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Sugars can bind non-enzymatically to proteins, nucleic acids or lipids and form
compounds called Advanced Glycation End Products (AGEs). Although AGEs can
form in vivo, factors in the Western diet such as high amounts of added sugars,
processing methods such as dehydration of proteins, high temperature
sterilisation to extend shelf life, and cooking methods such as frying and
microwaving (and reheating), can lead to inordinate levels of dietary AGEs.
Dietary AGEs (dAGEs) have the capacity to bind to the Receptor for Advanced
Glycation End Products (RAGE) which is part of the endogenous threat
detection network. There are persuasive epidemiological and biochemical
arguments that correlate the rise in food allergy in several Western countries
with increases in dAGEs. The increased consumption of dAGEs is enmeshed in
current theories of the aetiology of food allergy which will be discussed.
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Introduction

A Western diet has been linked to an increasing rate of food allergy (1). This is also

intertwined with dietary inadequacy and the trend of increasing sugar intake, particularly

fructose, in the last 50 years in the human diet (2, 3). Sugars can bind to proteins,

nucleic acids or lipids, and form compounds called Advanced Glycation End Products

(AGEs). This process does not involve enzymes (4, 5). Although AGEs can form in vivo,

factors in the Western diet such as high amounts of added sugars, processing methods

such as dehydration of proteins, high temperature sterilisation to extend shelf life, and

cooking methods such as frying and microwaving (and reheating), can lead to inordinate

levels of dietary AGEs. Dietary AGEs (dAGEs) have the capacity to bind to the Receptor

for Advanced Glycation End Products (RAGE). RAGE is a part of the endogenous threat
Abbreviations

AGE, Advanced Glycation End Products; AGER, Advanced Glycation End Product Receptor; AKT, a serine/
threonine protein kinase from the Thymoma cell line AKT-8; CML, carboxymethyllysine; dAGEs, dietary
AGEs; DAMP, Damage-Associated Molecular Patterns; DC, Dendritic cell; eAGEs, endogenous AGEs; ERK,
Extracellular signal-regulated kinase, HFCS, High-fructose corn syrup; HMGB1, High molecular group box
1; JAK2, Janus Kinase 2; mAGEs, microbial derived AGEs; MAPK, Mitogen-activated protein kinases; MG,
methylglyoxal; NADPH, Nicotinamide adenine dinucleotide phosphate; NLRP3, NLR family pyrin domain
containing 3; OR, Odds Ratio; PI3K, PhosphoInositide 3-Kinase; RAGE, Receptor for Advanced Glycation
End Products; STAT1, Signal transducer and activator of transcription 1, TLR, Toll-like receptor.
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detection network as it can be activated by amyloid and Danger

Associated Molecular Patterns (DAMPs) including High

Molecular Group Box 1 (HMGB1) and S100 proteins (6). RAGE

agonism induces several intracellular proinflammatory processes

(7). There is a persuasive argument that correlates the rise in

food allergy in several Western countries, with increases in

dAGEs. This is supported by epidemiological data and by

advances in our understanding of the immunological processes

that the AGE-RAGE axis influences (8–12). The increased

consumption of dAGEs is enmeshed in current theories of the

aetiology of food allergy, including the hygiene hypothesis (13),

the role of the gut microbiome in food allergy (14), epidermal

barrier dysfunction (15), lack of dietary diversity (16), dietary

fiber (17), low vitamin D (18), and delayed introduction of high-

risk foods in the first year of life (19, 20). This review brings

together data, concepts, and findings from in vitro, animal

models, atopic and inflammatory diseases other than food

allergy. HMGB1 is the archetypal alarmin and while AGEs bind

to the same receptor, there remain knowledge gaps as to whether

dAGEs have identical actions as HMGB1 in its mechanisms in

food allergy.
Advanced glycation end products

Glycation refers to the bonding of saccharides (fructose,

glucose, galactose or ribose) to a protein, nucleic acid or lipid

molecule without enzymatic regulation (4, 5). The most familiar

process is the Maillard reaction, where foods are browned with

heating, and resultant downstream compounds include

Methylglyoxal (MG) and Advanced Glycation End Products

(AGEs) such as carboxylmethyllysine (CML) (5). The Western

diet and increasing use of processing methods utilised globally in

ultra-Processed Foods (UPF) production, promote the formation

of dietary AGEs (dAGEs). The Western diet and UPFs are

typically high in sugar content, use dehydrated ingredients,

employ very high cooking temperatures (microwaving or frying),

and have long shelf lives (21–23). AGEs can also form

endogenously (eAGEs) and signal via the AGE receptor (RAGE)

to initiate a danger pattern (24). Similarly, certain microbiota can

produce AGEs (mAGEs) (25), which can contribute to

inflammatory responses, and should be thought of as part of the

total AGE pool.
AGE receptors

Unless otherwise specified, this paper will refer to full-length

RAGE, which comprises intracellular, transmembrane and

extracellular domains. In addition to this archetypal RAGE there

are 19 reportedly splice variants (26). A splice variant, lacking

the intracellular and membrane domains generate a soluble

version of the receptor (sRAGE) that provides a natural decoy

for potential RAGE agonists. The importance of RAGE agonism

in shaping allergic responses is underpinned by serum levels of

sRAGE being protective for asthma (27) and higher levels of
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sRAGE have been associated with lower levels of serum IgE in

asthma (28).

Other RAGE worth noting are oligosaccharyltransferase 48

(AGER1), 80 K-H phosphoprotein (AGER2), galectin-3

(AGER3), and type I and II scavenger receptors (29). AGER1

and the scavenger receptors have a capacity to not only bind to

AGEs and similar ligands, but also transport them intracellularly

and degrade them (29) (summarised in Figure 1). It is plausible

that defects of this degradation process may result in higher

levels of RAGE agonists and increased atopic influences. This

concept has not been explored in research in any inflammatory

disease to date, however it is worthy of consideration due to the

protective effect on atopy by higher levels of sRAGEs.

RAGE agonism can activate nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB) via four main mechanisms

(PI3K/AKT, MAPK/ERK, JAK2–STAT1, and NADPH oxidase)

(5, 30). RAGE agonism induces intracellular proinflammatory

processes leading to multiple types of cellular activation, cytokine

responses, pyroptosis and inflammaging (7). The inflammatory

cytokines induced can influence innate and subsequent adaptive

immune responses (5, 7, 30) including an amplification loop via

increased expression of the RAGE receptor (7); activation of

NADPH oxidase to cause reactive oxidative and nitrogen

intermediates; mitochondrial and endoplasmic reticulum stress

(5, 7, 30), and via NLRP3 inflammasomes, production of IL18

and IL1β which can cause cellular death via pyroptosis (31).

TLR2/4 can be increased by AGEs and there are shared

intracellular signalling pathways that can augment AGE and

TLR2/4 signalling (32) (Figure 1).
Potential dAGE-driven cellular
mechanisms of allergy

RAGE is part of the endogenous threat detection network as it

can be activated by amyloid and Danger Associated Molecular

Patterns (DAMPs) including High Molecular Group Box 1

(HMGB1) and S100 proteins (6). AGE ligation and the

inflammatory responses implicating dAGEs in food allergy,

include their ability to injure the gut epithelium (33, 34) which

promotes inflammation and altered antigen presentation—

conditions unfavourable to maintain dietary tolerance.

Dendritic cells (DCs) have at least 6 RAGE receptors (RAGE,

AGER3, AGER1 and type I and II scavenger receptors, and

CD36 (35). The scavenger receptors are reported to have a role

in processing of antigens by way of endocytosis (36). DCs

produce HMGB1 which is critical for dendritic cell maturation,

activation, antigen processing and presentation to T cells (35,

37–40). In vitro studies show that AGE-stimulated human

dendritic cells lead to greater Th2 responses and increased

expression of RAGE (41). HMGB1 can directly act on naive CD4+

T cells to induce differentiation of Th2, Th17 cells in vitro through

activating the TLR2, TLR4, and RAGE-NF-κB signal pathways

(42). It has been proposed that RAGE may contribute in part to

polarisation of CD4 + lymphocytes and the balance of Type 1 and

2 lymphocytes (43–46).
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FIGURE 1

Total body pool AGEs comprise those from diet (dAGEs), endogenous (eAGEs) and microbial (mAGEs). These bind to AGE receptors (RAGE) to activate
several pathways that contribute to inflammatory responses. AGEs can increase TLR 4 receptor expression and there are converging pathways with TLR
activation that may amplify RAGE agonism. There are other AGE ligands that have a role in clearance of these potentially inflammatory compounds.

Smith et al. 10.3389/falgy.2023.1148181
High serum levels of HMGB1, which dAGEs can mimic, have

been linked to higher serum IgE levels (47). IgE can be evoked in

response to roasted peanuts and their specifically modified

Advanced Glycation End Products to RAGE, as opposed to raw

peanuts (48). Higher levels of RAGE expression on T and B

lymphocytes are strongly associated with activity and

inflammatory responses of these cells (49).

AGEs activate mast cells to release proinflammatory mediators

(50). HMGB1 has been demonstrated to increase mast cell

accumulation (51). Albeit in an airway model, AGE activation in

response to an allergen promotes IL33 production and

subsequent activation of basophils, mast cells and eosinophils

(42, 52), and accumulation of group 2 innate lymphoid cells (51)

(Figure 2). High amounts of dAGEs may exceed the body’s

capacity to degrade AGEs (on top of regular physiologic eAGEs

load) which is usually maintained by sRAGE, AGER1 and

scavenger receptors I and II (7).
The Western diet and the rise of food
allergy

Diets in the modern era have changed dramatically in the last

50 years and the Western diet pattern of eating has been linked to

an increasing rate of food allergy (1). This is also intertwined with

dietary nutritional inadequacies., The trend of increasing sugar

consumption, particularly fructose, an ever-increasing reliance on
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UPFs in the last 50 years (2, 3), and the decrease in the diversity

of the gut microbiome (53). Bach’s et al. (54) notably associated

reduced severe microbial infections with an increase in both Th1

and Th2 disease, implying a role for microbial challenges to our

resident microbiome to improve immunity. In a 2022 update,

Larsen et al. (55), provided more support for these findings,

reporting that the incidence of prototypical autoimmune diseases

anti-correlated with the incidence of common infectious diseases.

Furthermore, Larsen and colleagues showed increases additional

increases in metabolic and autoimmune disease coincided with

increases usage of antibiotics and emphasised that the status of

the gut microbiota is persistently deteriorating (55).)**. Several

studies have discussed reduced microbial infections and time

trends in T1 diseases as well as T2 conditions of eczema, food

allergy, and anaphylaxis discharge data (9, 10, 56–58). Smith

et al. (9, 10) point to a rise in childhood allergies and correlated

types of foods consumed by young children in the US (59) and

patterns of fast-food consumption in Australia (9) with the rise

in food allergies.

A global review found that intake of added sugars was higher in

school-aged children and adolescents (up to 19% of total energy)

compared to younger children or adults (60). The same authors

revealed a 3-fold increase in sugar consumption within a 15-year

period, and strikingly 2–3 year old Australian children were

consuming 90 grams of sugar per day in 2011. Each of the

countries in the review have strong epidemiological data

indicating an increasing rate of food allergy and anaphylaxis (61–
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FIGURE 2

Advanced glycation end products influence microbial composition and activity and these in turn partly contribute to the AGE pool. AGEs can directly
influence epithelium integrity as can the inflammatory mediators induced by RAGE agonism. Of the many pro-allergic cytokines produced, IL33 helps
shape the allergen responses of B lymphocytes, mast cells, eosinophils and basophils. RAGE agonism is critical for dendritic cell maturation, activation
and antigen presentation, T cell responses to allergens, and Th17 differentiation.

Smith et al. 10.3389/falgy.2023.1148181
65). Causation cannot be established, but this does raise the question

of the role of sugar in food allergies, likely in part through the

formation of AGEs. High free sugar intake in pregnancy has been

linked in a meta-analysis to increased offspring risk of asthma,

allergic rhinitis and food allergy (66). High-fructose corn syrup

(HFCS) comprises 55% fructose and 45% glucose. Fructose can

cause an elevation in uric acid (67), which is a non-RAGE inducing

alarmin. Soft drink comprises over 40% sweeteners (68). The

Western diet contains more than 2000% HFCS compared to more

traditional diets (69). Dietary consumption of free fructose is

associated with an increased risk of allergic sensitisation and

symptoms (70). Adolescents consuming beverages high in fructose

5 times a week or more have a five-fold risk of having allergic

symptoms compared to those who reported infrequent

consumption of these beverages (70). Uric acid augments Th2

allergic inflammation (71, 72) and high uric acid levels have been

linked to peanut allergy via dendritic cell activation (73). Fructose,

compared to glucose, forms several-fold higher level of AGEs (74).

Fructose may also be formed intracellularly from glucose via the
Frontiers in Allergy 04
polyol pathway involving aldose reductase and sorbitol

dehydrogenase (75). The latter enzymatic pathway is also a method

for formation of AGEs from xylose which is artificially extracted

from glucose (76). Xylose has an even-greater capacity than fructose

to form AGEs (77).

Modern common table salt—sodium chloride—is found in

abundance in processed foods (78). This is in stark contrast to

traditional diets where salts were a full spectrum of electrolytes

and rich in minerals (79). Excess sodium chloride activates the

aldose reductase pathway leading to greater formation of

intracellular fructose and AGEs (80). Intracellular AGEs are

associated with glycation of intracellular proteins, cellular

dysfunction, cell cycle arrest (81), disturbed DNA repair, and

inhibition of the glyoxalase system (82). The glyoxalase system

comprises enzymatic mechanisms for degrading MG and other

glycation intermediary compounds (83). DNA damage by MG

has been reported to be increased with vitamin B9 deficiency

(84). Vitamin B9 (folate) is found in fresh fruits and vegetables

and insufficiency of folate in the population, even with
frontiersin.org
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government-driven dietary folic acid (synthetic vitamin B9)

fortification, is common in Western countries (85, 86).

The Western diet is commonly associated with UPFs, foods

that are dehydrated and having long shelf lives, and food

preparation methods like microwaving or frying, all of which

increase the formation of AGEs (23, 87, 88). Uribarri et al.

showed that microwaving increased dAGEs in milk and this

increased exponentially with time; from 1 AGE kU/250 ml

serving without heating to 5, 19 and 80 at 1, 2 and 3 min of

microwaving respectively (87). This indicates higher dAGE

consumption with microwave heating and re-heating of foods.

Heating and the formation of AGEs within food does not

always results increased allergenicity. Heating and the formation

of AGEs in food does not always result in increased allergenicity.

High levels of glycation of bovine lactoglobulin, a common cow’s

milk protein allergen, results in alteration of the molecular

allergen binding sites and less IgE binding (89).

The consumption of increasing amounts of dietary sugars and

fast food is to be factored with studies showing that there is

ingestion of 7–8 kg per person per year of synthetic chemical

additives including preservatives, acidity regulators, colorants and

emulsifiers (90). These additives have been linked to allergic

outcomes, most likely via their alteration of microbiome

composition and function (91, 92). The Western diet has less

omega 3 fatty acids (93) and dietary fiber (94), both of which

have been suggested to further contribute to risk of allergic

disease (95, 96). The correlation between dAGEs and allergy has

multiple intersection points in the Western diet.
Epidemiological associations

As already outlined, countries such as Australia and the United

States, increasing uptake of highly sugared foods, UPFs, and fast

food which is mostly fried, correlates with an increase in severe

food allergy and anaphylaxis (9, 10). We are seeing that

countries adopting these dietary trends are also observing an

increase in chronic poor health conditions, including allergies

and obesity (97). Conversely, a traditional Mediterranean diet,

which is not just associated with less sugars and dAGEs, but also

with more omega 3 fatty acids and plant fibers. Omega 3 fatty

acids and dietary fiber leads to enhanced metabolism of AGEs,

greater antioxidant capacity, a preferential gut microbiota, and

more resilient mitochondria, which have all been linked with a

reduced risk of chronic disease and allergies (83, 87, 98–100).

A Mediterranean diet includes the liberal use of herbs such as

garlic and rosemary, and features more slow cooking at lower

temperatures, all of which reduce the formation of AGEs (87).

Reports link the Mediterranean diet with a reduction in wheeze,

rhinitis and IgE-mediated sensitisation (101–103).

Urban dwelling populations consume soft drinks and

confectionery at levels up to twice that of their rural counterparts

(2, 104), a trend demonstrated in Australia where children living

in urban areas are also more likely to eat fast food, and more

likely to be obese (105). Urban living compared to rural living,

in the USA, has been linked to a doubled risk of peanut and
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shellfish allergies (106). We assert that in addition to

environmental factors and gut microbiome diversity contributing

to reduced risk of allergy in rural settings (107–109), more fresh,

whole foods and less dAGE burden are also important factors.

“Food deserts” describe urban areas where fresh food is hard to

obtain, more fast food is consumed, and there are greater rates of

obesity. A review of ZIP codes in the US identified that a child

living in a food desert vs. a non-food desert had a risk ratio of

1.56 for food allergy (110).

Hyperglycemia is a risk factor for the formation of dAGEs.

Elevated maternal blood glucose in pregnancy has been

associated with an increase rate in IgE sensitization OR 1.6

(driven by food sensitization) and atopic dermatitis OR 1.7 in US

women (111). This finding was in term infants rather than

preterm infants. 20% of pregnant women in the USA are obese

(112) and obesity is strongly related to decreased diversity of the

gut microbiome and metabolic health (113). Western women are

having children later in life and the glyoxalase system reduces

with chronological age so this may also be a factor with this

pregnancy association (114). A recent 2021 study from the US

showed significant associations between maternal AGEs intake

during pregnancy and offspring allergy outcomes or cord blood

cytokines and chemokines (115) although a 2010 study showed

no association between maternal pregnancy dietary patterns and

recurrent wheeze in their offspring (101).

Despite many researchers’ efforts, the AGEs content of many

foods is unknown and calculation of the AGEs scores of

composite foods is difficult to standardize. Future studies may

benefit from using an AGEs food frequency questionnaire,

validated against reliable biomarkers such as serum levels of

AGEs. This information will provide us with validated measures

of dietary intake (115).
AGEs and existing theories of food
allergy

The microbiome

Several hypotheses have been proposed that link allergic disease

risk with the microbiome, or more specifically a depletion thereof,

such as “missing microbes”, “microbiome depletion”, “microbiome

diversity”, “microflora”, “overarching microbiome”, and “old

friends” hypotheses (116). The Western diet, UPFs, low plant

fiber intake, and urban living are associated with less microbial

diversity and more inflammation (117, 118), so the contribution

of each of the factors still needs to be determined in the

development of food allergy. dAGES disrupt and alter the

composition of the gut microbiome and their products,

contributing to inflammation (25). Only 10%–30% of dAGEs are

absorbed, meaning that over 70% interact with the colonic

epithelium and microbiome until being passed out in the stool

(119). Studies on CML suggest 20%–50% of this AGE is excreted

in faeces indicating a metabolic interaction with microbiome

(120). Many dAGEs can be degraded by gut microbiota to

provide a source of nitrogen for growth (121).
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Certain bacteria can generate mAGEs, for example Escherichia

coli secrete mAGEs by the energy-dependent efflux pump system

and uses this as a local toxin to reduce growth of neighboring

competitive bacteria, thus having local inflammatory effects, as

well as influencing the microbiome composition (25).

Bifidobacteria and Lactobacilli are amongst a group of bacteria

that produce the MG degrading enzyme glyoxalase-1, which can

protect from bacteria-produced AGEs and is also capable of

degrading dAGES (122–124). Evidence for dAGEs impacting

microbial composition include studies that show markedly

reduced Bacteroidetes/Firmicutes ratio and increased

inflammatory markers including IL-1β, IL-17 and Plasminogen

activator inhibitor-1, and increased incretins such as gastric

inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-

1) exacerbating insulin resistance (125–127). These may increase

serum blood glucose levels and further amplify formation of

eAGEs, contributing to obesity. dAGES have been associated

with greater protein fermentation, associated by increased levels

of the putrefactive toxic metabolites, ammonia and branched

chain fatty acids at the expense of reportedly beneficial

metabolites like short chain fatty acids (SCFAs) which are

produced when fiber is fermented in the colon (128). Butyrate, a

SCFA, has been linked with both protection against food allergy

as well as having benefit in oral immunotherapy for food allergy

(129, 130). Microbiota species including Lactobacilli,

Bifidobacterium and Prevotella have been linked to protection

from development of food allergy and these microbiota

demonstrably decrease with dAGEs (131–134). We direct readers

to a recent review by Phuong-Nguyen et al., on the effect of

AGEs on the gastrointestinal tract (135).
Barrier function

It has been hypothesized that epidermal sensitisation via an

inflamed and/or disrupted skin epithelium can result in

sensitisation and allergy to foods (136), and this is correlated

with evidence that increased epithelial permeability at birth has

been associated with risk of food allergy at 2 years of age (15).

Several studies have demonstrated the bidirectional link between

gut dysbiosis and skin homeostasis imbalances (137, 138).

Studies indicate that there is increased pathological

gastrointestinal permeability in children with atopic eczema (139).

In an animal model, a high dAGE intake led to loss of epithelial

tight junctions (claudin-1 and 5, occludin) in the jejunum, ileum

and colon, and subsequent increased gut permeability (140). This

has been confirmed in other animal studies looking at dAGEs

and HMGB1, however their focus had been on colonic epithelial

integrity (33, 141). AGEs can also increase epithelial-produced

cytokines which in turn can create an inflammatory milieu for

antigen processing. This inflammation may contribute to loss of

epithelial barrier function. In vitro studies looking at the effect of

glycated dairy-derived caseinates demonstrate increased

permeability and loss of tight barrier function (34, 142). There is

evidence of epithelial injury by AGEs influencing the

microbiome, this is partly by way of a reduction in butyrate-
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producing bacteria which normally bolsters colonic epithelial

barrier integrity (143).
Vitamin D

Low vitamin D levels have been linked to increased risk of food

allergy and anaphylaxis, evidenced by epidemiological data

indicating that living further away from the equator can increase

the risk of peanut allergy by up to 6-fold (144–147). Birth in

winter and spring (associated with lower levels of vitamin D in

mother and offspring) is associated with increased risk of food

allergy (148, 149). Vitamin D deficiency can result in higher

expression of the RAGE, lower levels of sRAGE and higher

serum levels of glyoxalase I enzyme (150). It is notable that

Lactobacillus reuteri, a species associated with reduced Th2

responses (151), is capable of increasing serum vitamin D (152).

Vitamin D is also involved in microbial TLR signalling (153).

There is convergence of RAGE and TLR 2/4 pathways to induce

inflammation, and HMGB1 is capable of agonising these specific

TLRs (32).

The composition of the gut microbiome can be altered by

vitamin D status/ sun exposure. Human studies have reported

significant associations between vitamin D and microbiome

composition. It has been well-demonstrated that vitamin D is

necessary for gastrointestinal barrier integrity by effects on tight

junction proteins, and reducing epithelial apoptosis (154–156).

As mentioned previously, a loss of microbiota diversity and an

increase in barrier dysfunction both contribute to allergy risk (154).
Early complementary feeding

Studies introducing peanut and egg in infancy have been

shown to reduce risk of allergy to these foods (19, 32). In the

following two studies: Learning Early about Peanut Allergy (157),

and Iannotti’s early introduction to egg study (158), sub-analyses

indicated that the intervention groups developed less allergy, and

had also consumed less sweetened and processed foods, querying

the role of decreasing dAGEs in the reduction of food allergy.

Intervention studies in food allergy should consider analyses of

dAGEs.
Reducing AGEs

The potential adverse health effects of AGEs go beyond allergic

risk, extending to cardiac, renal and brain disease as well as

“inflammaging” (159). Interventions to reduce dAGEs can be

relatively easily achieved with lifestyle interventions (159, 160).

These include avoiding fried and microwaved foods, as well as

sugars and sweetened beverages (including commercial fruit

juices) (87, 161), improvements in circulating AGEs,

inflammatory markers, and insulin resistance may be seen within

4 weeks (162). Cooking with herbs and spices, such as rosemary,

garlic, star anise, ginger, cloves, cinnamon and allspice reduces
frontiersin.org

https://doi.org/10.3389/falgy.2023.1148181
https://www.frontiersin.org/journals/allergy
https://www.frontiersin.org/


Smith et al. 10.3389/falgy.2023.1148181
the formation of AGEs (163–165). We direct the reader to Uribarri’s

practical guide to reducing dietary AGEs (87) It is worth noting

some foods regarded as having health benefits may be relatively

high in dAGEs. Caloric restriction has been shown to reduce

circulating AGEs (166, 167), however the mechanisms by which

this occurred has not been elucidated. The mechanisms of this

have not been elucidated however, lower endogenous AGEs will be

formed with lower serum glucose levels and less oxidative stress,

there will be a reduction in formation of AGEs. Enteric microbial

activity will be reduced in fasting states so that mAGEs formation

should be less. Conversely, a single high fat meal has been

associated with increased cellular RAGE and reduced sRAGE

(168). Kim et al. (169) has suggested that regular physical activity

can attenuate the effect of AGEs by its antioxidant mechanisms,

reduction of ROS, and reduction of newly formed AGEs via better

glycaemic control. A Japanese study reported lifestyle factors

including stress, lack of exercise and inadequate sleep were

associated with higher measurements of AGEs (170).

Histamine is derived from the amino acid histidine, mediated

by the enzyme l-histidine decarboxylase. Histamine exerts

immunoregulatory effects and along with its receptors, are

involved in food antigen tolerance and mediate the symptoms of

intolerance, sensitivity, and allergy (171). L-histidine

decarboxylase uses pyridoxal phosphate (vitamin B6) as a

cofactor (172). An RCT of adult asthmatic patients showed

vitamin B6 levels were associated with decreased rates of asthma

symptoms and exacerbations (173). In a double-blind study of 76

asthmatic children, vitamin B6 supplementation was associated

with improvement in asthma symptoms and consequent

reduction in asthma medication-use (174). Vitamin B6 has also

been shown to inhibit the AGE formation pathway (175).

Vitamin C appears to prevent the secretion of histamine by

white blood cells and increase its metabolism (176). Histamine

levels were found to increase exponentially as ascorbic acid levels

in the plasma decreased (177). Vollbracht et al. (178)

demonstrated that high doses of intravenous vitamin C had

positive clinical benefits for patients with both acute and chronic

allergic rhinitis. Vitamin C has been found to inhibit glycation of

serum bovine albumin by 52% and inhibits biochemical reactions

important in decreasing AGEs, including the production of

oxygen-derived free radicals, the accumulation of sorbitol within

cells, and tissue-damaging glycosylation (179).

Berberine has been shown to reduce Th2 responses in an

allergic airways disease model (180) and has also been used to

help induce tolerance of allergic foods (181). In a rat model, cells

treated with berberine showed reduced levels of AGEs,

accompanied by decreased RAGE levels soon afterwards (182). In

a recent 2021 study, berberine was described as a potent AGEs
Frontiers in Allergy 07
inhibitor, significantly suppressing AGE formation in retina

endothelial cells (183).
Conclusion

Factors in the Western diet such as high amounts of sugars,

processing methods such as dehydration of proteins, high

temperature sterilisation to extend shelf life, and cooking

methods such as frying and microwaving (and reheating), can

lead to very high levels of dAGEs. There are suggestive

epidemiological and compelling immunological mechanisms

which associate AGEs with increased risk of allergy. dAGES and

RAGE activation disrupt and alter gut epithelial barriers and the

composition of the gut microbiome and their products. These

lead to inflammatory responses that can drive food allergy, as

there is further injury to the gut epithelium, further

inflammation and altered antigen presentation. RAGE may

contribute in part to polarisation of CD4 + lymphocytes and the

balance of Type 1 and 2 lymphocytes. In sum, these are all

conditions unfavourable for dietary tolerance. Multiple dietary

modifications and lifestyle interventions have the potential to

reduce the formation of AGEs, mitigate their oxidative effects,

and reduce expression of the RAGE receptor.
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