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Extensively hydrolyzed formulas (eHFs) are recommended for the dietary
management of cow’s milk protein allergy (CMPA) in non-exclusively
breastfed infants. Studies show that peptide profiles differ between eHFs.
This short review aims to highlight the variability in peptides and their ability
to influence allergenicity and possibly the induction of tolerance by different
eHFs. The differences between eHFs are determined by the source of the
protein fraction (casein or whey), peptide size-distribution profile and
residual β-lactoglobulin which is the most immunogenic and allergenic
protein in bovine milk for human infants as it is not present in human
breastmilk. These differences occur from the hydrolyzation process which
result in variable IgE reactivity against cow’s milk allergen epitopes by
subjects with CMPA and differences in the Th1, Th2 and pro-inflammatory
cytokine responses elicited. They also have different effects on gut barrier
integrity. Results suggest that one particular eHF-casein had the least
allergenic potential due to its low residual allergenic epitope content and
demonstrated the greatest effect on restoring gut barrier integrity by its
effects on mucin 5AC, occludin and Zona Occludens-1 in human
enterocytes. It also increased the production of the tolerogenic cytokines
Il-10 and IFN-γ. In addition, recent studies documented promising effects of
optional functional ingredients such as pre-, pro- and synbiotics on the
management of cow’s milk allergy and induction of tolerance, in part via the
induction of the production of short chain fatty acids. This review highlights
differences in the residual allergenicity, peptide size distribution, presence of
optional functional ingredients and overall functionality of several well-
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characterized eHFs which can impact the management of CMPA and the ability to
induce immune tolerance to cow’s milk protein.
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Background

The incidence of food allergy among young children has

increased in the last two decades (1). The prevalence of

cow’s milk protein allergy (CMPA) has been reported

between 1.4%–3.8% of infants (1). The prevalence varies due

to the methods used for diagnosis and reporting across

studies. Based on the symptoms and the presence of

immunoglobulin E (IgE), CMPA is conventionally classified

as IgE - mediated allergy, non-IgE mediated allergy, or

mixed (both IgE and non-IgE mediated) (1). The diverse

range of symptoms involving many different organ systems

can further influence the reported prevalence (2). There also

has been an alteration in the natural history of cow’s milk

allergy resulting in a higher risk of persistence into later

childhood (3, 4).

In children with CMPA who cannot be exclusively

breastfed, extensively hydrolyzed milk protein formulas (eHF)

have been advocated as the first choice in the dietary

management of CMPA in many international guidelines

including the recent WAO recommendation (1, 5, 6). In the

situation where partial breastfeeding is provided, it is not

advisable for lactating mothers to have a milk-protein-free

diet (1).

However, not all commercially available eHFs have the

same hydrolyzation process and subsequent peptide profiles

can affect their efficacy for the dietary management of

CMPA (7, 8). Differences among eHFs in efficacy can be due

to differences in the source of the protein fraction (casein

(C) or whey (W)), the peptide size-distribution profile

resulting from the hydrolyzation process, and/or the

presence of other functional ingredients such as probiotics,

prebiotics, and Long-Chain Poly-Unsaturated Fatty Acids

(LCPUFAs) (8–11).

Several recent publications have suggested distinct

features among commercially available eHFs by which their

peptide profiling and functionality affect immune responses

and their potential for immune tolerance in CMPA (8–10,

12). This short review aims to provide an overview of the

distinct features of peptides in various commercially

available eHFs, such as the source of the protein fraction,

molecular weight distribution, and the T-cell activating

capacity of the residual peptides in the eHF. These distinct

features could affect their effectiveness in the management

of CMPA (Figure 1).
02
Peptide profiling

The American Academy of Pediatrics (AAP) in 2000

defined an eHF as a formula containing peptides with a

molecular weight <3 kDa (13). However, as some allergic

reactions were still reported in selected cases using eHF, the

British Society for Allergy and Clinical Immunology (BSACI)

guidelines in 2014 suggested that an eHF is one that contains

a greater percentage of peptides <1 kDa with less than 5% of

peptides >3 kDa for the nutritional management of CMPA

(14). Moreover, it is a prerequisite to document hypo-

allergenicity of the eHF, clinically defined by AAP as reduced

allergenicity or reduced ability to stimulate an IgE response

and induce IgE-mediated reactions (13).

More recent research shows that molecular weight is not the

only factor determining the possibility of allergic reaction.

For IgE-cross linking, to induce mast cell degranulation, the

peptides need to be larger than 3 kDa or a minimum length

of 30 amino acids. For a protein to have allergenic properties,

it has to contain at least two IgE binding sites and enable

cross linking of FcϵRI on the cell membrane of basophils and

mast cells (15). In intact proteins, a B cell epitope needs a

solvent exposed area of around 500 Å2 (16). In contrast,

T-cell epitopes that are presented in the context of major

histocompatibility complex (MHC) class II are only 12–18

amino acids (AA) long, although due to the open end of the

binding site some overhang is possible, allowing peptides of

up to 25 amino acids to be presented to the T cell (17, 18).

Thus, hypothetically, if a hydrolysate does not contain

peptides of at least 12 AAs, these hydrolysates cannot activate

T cells. Hydrolysates that do contain such peptides can induce

T cell activation. A hydrolysate containing peptides of

between 12 and 30 AA can therefore efficiently activate CD4+

T lymphocytes but cannot induce sensitization as they are too

small to contain a B-cell epitope.

Upon T cell activation, B cells will class switch their

immunoglobulin production under the influence of T cell

derived cytokines. T cell derived Interleukin (IL)-4 production

will direct the process of Ig class switching towards IgE

causing sensitization and subsequent allergy. Whereas IL-10

promotes the production of immunoglobulin G4 (IgG4)

which is involved in the process of immune tolerance. Hence

besides reducing allergenicity of an eHF based on peptide

molecular weight and length distribution, it is also important

to determine the functionality of the residual peptides which
frontiersin.org

https://doi.org/10.3389/falgy.2022.950609
https://www.frontiersin.org/journals/allergy
https://www.frontiersin.org/


FIGURE 1

Distinct features of extensive hydrolysate and the impact on its effectiveness.

TABLE 1 Peptide profile.

Peptide coverage (10) Hierarchical
clustering (10)

Less than 5% peptides with molecular weight
between 3 and 5 kDA (8)

eHF-C-1 αS1-casein, αS2-casein, β-casein, κ-casein,
β-lactoglobulin

Cluster 1 +

eHF-C-2 αS1-casein, αS2-casein, β-casein, κ-casein,
β-lactoglobulin

Cluster 2 +

eHF-C-3 αS1-casein, αS2-casein, β-casein, κ-casein,
β-lactoglobulin

Cluster 1 +

eHF-W-1 αS1-casein, αS2-casein, β-casein, κ-casein,
α-lactalbumin, β-lactoglobulin

Cluster 3 +

eHF-C-1, extensive hydrolyzed casein-1 (Nutramigen); eHF-C-2, extensive hydrolyzed casein (Frisolac AC); eHF-C-3, extensive hydrolyzed casein (Similac

Alimentum); eHF-W, extensive hydrolyzed whey-1 (Nutrilon Pepti); the number in the bracket refers to the reference.
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can contribute to their effectiveness in reducing allergic

responses as well as the induction of tolerance in the infants

and children with CMPA (8, 9).

An attempt to further distinguish the distribution of

peptides is through peptidomics, which is a technology that

has found its application in many research areas including

food sciences due to the rapid development of mass

spectrometry-based methodologies (10). Molecular weight

determination and methods to determine peptide mass and

peptide length distribution profiles do not deliver peptide

sequence information, while peptidomics enables the

identification and relative quantification of multiple peptides

simultaneously. In an analytical study, combinations of
Frontiers in Allergy 03
peptidomics and multivariate clustering analyses were applied

to compare peptide profiles of different eHFs.

Even though eHF-C based formulas have relatively similar

peptide coverage, they have distinct clustering profiles

(Table 1). Furthermore, the eHF-W had completely different

clusters from those of eHF-C which further illustrate the need

to distinct the feature of specific eHFs.
Peptide allergenicity

Although demonstrating hypo-allergenicity of eHF in

sufficiently powered clinical studies is a prerequisite, in-
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TABLE 2 Hydrolysates, its IgE reactivity and the presence of α-lactalbumin and β-lactoglobulin.

Detection of protein
in formula (9)

Reactivity with
antibody probes (9)

IgE reactivity with sera
from allergic patients (9)

Other allergenic
activitya (9)

β-lactoglobulin
allergenicity (8)

eHF-C-1 − − − − −

eHF-C-2 − − − − −

eHF-C-3 − − + − −

eHF-W-2 − + + + −

eHF-C-1, extensive hydrolyzed casein-1 (Nutramigen); eHF-C-2, extensive hydrolyzed casein (Frisolac AC); eHF-C-3, extensive hydrolyzed casein (Similac

Alimentum); eHF-W-2, extensive hydrolyzed whey (Alfare), +, detected; −, not detected.
aOther allergenic activity which includes basophil activation and T-cell reactivity. The detection of protein in formula is defined by SDS-Page and Coomassie Brilliant

Blue Staining. The number in the bracket refers to the reference.

TABLE 3 Hydrolysates and its effect on lymphocyte proliferation and
pro-inflammatory cytokines (9).

Lymphocyte
proliferation

Induction of
IFN-γ

Induction of
IL-13

eHF-C-1 + − −

eHF-C-2 ++ ++ −

eHF-C-3 ++ + +

eHF-W-2 + + ++

AAF + + +

eHF-C-1, extensive hydrolyzed casein-1 (Nutramigen); eHF-C-2, extensive

hydrolyzed casein (Frisolac AC); eHF-C-3, extensive hydrolyzed casein

(Similac Alimentum); eHF-W-2, extensive hydrolyzed whey (Alfare); amino

acid formula (AAF) ++, Strong stimulation; +, Stimulation; −, minimal or no

effect. The number in the bracket refers to the reference.

Goh et al. 10.3389/falgy.2022.950609
vitro studies using sera from allergic patients could provide

additional information. In an in-vitro study, 10 cow’s milk

formulas were analyzed in a blinded manner regarding their

biochemical and immunological characteristics. The

formulas consisted of whole milk, partially hydrolyzed whey

with/without casein, eHF whey (eHF-W) and casein (eHF-

C) formulas as well as amino acid formulas. Protein,

peptide and amino acid contents were determined by

measuring protein nitrogen. The allergenic activity of the

samples was measured using rat basophil leukemia assays as

well as lymphocyte proliferation assays and analysis of

cytokine levels from the supernatants. Using a RAST-based

assay with sera from cow’s milk allergic patients, IgE

reactivity towards α-lactalbumin and β-lactoglobulin were

found not surprisingly in the whole milk formulas. IgE

reactivity was found also with the partially hydrolyzed

formula and the eHF-W and one of the eHF-C formulas.

The 2 remaining eHF-C and amino acid formula showed

low allergenic and low pro-inflammatory properties (9)

(Tables 2, 3). Distinct reactivity towards cow’s milk (CM)

antibodies was found in partially hydrolyzed as well as

some eHFs as CM epitopes may remain depending on the

hydrolyzation process (8, 9).

A recent publication highlighted the importance for not

relying exclusively on the peptide size to demonstrate hypo-

allergenicity in 4 partially hydrolyzed whey formulas. The

researchers used size exclusion chromatography to

characterize the peptide molecular weight and a rat basophil

degranulation assay to assess the relative level of beta-

lactoglobulin allergenicity and a preclinical model of oral

tolerance induction to test prevention of allergic sensitization.

They found that peptide size was not necessarily associated

with allergenicity reduction in vitro nor oral tolerance

induction in vivo as measured by IgE level. Some of the

partially hydrolyzed formulas with low peptide molecular

weight had high residual beta-lactoglobulin which increased

their allergenicity. The authors concluded that not all partially

hydrolyzed formulas with the same peptide size distribution

decreased allergenicity or had similar ability to induce oral

tolerance (19).
Frontiers in Allergy 04
Peptides and immune tolerance

Although most children with CPMA outgrow the symptoms

at the ages of 3–4 years, there is also evidence that cow’s milk

allergy is persisting to an older age, especially in children with

associated atopic diseases such as asthma, atopic dermatitis

and allergic rhinoconjunctivitis. Hence there is great interest

in whether induction of tolerance can be accelerated when

managing such patients (1, 3, 20). In a study assessing

multiple formulas, two eHFs (eHF-C-2 and eHF-C-3) induced

high levels of the Th1 cytokine IFN-γ but all 4 formulas had

low IL-10 profiles (Table 3). eHF-C-1 did not induce any

relevant levels of Th1, Th2 or pro-inflammatory cytokines

(Tables 2, 3) (9). Although, it is not clear whether these

characteristics alone will influence immune tolerance

acquisition, they may at least to a certain extent, contribute to

the overall efficacy of the formula to induce tolerance.

Successful allergen immunotherapy (AIT) is achieved by

inducing a shift of type 2 immune responses toward a type 1

through an increase in regulatory T (Treg) and regulatory B

(Breg) cells and IL-10, with lower IgE production in favour of

higher levels of IgG4 antibodies. Current allergen

immunotherapy approaches depend on the administration of

intact allergens with the incumbent risk of serious side effects.
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Evolving new modalities include using short and long

contiguous overlapping peptides (COPs) targeting dominant

T cell epitopes of major allergens in place of intact allergens

for AIT. This technique preserves the relevant peptides for T

cell recognition but lacks the conformation of the whole

protein which prevents IgE binding in the surface of mast

cells and basophils, rendering it a safer technique for AIT.

Selection of the correct sequence and optimizing the length

of the peptide is critical to safety, success, and cost of peptide

AIT (21, 22). The aims of AIT for induction of tolerance

are, ideally, to (1) induce immunological tolerance by

administering a preparation that limits the risk of cross-

linking IgE and hence anaphylaxis; (2) induce long term

tolerance; (3) reduce the levels of Th2 responses specific for

the allergen; (4) increase levels of Foxp3 + Tregs and IL-10-

secreting Tr1 cells responding to the allergen; (5) increase the

ratio of IgG4:IgE- secreting B cells so as to increase levels of

blocking antibodies.

Given the observation that some eHFs have immune

tolerizing effects, employing peptidomics on milk protein to

characterise T-cell epitopes that can modify cellular immune

responses rather than binding of IgE, could be a fruitful

research endeavour . For example, therapeutic peptides have

been developed for immunotherapy against Japanese cedar

pollinosis. Oral administration of one predominant peptide or

a 3-linked T cell epitope peptide induced immune tolerance

in a mouse model (23) and in humans (24). This novel

concept has not been used in food allergy for the induction of

tolerance. Given that there are already eHFs available for the

management of CMPA, the use of peptidomics and studying

the immunological characteristics of the hydrolysates from

these eHFs could be applied to peptide immunotherapy in

accelerating immune tolerance.

One of the mechanisms by which Tregs (CD4 + CD25+)

may enhance the process of tolerance induction is via the

production of the suppressive cytokine IL-10. Gut barrier

dysfunction, leading to an enhanced epithelial permeability

and decreased mucus thickness, increases antigen uptake and

promotes Th2 type allergic responses by activating type 2
TABLE 4 Hydrolysates and their effects on tolerogenic pathways (35).

Epithelial layer
permeability

tight junction
proteins

IL-33

eHF-C +++ +++ −

eHF-W + ++ −−

HRF ++ + −−−

SF +++ ++ −−−

AAF + + −−

eHF-C, extensive hydrolyzed casein; eHF-W, extensive hydrolyzed whey; HRF, hydro

names were provided in this study); +, positive effect (i.e. decreased permeability; n

alarmins production; number of signs reflecting the magnitude of the effects). The n
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innate lymphoid cells (ILC2s), mast cells, basophils and

dendritic cells. Epithelial-derived cytokines, including thymic

stromal lymphopoietin (TSLP) and IL-33 have a pivotal role

in the development of allergic response at the gut barrier

surface which has been linked to the development of food

allergy (20, 25).

Recent studies, in both humans and mouse models, have

implicated thymic stromal lymphopoietin (TSLP) in the

development and progression of allergic diseases as one of the

cytokines that is involved in driving allergic inflammatory

responses (26). Interleukin-33 (IL-33) is a member of the IL-1

cytokine family that has been widely studied for its

dichotomous functions in homeostasis and inflammation (27).

It is released by the gut epithelial and endothelial cells in

response to cell injury, such as when exposed to proteolytic

activity, as an alarmin to initiate the innate immune response.

In addition, IL-33 is also an important mediator for the

secretion of Th2 related cytokines such as IL-4, IL-5 and IL-

13 (27).

It is well established that epithelial cells in the lung respond

to allergens by the production of cytokines including IL-33 and

TSLP, as well as several other alarmins that drive Th2 immunity

(25, 28). Likewise, allergic sensitization to food allergens may

occur through the skin (29, 30) and involves the induction of

TSLP production by keratinocytes (31).

In an ovalbumin-induced food allergy model, TSLP-

induced food allergy was dependent on the presence of IL-33,

but IL-33 driven allergy was independent of TSLP (32). A

similar role for IL-33 (and TSLP) was shown in a peanut

allergy model (33). Notably, a mix of anti-IL-33, anti-TSLP

and anti-IL-25 prevented egg allergy induction and

suppressed ongoing disease (34).

Although information of direct induction of the production

of IL-33 and TSLP by food allergens is sparse to date (35–38),

several food allergens display proteolytic activity, and the role

of these cytokines in the development food allergies is well

established. In addition, food-associated toxins like the

mycotoxin deoxynivalenol can also activate the IL-33 and

TSLP production by intestinal epithelial cells.
thymic stromal
lymphopoietin (TSLP)

IL-10
production

activated CD4 +
FoxP3+

− +++ +++

−−− ++ ++

−−− ++ +

− ++ +

− ++ +

lyzed rice formula; SF, soy formula; and AAF, Amino Acid Formula (no brand

umber of signs reflecting the magnitude of the effects). –, negative effect (i.e.

umber in the bracket refers to the reference.
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Paparo et al. (35) took 5 formulas which were used for the

dietary treatment of CMPA, namely eHF-W, eHF-C,

hydrolyzed rice formula (HRF), soy formula (SF) and amino

acid formula (AAF), and assessed their effect on epithelial

layer permeability and tight junction proteins, mucin 5AC, IL-

33 and TSLP in human enterocytes in an in-vitro study. They

also looked at Th1/Th2 cytokine response and Treg activation

on peripheral blood mononuclear cells from IgE-mediated

cow’s milk allergic infants. They found that eHF-C derived

protein fraction positively modulated the expression of gut

barrier components such as mucin 5AC, occludin and Zona

Occludens (ZO)-1 in human enterocytes. They also found

that only the eHF-C derived protein fraction elicited an

increase of the tolerogenic cytokines production, Il-10, IFN-γ,

and activated CD4 + Foxp3+ Treg through de-methylation of

CpG sequences in the Foxp3 gene resulting in up-regulation

of gene product production. Though the SF was able to

stimulate the expression of occludin only, none of the other

formulas were able to produce the same effect on epigenetic

modulation compared with eHF-C. Given this activity of the

eHF-C formula, it was speculated that using the specific

eHF-C employed in the study could accelerate immune

tolerance acquisition in children with CMPA (Table 4).
Role of optional ingredients: pre-,
pro- and synbiotics

There is a growing interest in the potential role of the gut

microbiota in the development of allergic disease. Several

studies have shown that an altered gut microbiota, or

dysbiosis, occurs in allergic infants compared to healthy

infants, including those with CMPA (39, 40). It has been

demonstrated that allergic infants have low levels of

Bifidobacteria and Lactobacilli in their gut microbiota

compared to healthy infants (41). Hence the addition of pre-,

pro- and synbiotics could influence the composition of the

gut microbiota towards a more “normal” or healthy profile. A

study on partially hydrolyzed formula supplemented with

short chain galacto-oligosaccharide(scGOS) and long chain

fructo-oligosaccharide (lcFOS) resulted in a gut microbiota

more similar to breastfed infants as compared to those fed

standard cow’s milk formula (42). Two earlier studies using

mouse models also showed a promising effect on induction of

tolerance using whey or partially hydrolyzed whey with rather

than without a combination of oligosaccharides (scGOS/

lcFOS/pAOS) (43, 44).

In the management of CMPA, it seems logical to consider

the addition of probiotics or synbiotics to the eHF in

accelerating the acquisition of tolerance to cow’s milk given

the role of the microbiota and known immunomodulatory

activity of pro-, pre and synbiotics. Previously, this was
Frontiers in Allergy 06
comprehensively reviewed by Fox et al (45). A randomized

controlled trial of eHF-C with or without the probiotic

Lactobacillus rhamnosus GG (LGG) in 55 challenged proven

CM allergic infants showed accelerated development of

tolerance to cow’s milk protein in the group receiving the

probiotic supplemented eHF-C compared to eHF-C alone

when re-challenged 6 and 12 months later (46). In a larger

prospective study 260 children with CMPA aged 1–12 months

were allocated to 5 groups based on the formula used for

dietary management of CMPA: eHF-C, eHF-C with LGG,

hydrolyzed rice formula, soy formula or amino acid formula.

This study confirmed that there was an accelerated acquisition

of tolerance by eHF-C which was enhanced with the addition

of LGG as compared to other tested formulas (47).

However, the study by Hol et al (48) which randomized 119

CM allergic infants to receive another type of eHF-C with and

without the addition of probiotics, Lactobacillus casei CLR431

and Bifidobacterium lactis BB12 revealed that there was no

difference between groups in the number of infants who

achieved tolerance at the end of 6 months and 12 months

when re-challenged to cow’s milk. This study showed that the

addition of probiotics did not accelerate the acquisition of

tolerance to cow’s milk with this particular eHF-C formula.

Interestingly, the percentage of CMPA infants who develop

tolerance measured after 12 month of consumption was

similar in both studies; 77% and 81% for the eHF-C with or

without probiotics respectively (48) vs. 81% for an e-HF-C

with LGG (46) [i.e. comparing the data from eHF-C + LGG to

eHF-C only (48)].

In another recently published study, 200 infants suspected

to have CMPA based on cow’s milk-related symptom score

(CoMiSS) were randomized to receive an eHF-W with and

without the addition of prebiotics in the form of human milk

oligosaccharides (2′FL and LNnT). The researchers found no

difference in the resolution of cow’s milk associated

symptoms between groups. This study suggests that the

addition of human milk oligosaccharides to this particular

eHF-W did not accelerate the resolution of cow’s milk related

symptoms (49).

A study which recruited 71 infants with suspected non-IgE

mediated CMPA were randomized to receive AAF with and

without synbiotics (prebiotic blend of chicory-derived neutral

oligofructose and long chain inulin and probiotic strain

Bifidobacterium breve M-16V). The researcher’s main aim was

to investigate the modification of the gut microbiome with the

symbiotic supplemented formula, which was compared to

healthy age-matched controls. They found that there was an

increase in Bifidobacterium and a reduction in the

Eubacterium rectale/Clostridium coccoides percentage in the

stool at the end of 8 weeks which reflected a microbiome that

was closer to the healthy controls. The study was not

designed to look at overall effects and thus the clinical
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outcomes remain to be established and could not be identified

in the publication (50). A subsequent prospective, randomized

double-blind, controlled study had 169 challenge confirmed

CM allergic infants and randomized them to receive AAF

with/without synbiotics (prebiotic blend of chicory-derived

neutral oligofructose and long chain inulin and probiotic

strain Bifidobacterium breve M-16V). The researchers found

no difference in the induction of tolerance between groups

at 12 and 24 months on re-challenge to cow’s milk

demonstrating that the addition of synbiotics to the AAF did

not accelerate the induction of tolerance (51).

The differences observed between these studies can to a

large extent be explained by the use of different formulas

including protein source (different hydrolysates and/or amino

acids), different optional ingredients (predominantly pro-,

pre- and synbiotics) and differences in CMPA subjects

enrolled in the study. This again highlights that there may be

inherent differences even between eHFs and their ability to

induce tolerance regardless of the addition of pro-, pre- or

synbiotics and results from one eHF study cannot be

generalized for other eHFs. The fact that the overall formula

composition, hydrolysate peptide profile and size distribution

of eHFs differ considerably is an important point when

considering clinical effectiveness, especially in relation to

induction of tolerance. Thus, although eHFs are often

considered as identical, these results underline that specific

eHFs should be considered separately and that clinical results

from one formula cannot be generalized to other formula.
Limitation of the review

This review was conducted non-systematically based on

unstructured search terms for publications in the area of milk

protein hydrolysates for the dietary management of CMA

published in the last 20 years (2002–2022). There were no

inclusion/exclusion criteria set a priori, although both clinical

and non-clinical mechanistic or analytical studies have been

included. Further, studies were added based on information in

the cross-references and for which the authors agreed were

relevant to the review topic. There were only a limited

number of retrieved and relevant literature which studied

different types of eHFs.
Conclusion

Based on the limited available literature on detailed

characterization of eHFs, each of the eHF described have

distinct peptide profiles which can impact residual IgE

binding and T-cell tolerizing capacity. These differences, with

or without the presence of optional functional ingredients like

pre-, pro- and synbiotics illustrate the importance of
Frontiers in Allergy 07
characterizing each commercially available eHF. Thus,

although eHFs are often considered as identical, these results

underline that all eHFs should be considered separately even

those with similar sources of protein fraction. The clinical

results from one formula can therefore not be generalized to

another formula.
Impact statement

Even though extensive hydrolyzed formulas (eHF) are the

first choice for dietary management of cow’s milk protein

allergy (CMPA) in infants and children, clinical efficacy of

commercially available formulas for dietary management of

CMPA differ. This short review reported differences in

peptide profiling (peptide length, molecular weight

distribution and amino acid sequences) which influences

tolerance induction and residual allergenic potential. The

addition of functional ingredients (pre-, pro-, synbiotics and

long-chain polyunsaturated fatty acids) can further facilitate

the development of tolerance acquisition to CMPA. Thus,

efficacy studies to show an association between specific

peptide profiles, their effect on elicited immune responses, gut

barrier integrity and tolerogenic cytokines, with symptom

resolution and tolerance induction, are warranted for each

specific eHF.
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