it is

extremely difficult to study early insults in infant lung tissue.

In addition, the long life-span of humans makes the follow-

up of such events very challenging. Even in mice it is

demanding to study the effects of early insults on lung and

organismal performance later in life. Therefore, D.

melanogaster, because of its comparatively short life-cycle of

approximately 2 weeks and a maximal lifespan of 2–3

months, provides a powerful tool to study the early stages of

airway remodeling and its consequences for the development

of new therapeutic and/or preventive approaches. On the

more, about 75% of human disease genes have homologs in

D. melanogaster (110).
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Thus, the highly conserved epithelial signaling pathways

identified in the fly can be prioritized for further mechanistic

studies in the interplay with more complex cell assemblies of

the airways of mammalian models. In parallel, such pathways

can be tested in human culture systems with progressively

higher levels of complexity, providing information to what

extent these findings are transferable to humans.

These culture systems range from simple air-liquid interface

cultures that, unlike flies, reflect the full spectrum of epithelial

cell types, to precision-cut lung slides that additionally exhibit

subepithelial structures, to organoid cultures, and finally to

lung-on-a-chip that represent the full physiology of the airway

including ventilation and perfusion (Figure 3).

At the same time the fly is an established tool for screening

large substance libraries to identify novel drugs and treatment

opportunities, which will be validated as described above

before moving to human clinical trials and ultimately

hopefully benefit for patients suffering from airway remodeling.
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