
TYPE Methods
PUBLISHED 03 November 2022| DOI 10.3389/falgy.2022.951795
EDITED BY

Bor-Luen Chiang,

National Taiwan University, Taiwan

REVIEWED BY

Jose Luis Subiza,

Inmunotek SL, Spain

Mayte Villalba,

Complutense University of Madrid, Spain

Hortensia De La Fuente Flores,

Princess University Hospital, Spain

*CORRESPONDENCE

Dan Jacob

dan.jacob@sanofi.com

†Affiliation at the time of study. Current

affiliation Euresis Partnerships, Paris, France

‡Affiliation at the time of study. Current

affiliation IDEXX Laboratories, United States

SPECIALTY SECTION

This article was submitted to Therapies,

Therapeutic Targets & Mechanisms, a section of

the journal Frontiers in Allergy

RECEIVED 24 May 2022

ACCEPTED 13 October 2022

PUBLISHED 03 November 2022

CITATION

Hamelin B, Rowe P, Molony C, Kruger M,

LoCasale R, Khan AH, Jacob-Nara J and

Jacob D (2022) Immunolab: Combining

targeted real-world data with advanced

analytics to generate evidence at scale in

immunology.

Front. Allergy 3:951795.

doi: 10.3389/falgy.2022.951795

COPYRIGHT

© 2022 Hamelin, Rowe, Molony, Kruger,
LoCasale, Khan, Jacob-Nara and Jacob. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.
Frontiers in Allergy
Immunolab: Combining targeted
real-world data with advanced
analytics to generate evidence at
scale in immunology
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Real-world evidence (RWE) has traditionally been used by regulatory or payer
authorities to inform disease burden, background risk, or conduct
post-launch pharmacovigilance, but in recent years RWE has been
increasingly used to inform regulatory decision-making. However, RWE
data sources remain fragmented, and datasets are disparate and often
collected inconsistently. To this end, we have constructed an RWE-
generation platform, Immunolab, to facilitate data-driven insights,
hypothesis generation and research in immunological diseases driven by
type 2 inflammation. Immunolab leverages a large, anonymized patient
cohort from the Optum electronic health record and claims dataset
containing over 17 million patient lives. Immunolab is an interactive
platform that hosts three analytical modules: the Patient Journey Mapper,
to describe the drug treatment patterns over time in patient cohorts; the
Switch Modeler, to model treatment switching patterns and identify its
drivers; and the Head-to-Head Simulator, to model the comparative
effectiveness of treatments based on relevant clinical outcomes. The
Immunolab modules utilize various analytic methodologies including
machine learning algorithms for result generation which can then be
presented in various formats for further analysis and interpretation.
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Introduction

In recent decades, the role of the randomized controlled trial (RCT) in medical

decision-making has been elevated to that of “gold standard”. However, from

battlefield treatments to the birth of modern epidemiology with John Snow’s

observational deductions of the role of water pumps during 19th-century cholera

outbreaks, medical breakthroughs based on real-world observations long preceded

the advent of the modern RCTs. Real-world evidence (RWE) and RCT studies are

complementary and reflect evidence from real-life clinical practices compared to

controlled environments respectively. RWE is complementary to RCT and can
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address the disadvantages of both observational studies (e.g.,

follow-up cost, long study periods, and maintenance of

consistency during the study period) and RCTs (e.g., loss of

participants at follow up, changes in treatment, long study

periods, and cost). Health authorities have historically used

these data to generate RWE mainly for post-launch safety,

but in recent years, regulatory agencies, payors, and

healthcare providers have recognized the benefits of RWE in

decision-making for effectiveness as well. Increasingly, RWE

is also being considered in other situations such as to

construct “pseudo”-control arms (sometimes referred to as

“synthetic control arms”) (1–3), and to support regulatory

label-expansion applications or effectiveness assessments in

situations where RCTs are difficult or unethical to conduct

(4, 5). The volume of digitized healthcare data has increased

significantly and consequently the potential of RWE to

support pharmaceutical development and decision-making is

on the rise.

In the United States, the 21st Century Cures Act, passed in

December 2016, established public-private partnerships to

collect data, improve understanding of diseases, and support

patient-focused drug development. It recognized the need

for broader, more adaptable decision-making frameworks

that incorporate RWE (6, 7). The European Medicines

Agency (EMA), the US Food and Drug Administration

(FDA), and the Japanese Pharmaceuticals and Medical

Devices Agency (PMDA) are all considering greater user of

RWE for informing regulatory decision-making, in contexts

other than pharmacovigilance and safety, including drug

approvals (8–11).

The use of RWE to inform clinical development and

medical research has similarly progressed in recent years.

Payers analyze transactional claims data to understand

clinical populations and impediments to adoption of therapy,

and to monitor the effectiveness of providers or standards of

care. Pharmaceutical companies use RWE as part of

integrated evidence-generation plans, identifying evidence

needs across the product life cycle, to advance understanding

of treatment patterns, patient subpopulations, comparative

effectiveness, and marketplace adoption, and to support

value-based reimbursement scenarios. Research and

development teams use RWE to supplement clinical findings,

and even to inform patient recruitment in RCTs. However,

pharmaceutical research has struggled to fully embrace RWE,

and disparate datasets, siloed data environments, and the

absence of easily accessible analytic tools have slowed the

adoption of RWE.

To this end, we have constructed a RWE-generation

platform to accelerate evidence generation. This tool aims to

demonstrate the value of a “platform strategy”—combining

richly curated clinical data, patient cohorts, a variety of

analytic techniques, and intuitive dashboards—to help

accelerate hypothesis generation using real world data.
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Methods

Immunolab: an insight-generation
platform for the evolving RWE landscape

Immunolab is designed to address research questions

related to drug development, as well as pre- and post-launch

evidence generation needs. This is particularly significant for

type 2 inflammatory diseases such as asthma and chronic

rhinosinusitis with nasal polyps, which have high prevalence,

high rates of comorbidity, and diverse clinical management.

Researching type 2 inflammatory diseases requires a “broader”

view of data and need of analytic tools to better understand

patient treatment journeys, comorbidities, and methods to

help predict outcomes. A schematic figure with the different

components of the Immunolab platform (hypothesis, data

source, treatments, advanced evidence generation engine and

results) and how they are connected to each other has been

provided in Figure 1.

Immunolab aims to provide the capability to rapidly explore

key research questions, with a fundamental consistency built

into population cohorts such as demographics, comorbidities,

treatments, and outcomes.
Design approach

A multidisciplinary collaborative team from multiple

functions including research, clinical, medical, and health

economics and outcomes research was formed, which took

part in a workshop and identified key evidence gaps in RWE

for immunology research, and based on those gaps research

questions were developed which formed the basis of the

research framework for Immunolab.. This workshop also

confirmed the need for both a “platform solution” and for

distributed access to hypothesis-generation tools. The

Immunolab core development and analytic design teams

thereafter aligned on cohort definitions and feature designs.

Scenarios were modeled using RWE to explore the

ramifications of key design choices. All design decisions (and

scenarios leading to those design decisions) made by the

teams were curated in a decision log, which serves as a

repository for institutional memory and supports ongoing

maintenance of Immunolab.
Infrastructure

Immunolab was built on a RWE environment, a secure

cloud-based system based on a high-performance

computing spark cluster, machine learning (ML) libraries,

and data visualization tools. The system was designed to be
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FIGURE 1

Schematic figure with the different components of the system.
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flexible, allowing easy integration of new tools and

capabilities as required by the evolving demands of RWE,

while maintaining strong data protection and access integrity.
Optum® de-identified electronic health
record (EHR) data source

The Immunolab platform utilizes patient cohorts, which

are regularly updated, from the Optum de-identified EHR

dataset (2007–2019). Optum data are de-identified in line

with the Health Insurance Portability and Accountability

Act statistical de-identification rules and managed

according to relevant data use requirements (12, 13). The

Optum EHR enables Immunolab to analyze data from over

17 million patients; this large cohort enables detailed

investigation of patients with diseases such as asthma,

atopic dermatitis (AD), and chronic rhinosinusitis with and

without nasal polyps (Figure 2). Within this cohort, 33

type 2 immunological indications and related comorbidities

were available.
Results

The Immunolab platform interface

Immunolab platform is a user-friendly web-based interface

that employs maps, drop-down menus, and intuitive graphs to

perform and display analyses. Immunolab allows the user to

easily select pre-specified “analytical modules” with a primary

purposes of hypothesis generation. Cohorts to be assessed by

the respective analytical module can be generated within the

Optum EHR dataset by applying automated eligibility criteria

based on diagnosis and treatment codes.
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Analytical modules

The three analytic modules of Immunolab were: (i)

Patient Journey Mapper (PJM) to describe the drug

treatment patterns in patient populations, (ii) Switch

Modeler (SM) to model treatment switching pattern and

identify its drivers, (iii) and Head-to-Head Simulator (H2H)

to model the comparative effectiveness of treatments based

on relevant clinical outcomes. For each of these three

analytical modules, clinically relevant features were used for

both descriptive analyses and modeling, including timing of

diagnoses and treatments, demographics, patient

characteristics, medical attributes, disease activity,

comorbidities, medication, health-care providers, and

procedures. The PJM can provide approximately 5 million

analyses across the predefined 70 patient subpopulations;

the SM can do nearly 130 descriptive statistics for every

switch/augmentation event, yielding up to 2 million

analyses; and the H2H can do approximately 75,000

descriptive analyses, with up to 150 descriptive statistics for

approximately 150 patients subpopulations across four

therapeutic groups. Consequently, Immunolab can facilitate

over 7 million rapid “insight generation” analyses.
The Patient Journey Mapper (PJM)

The PJM module descriptively assesses the characteristics

and treatment journeys of patients. It provides data driven

results for overarching questions of interest such as: “Which

patients are…?”; “What is happening to patients who are…?”;

“What are the treatment journeys…?”; and “What are the

common combinations of diseases/comorbidities of…?”.

The PJM is based on a “patient-quarter” data framework.

For example, to identify patients by using the “standard of
frontiersin.org
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FIGURE 2

Diseases within the Immunolab real-world data cohort.
COPD, chronic obstructive pulmonary disease; EHR, electronic health record; RW, real-world.
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care” filter in December 2019, the module identifies and selects

all patients who have had the standard of care prescription in

the 12 months up to the end of December 2019. For

subpopulations of interest, “Lift” scores (a measure of

distinctiveness, equivalent to the ratio of the prevalence in

the subpopulation to the prevalence in the whole population)

are calculated. Patient journeys are illustrated by visual

displays of the escalation order of the drug classes used in

the population of interest, with automated generation of

histograms to describe patient characteristics and changes

over time; interactive Sankey plots describing the treatment

pathways (the collective of treatment switches); and column

charts describing disease combinations (Figure 3).
The Switch Modeler (SM)

There is a limited understanding of the factors that drive

switch of patients across drug classes for the treatment of

asthma and AD. The SM module is intended to generate

evidence on the key factors leading to switching to and

from specific treatments based on a large data source.

Treatment changes can be categorized as “switching”

(discontinuation of a prescription for one drug and the

initiation of a prescription intended to treat the same

disease within a suitable time window) or “augmentation”
Frontiers in Allergy 04
(initiation of a prescription for a drug with concurrent

continuation of an existing prescription intended to treat

the same disease with another drug).

Based on the SM parameters, an underlying data table is

created that contains patient profiles for which the treatment

change occurs, as well as patients for which the treatment

change does not happen. An ML algorithm, Light Gradient

Boosting Machine (LightGBM (14), is trained on this data

table and learns to discriminate whether a regimen change

will occur for a patient based on the available attributes

e.g., demographic profiles, clinical characteristics of disease,

and patient clinical phenotype). For patients experiencing

a treatment change, the attributes are calculated based on

the period leading up to the change. Attributes for

patients who do not experience a regimen change are

based on the most recent data available. Relevant drivers

of the treatment changes are then derived based on the

SHapley Additive exPlanation (SHAP) approach, a unified

analytical approach to evaluating the output of different

ML models (Figure 4). The SHAP value of any single

covariate represents its relative effect on the model’s

prediction. By assessing the full range of covariates in this

way, we can see which covariates are, on average, the key

drivers of the model’s patient-level prediction. Aggregating

all model explanations from all patients in a population

provides accurate population-level model explanations.
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FIGURE 3

Treatment Journey of all patients in Immunolab from any treatment they are receiving to systemic corticosteroids. Note: The PJM provides user-
friendly visual output in the form of Sankey plots, describing the use of drug classes across lines of therapy for patient subpopulations of interest.
IgE, Immunoglobulin E; IL, interleukin; PJM, Patient Journey Mapper.

FIGURE 4

Switch Modeler—Key drivers of patients with AD switching between treatments. The SM uses SHAP to determine drivers of the observed changes in
prescribing patterns. The value of each binary variable data point is indicated by color (blue: low/no; red: high/yes). The effects of the covariate on risk
prediction are shown in log-odds scale on the horizontal axis; covariates are listed in descending order by relative importance in terms of driving
prescribing patterns in the subpopulation of interest. SHAP outputs from each patient included in an analysis are then aggregated to provide
population-level SHAP estimates of covariate impact.
SHAP, SHapley Additive exPlanation; SM, Switch Modeler.
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Head-to-Head simulator (H2H)

To facilitate robust comparisons of different drug classes

against each other across clinically relevant endpoints, we

need to use analytical adjustment methodologies to correct

for confounding effects that may be present in the data. In

building the simulator, we considered two approaches: G-

estimation (15) and inverse probability of treatment

weighting (IPTW) (16, 17). The H2H simulator estimates

treatment effects for a series of clinically relevant

endpoints. The approaches that were analyzed only

consider an endpoint in isolation; no dependency between

endpoints was modeled. This means that for a given
Frontiers in Allergy 05
endpoint (e.g., the number of exacerbations in patients

with asthma), either G-estimation or IPTW is used. In

either approach, a data table is created that contains a

record per treatment exposure. Observed values for the

endpoints are calculated over the entire treatment

exposure, and covariates are calculated for each treatment

exposure based on the period before start of exposure.

Both approaches attempt to correct for confounders by

including these covariates in the outcome model, for G-

estimation, or the propensity model, for IPTW. The

outcome model and propensity model are estimated using

LightGBM, allowing the models to consider a large set of

pre-treatment covariates.
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Future direction

With the increasing availability of digital and digitized

healthcare data, and broadening demand for RWE across

pharma, standardized methodologies, and platform tools like

Immunolab are complementary to the current one-question-at-

a-time approach to generating evidence. Unlike RCT

methodologies, which have for a long time been under the

auspices of practice quality guidelines (such as the International

Conference on Harmonisation of Technical Requirements for

Registration of Pharmaceuticals for Human Use Good Clinical

Practice guidelines) and clinical trial registries (ClinicalTrials.gov

and EudraCT.eu), rigorous methods are required to optimize

RWE in the regulatory context, and international

standardization of using RWE in healthcare decision-making has

been attempted only relatively recently (18). In recent years, the

US Food and Drug Administration has developed innovative

programs (including the Sentinel Initiative) to accelerate the use

of RWE to support assessments of safety and to facilitate label

extensions. To do so, a full life-cycle RWE platform is needed

that would allow exploring these opportunities by generating

hypotheses and testing assumptions. Platform such as

Immunolab seek to address this issue by using ML protocols to

optimize modeling of patient histories, standardizing analytical

methodologies, and constructing consistent outputs based on

these analyses. Future expansions integrating new analytic

modules and additional data sources into platforms such as

Immunolab can put the means of rapid analytic exploration into

the hands of researchers, making both data and analytics

available to them. These platforms can serve as first-line

resource for evidence generation, by accelerating the process and

addressing important real-world data research questions at a

deeper, faster, and more impactful level. They also provide the

possibilities to create a cross-academia and cross-industry

network of researchers with a focus on improving health

outcomes based on big data driven insights.
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