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The prevalence of food allergy continues to rise globally, carrying with it
substantial safety, economic, and emotional burdens. Although preventative
strategies do exist, the heterogeneity of allergy trajectories and clinical
phenotypes has made it difficult to identify patients who would benefit from
these strategies. Therefore, further studies investigating the molecular
mechanisms that differentiate these trajectories are needed. Large-scale omics
studies have identified key insights into the molecular mechanisms for many
different diseases, however the application of these technologies to uncover the
drivers of food allergy development is in its infancy. Here we review the use of
omics approaches in food allergy and highlight key gaps in knowledge for
applying these technologies for the characterization of food allergy development.
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Introduction

The prevalence of food allergy (FA) is rising globally, with recent estimates reporting that

about 8% of the population in the US has FA (1, 2). This comes with a substantial impact on

quality of life and economic burden, costing the U.S. almost $25 billion per year (3, 4). FA is

usually driven by the immune system mounting a T helper 2 (Th2) cell-mediated response

against normally harmless food antigens, leading to the release of Th2 cytokines such as IL-

4, IL-5, and IL-13, which recruit and activate immunoglobulin E (IgE) producing B cells,

mast cells, and eosinophils. Allergen recognition by IgE triggers the degranulation of mast

cells and basophils, releasing vasoactive mediators such as histamine triggering the allergic

response. Therapeutic strategies such as oral immunotherapy (OIT) are effective at

inducing desensitization in several allergens tested in FA through several mechanisms (5–

14). However, these strategies require long-term continued consumption/exposure to the

allergen to maintain desensitization (15). Preventative strategies such as early food

introduction (16–20) and aggressive management of dry skin and eczema [a notable risk
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factor for the development of FA (21–23)] through emollient use

(24–28) have potential for the prevention of FA development.

However, these interventions require a more in-depth

understanding of FA development to identify populations that

would benefit from their use.

The development of FA is often linked to other atopic diseases

such as AD which is common in infants and can lead to the

development of other atopic diseases such as FA in a process

called the atopic march (29). However, there is wide variability

in the trajectories, clinical progression of FA, of infants through

the atopic march, suggesting the presence of many different

unidentified disease endotypes, molecular mechanisms driving

the differences in disease trajectories, which are likely the result

of environmental, genetic, epigenetic, and psychosocial factors

(30, 31). For instance, classical FA has been classified as having 5

different disease trajectories (30). Persistent FA persists over

time, whereas transient FA is outgrown as the patient gets older.

In food-dependent exercise-induced allergy (FDEIA) exercise

within 2–4 h after allergen consumption induces urticaria or

anaphylaxis (30). In non-steroidal anti-inflammatory drug

(NSAID) or aspirin-dependent and alcohol-dependent FA the

intake of NSAIDs or alcohol prior to the ingestion of the allergic

food increases the likelihood and severity of allergic reactions.

Although different trajectories have been associated with

differences in family history and clinical tests such as skin prick

testing and allergen-specific IgE, the molecular mechanisms

responsible for these different trajectories have not yet been

identified. These studies highlight that although it is clear that

that there are different disease trajectories and endotypes in FA,

markers defining these different pathways have not been

identified. For a more in-depth discussion of what is currently

known about allergic trajectories please see other excellent

reviews (30, 31).

The characterization of disease endotypes for FA is a key

unmet need in the field. While there are differences in markers

such as allergen-specific immunoglobulin G (sIgG) between

different food allergens, such as between peanut (which is more

likely to be persistent) and milk (which is more likely to be

transient) (32), we currently lack the ability to predict which

peanut or milk allergic patients will outgrow their FA. Therapies

such as OIT are effective at inducing desensitization, however the

long-time frame and high risk of (mostly mild) adverse reactions

makes OIT an unnecessary burden for the few patients who have

transient FA. Furthermore, while peanut OIT was able to induce

desensitization in 85% of patients only 13% of patients achieved

over 1 year of desensitization that does not require continued

low-dose consumption of their allergenic food (sustained

unresponsiveness, SU) (15). While it is thought that differences

in molecular markers underlie these differences, currently we are

unable to accurately predict which patients achieve either SU or

desensitization. Therefore, there is a pressing need for a deeper

characterization of the molecular changes that occur during the

development of FA and in response to therapy. Omics

technology has already proven to be a valuable tool for

characterizing markers in FA (Table 1), however the application

of these technologies to characterize FA development is still in its
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infancy. Here we summarize the application of omics technology

in FA and discuss its future use in the characterization of FA

development. For a broader understanding of omics assays in

other contexts please refer to these excellent reviews (33–36).
Genomics in FA development

Genomics is the study of changes in the DNA sequences as well

as epigenetic changes that alter the accessibility or activity of the

DNA, and is particularly useful for studying the heritable aspects

and environmental influences (which often result in epigenetic

changes) of FA. Family history is a known risk factor for the

development of FA. The prevalence of self-reported peanut

allergy in individuals with peanut allergic siblings is 6.9% (37), in

contrast to ∼2.9% in the general population (38). Furthermore

the peanut allergy concordance between monozygotic twins is

64.3% (39). These and other findings (2, 40–44) suggest that

genetic and/or epigenetic modifications play a role in the

development of at least some FA endotypes. Several studies have

found associations between HLA genes and specific allergens, for

instance in the LEAP trial the participants who consumed as

opposed to avoided peanut had sIgG4 levels that were positively

correlated with HLA-DQA1*01:02 (P = 2.21 × 10–4), suggesting a

possible role in tolerance (45). However, the relationship between

HLA-DQA1*01:02 may be context dependent as other studies

have found that HLA-DQA1*01:02 is positively correlated with

peanut allergy (OR 1.81) (46). In contrast, other HLA loci such

as HLA-DR rs7192 and HLA-DQ rs9275596 are associated with

peanut allergy (P = 5.5 × 10−8 and P = 6.8 × 10−10 respectively)

(46, 47). Another HLA gene, HLA-DPB1∗02:01:02 as well as the

single nucleotide polymorphism (SNP) rs9277630, were found to

increase the risk of having wheat-dependent exercise-induced

anaphylaxis in a Japanese patient cohort [odds ratio (OR): 4.13

and 3.53 respectively] (48). Aside from HLA genes, MALT1 and

its single nucleotide variant rs57265082 was associated with the

development of peanut allergy in patients who avoided peanut in

the LEAP study (OR: 10.99) (49). Additionally, 2 STAT6 SNPs

(rs324015 and rs1059513) were associated with the presence of

FA, peanut allergy, and cow’s milk allergy in a subgroup of the

GENEVA cohort (50).

Alterations in epigenetic modifications such as DNA

methylation have often been associated with the development of

many diseases. DNA methylation profiling identified a panel of

16 CpG sites whose methylation pattern at birth is associated

with IgE levels during childhood that were discovered in the

Taiwan Maternal and Infant Cohort Study and validated in the

Isle of Wight cohort (51), however whether this methylation

panel is strong enough to predict the development of allergy has

not been tested. In older patients, next generation bi-sulfite

sequencing identified a panel of 12 CpG sites whose methylation

status could be used to differentiate between peanut allergic and

non-allergic patients (52). Most of these sites were associated

with cytokines and other secreted proteins whose secretion was

increased in peanut allergic patients. Similarly, a panel of 25

differentially methylated regions were found in infant blood from
frontiersin.org
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TABLE 1 Markers from omics studies for FA and FA development.

Marker Omics Branch Population Association Citation
HLA-DQA1*01:02 Genomics LEAP study, 640 4–11 mo with

severe eczema and/or egg allergy
Positively correlated with peanut sIgG4 levels (P =
2.21 × 10–4)

(45)

HLA-DQA1*01:02 Genomics 73 peanut allergic and 148 non-
allergic ∼1 yo infants

Positively correlated with presence of peanut
allergy (OR 1.81)

(46)

HLA-DR rs7192 and HLA-DQ rs9275596 Genomics Chicago Food Allergy Study, 1,315
children; 1,444 biological parents

Associated with the presence of FA (P = 5.5 × 10−8

and P = 6.8 × 10−10)
(47)

HLA-DPB1∗02:01:02 and rs9277630 (HCG24
SNP)

Genomics 77 individuals with WDEIA Increases the risk of having wheat-dependent
exercise-induced anaphylaxis (OR: 4.13 and 3.53
respectively)

(48)

MALT1 and rs57265082 (MALT1 SNP) Genomics LEAP study, 640 4–11 mo with
severe eczema and/or egg allergy

Associated with the development of peanut allergy
in patients who avoided peanut (OR: 10.99)

(49)

rs324015 and rs1059513 (STAT6 SNPs) Genomics Subgroup of the GENEVA cohort,
369 trios of children with FA and
their patents, including 262
children

Associated with the presence of FA (P = .036 and
P = .013)

(50)

Methylation of 16 CpG site panel Genomics Taiwan Maternal and Infant
Cohort Study, 299 mother-
newborn

Methylation pattern at birth is associated with IgE
levels during childhood

(51)

Methylation of 12 CpG sites Genomics 10 peanut allergic and 10 non-
allergic 5–10 yo

Methylation status differentiates between peanut
allergic and non-allergic patients

(52)

Differential methylation of 25 regions Genomics ALADDIN cohort, 288 PBMC
samples from 74 mother/child
pairs

Associated with sensitization to food allergens at 5
years of age

(53)

Methylation of panel of 203 CpG sites Genomics 21 peanut-allergic children Associated with differences in peanut reaction
severity

(54)

CD154+ and CD137 + peanut-reactive Th cells
during OIT

Transcriptomics 12 peanut allergic patients Positive OIT outcome associated with suppression
of Th2 signatures and poor OIT outcome
associated with a baseline inflammatory gene
signature in Th1 and Th17 cells that did not
change with OIT

(61)

Lasso regression modeling of a protein panel: HLA
A-C/E-G, IL-9, GADD45A, MPO, IL-15,
TNFAIP3, MYDGF, MMP9, CCR10, IL-17A, EPX,
CXCL9, IRF2, CCL8, IL-26, CCL17, PTGDR,
LGALS 9/9B/9C, HRG, IL-12B, EHBP1, farming
environment, CCL24, NGF, PLEKHA4, VEGFD,
CXCL5, and IGIP

Proteomics Subgroup of 8 children from the
FARMFLORA birth cohort

Abundance at 1 month of age predicts
development FA by 8 years of age (AUC 0.87)

(75)

Skin KRT5, KRT14, and KRT16 Proteomics AD FA+, n = 21; AD FA−, n = 19;
NA, n = 22

Increased in patients with both FA and AD (76)

Panel of 45 proteins Proteomics AD FA+, n = 21; AD FA−, n = 19;
NA, n = 22

Associated with high transepidermal water loss
and allergic sensitization

(77)

Plasma phenylalanine Metabolomics/
Lipidomics

Subcohort of 485 infants from
Barwon Infant Study birth cohort

Associated with increased odds of developing FA
(OR 1.6, 95% CI: 1.092–2.344)

(79)

Increase in several unsaturated fatty acids and
decrease in conjugated bile acids

Metabolomics/
Lipidomics

3–36 mo children, 42 AD and 23
healthy controls

Associated with FA (80)

Lactate, creatinine, and glutamine Metabolomics/
Lipidomics

23 participants (12 peanut allergic
and 11 peanut tolerant)

Elevated in patients with peanut allergy (81)

Panel of 53 metabolites Metabolomics/
Lipidomics

125≤ 12 yo children Altered in children with FA (82)

Random forest model built from 12 metabolites Metabolomics/
Lipidomics

20 FA and 20 healthy children Prediction of FA (AUC 0.708, 95% CI 0.483–
0.926) and FA resolution (AUC 0.947, 95% CI
0.748–1.000)

(83)

Cord blood metabolite panel: opthalmic acid,
ursodeoxycholic acid, δ-tocopherol, glyceric acid,
lactose, cellobiose, sorbitol, and nigerose

Metabolomics/
Lipidomics

FARMFLORA birth cohort, 65
children

Associated with the development of FA at any
timepoint (18 months, 3 years, and 8 years)

(84)

Triacylglycerols Metabolomics/
Lipidomics

Boston Birth Cohort, 647 mother-
child pairs

Decreased in children who developed FA with
C56:8 having the strongest association (OR 0.57,
95% CI: 0.42–0.77)

(85)

Panel of 97 fecal metabolites Metabolomics/
Lipidomics

18 adult twins with discordant (13)
or concordant (5) FA

Differentially altered in FA vs healthy twins (86)

Urinary tetranor-PGDM Metabolomics/
Lipidomics

9 FA patients and 39 healthy
control

Increased in FA (87)

Salivary acetate, butyrate and propionate Metabolomics/
Lipidomics

105 subjects (56 with peanut
allergy and 49 healthy subjects)

Decreased in peanut allergy (88)
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the Assessment of Lifestyle and Allergic Disease During Infancy

(ALADDIN) cohort and replicated in the Children, Allergy,

Milieu, Stockholm, Epidemiology (BAMSE) cohort that were

associated with sensitization to food allergens at 5 years of age

(53). In addition to sensitization, a panel of 203 CpG sites, with

key hubs at NFKBIA and ARG1, has been identified whose

methylations status is associated with differences in peanut

reaction severity (54). Interestingly, methylation of these sites was

suggested to be mediated by expression of PHACTR1 and

ZNF121, suggesting that these genes could potentially be targeted

to reduce reaction severity for at least peanut allergy.

In summary, most genomic assays in FA have compared

polymorphisms or epigenetic modifications between allergic vs.

non-allergic patients and have largely focused on the

identification of risk factors for FA. Since genetic/epigenetic

components likely influence FA development (2, 40–44),

genomics could be used to compare differences at birth to the

development of FA later in life. In comparison to other omics

assays, genomics is especially valuable for identifying molecular

mechanisms for FA population disparities and heritability. A

large-scale international collaboration between birth cohort

studies would be invaluable for validating whether individuals

with different ethnic backgrounds are prone to following

different trajectories, with differing underlying endotypes.

International collaborations would not only allow for much

larger cohort sizes but would also vastly improve the study’s

ability to sample differences in regional genetic variation which

likely influence FA development. Twin studies are valuable for

identifying factors associated with inheritance of FA, however the

rarity of twins makes them difficult attain a large cohort size and

would thus also benefit from large scale collaborations between

institutions. This would facilitate the identification of high-risk

patients that would benefit from preventative therapy.
Transcriptomics in FA development

Transcriptomics is the study of RNA transcripts that bridge the

gap between the genome and the proteome, which is useful for

identifying active processes and pathways in the cell. These

approaches tend to be sensitive, cheap, and high-throughput

compared to other omics approaches which make them well

suited for large-scale screening. Many studies have assessed

alterations in the transcriptome response between patients with

and without FA as well as in response to FA therapy (55–62).

Recent studies have used whole blood transcriptomics to identify

potential differentially regulated genes (DEGs) that are altered in

peanut and tree nut allergies, however further studies are needed

to characterize the predictive potential of these DEGs in an

independent cohort (57, 60). RNA microarrays from peripheral

blood mononuclear cells isolated from the blood of egg allergic

patients found that after 3 months of OIT DEGs (linear fold

change ≥|1.5| or ≥|1.3| with Benjamini–Hochberg adjusted p-

value≤ 0.05) were largely upregulated (72%) in comparison to

baseline while after 8 months, most DEGs were downregulated

(86%) (58). This could reflect changes in the immune response
Frontiers in Allergy 04
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studies are needed to functionally characterize these changes.

Among transcriptomics assays, single cell RNA sequencing is

particularly powerful for its ability to characterize the

heterogenous population of cells and differentiate the complex

response to therapy. This technology was well utilized in a study

employing single cell RNA-seq and paired T cell receptor α/β

(TCRα/β) sequencing to track CD154+ and CD137 + peanut-

reactive T helper (Th) cells during OIT (61). Positive OIT

outcome was associated with stronger suppression of Th2

signatures in Th2A-like cells, and poor OIT outcome was

associated with a baseline inflammatory gene signature in Th1

and Th17 cells that did not change with OIT, suggesting that

transcriptomics may be useful for the prognosis of FA. OIT was

found to suppress the Th2 and Th1 gene signatures in effector T

clonotypes, but not T follicular helper–like clonotypes. Single cell

RNA-seq experiments from other cells (Tregs, CD4+ T cells, and

γδ T cells) showed alterations in gene expression after peanut

OIT (55, 56, 62). RNA seq during peanut OIT with adjuvant

omalizumab in the FASTX study, found that the pretreatment of

the anti-IgE antibody omalizumab prior to initiation of OIT does

not alter whole blood gene expression in peanut allergic patients

(59). However, a comparison of the whole blood gene expression

profile before and after 2–3 years of omalizumab-facilitated

peanut OIT showed that peanut OIT decreased processes

associated with neutrophil degranulation. Although these studies

suggest that there are differences in the gene expression profiles

of patients with different desensitization outcomes, further

studies are needed to identify a prognostic marker signature that

could be used to predict these outcomes early on.

Analysis of the transcribed B cell receptor (BCR) sequences

encoding allergen specific IgE in FA has recently contributed to

understanding of FA pathogenesis. Since FA is usually driven by

IgE-mediated reactions, characterization of IgE-producing could

provide key insights into FA development. However, this has

been challenging due to the rarity of B cells in FA patient blood,

with B cell binding to sIgE epitopes being reported at 0.0097%

(Ara h 1) and 0.029% (Ara h 2) (63–65). Allergen-specific IgE +

B cells in peanut allergy are often members of clones containing

other B cells expressing IgG or IgA subclass isotypes, and current

evidence suggests that the IgE + cells are a minority of total

allergen-specific B cells, even in symptomatic FA patients(63, 66).

Single-cell transcriptomic analysis of IgE + B cells in peanut

allergic patients identified a peanut allergen-specific public or

convergent clonotype with highly similar BCR sequences between

two allergic individuals, as well as additional clones with

similarity to BCR heavy chain transcripts from an unrelated

study of peanut allergic patients undergoing OIT, indicating that

some portion of the peanut allergen-specific IgE response is

shared between individuals at the level of BCR sequences (64,

67). Beyond the blood, initial studies of IgE + B lineage cells in

the esophagus, stomach and duodenum of peanut allergic

patients showed evidence of local clonal expansion and IgE class

switching in these tissues, as well as additional convergent or

public IgE + clonotypes shared between patients (63). The extent

to which mast cells in these tissue sites acquire locally produced
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IgE in their high-affinity IgE receptors, and the functional

consequences for mast cell sensitization and degranulation

warrant further investigation. Other intriguing and largely open

questions in FA research are how OIT and other

immunotherapies alter the clonal populations of allergen-specific

B cells in terms of clonal frequencies, phenotypes, isotype

expression and affinity maturation.

Although transcriptomics has been used to characterize

alterations in immune cell populations after therapy, the use of

transcriptomics to identify early prognostic markers for the

development of FA is still in its infancy. The high throughput,

sensitivity, comparatively low cost, and potential for single cell

analysis makes transcriptomics particularly amenable for the

identification of novel prognostic markers. These traits make

transcriptomics particularly valuable for the identification of

markers from specific cell populations that are particularly

important for FA. Analysis of antigen-specific B cell and T cell

receptor transcripts in FA is beginning to make inroads towards

greater understanding of the features of B cell and T cells

populations that ultimately result in production of pathogenic

IgE, as well as providing a high-resolution approach toward

monitoring the effects of OIT and other therapies on adaptive

immune cell populations in FA patients. Other exciting cell

populations for elucidating FA endotypes that are currently

understudied in FA include basophils and mast cells, both of

which are being investigated for their potential in predicting

therapeutic outcomes. However, general transcriptome assays

have a high false discovery rate, and future studies should ensure

that transcriptomics leads are validated at least at the RNA level,

and ideally at the protein level, by assays such as qPCR and

Western blot.
Proteomics in FA development

Not all RNA transcripts are translated into functional proteins

therefore, out of all the single-target omics approaches, proteomics

provides the strongest predictive power (68), likely due to proteins

being one of the closest measures for biological activity in the cell.

Although many studies have used proteomics for the identification

of novel allergenic peptides (69–74), only a few studies have

leveraged the power of proteomics for FA development.

Lasso logistic regression modeling of whole blood proteomics

from a small sub group of the FARMFLORA cohort identified a

panel of 27 proteins and in blood collected at 1 month of age

whose abundance was associated with the development of FA by

8 years of age(AUC 0.87) (75). Since AD often precedes the

development of FA, alterations in the skin may reflect the

development of FA later in life. Skin tape strip proteomics

indicated that patients with both AD and FA have increased

abundance of several keratins, notably KRT5, KRT14, and

KRT16 in comparison to healthy or patients with only AD (76).

This increase in KRT5, KRT14, and KRT16, was found to be a

stronger predictor for the co-occurrence of AD and FA than

other parameters including transepidermal water loss, and factors

identified from either transcriptomics or metabolomic,
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prognostic markers. In a follow up study, a proteomic analysis of

skin tape strips in children identified a panel of 45 proteins,

including the previously identified keratins, that were associated

with high transepidermal water loss and allergic sensitization

(77). This panel was validated in a separate cohort of adult

patients, where the protein panel was significantly higher in AD

patients with peanut allergy and was lowest in healthy patients.

Together these studies show that proteomics can identify

markers for FA trajectories, in this case for patients who develop

AD and FA. Although this protein panel would likely need to be

further refined for better separation between patients with both

AD and FA and patients with only AD, before it is used in the

clinic, these studies highlight the potential of applying

proteomics to identify markers for other indications such as FA

development. Of particular interest is the potential of skin tape

strip proteomics, as they are minimally invasive and can easily be

performed on infants. This would allow them to be easily

implemented in birth cohort studies that follow the development

of FA. However further studies on the use of proteomics on FA

alone, outside the context of AD, are needed to assess whether

they retain a similar predictive potential. Another interesting

application of this technology is in studies investigating the

treatment of AD for the prevention of FA. These studies have

been hampered by adherence issues with the use of emollients

for treating AD. Skin tape stripping could be used to compare

skin proteomic signatures to levels of the emollient that were

used on the skin, as has been done for other topical drugs like

tazarotene (78), by analyzing skin tape strips from different

layers. This could help link actual use of emollients for the

treatment of AD to molecular alterations in skin cells that could

influence FA development.
Metabolomics/lipidomics in FA
development

Metabolomics and its subfield focused on lipids, lipidomics,

studies the metabolic products formed when active proteins are

broken down which are often altered in disease states.

Metabolomics from biofluids has provided key insights into the

underlying mechanisms in many diseases, and recently several

studies have identified potential FA metabolic prognostic

markers from a range of biofluids including plasma, cord blood,

saliva, and urine. The Barwon Infant Study found that higher

plasma phenylalanine was associated with increased odds of

developing FA (OR 1.6, 95% CI: 1.092–2.344) in 1 year old (yo)

infants (79). Furthermore, patients with peanut allergies have

elevated lactate, creatinine, and glutamine which could be

detected in their plasma prior to consumption of peanuts,

suggesting that alteration in metabolite levels may be able to

predict the presence of FA (81). In line with this, untargeted

metabolomics identified a panel of 53 metabolites that are

altered in children with FA compared to non-atopic children,

including lipid metabolites such as sphingolipids and ceramides

and amino acid metabolites such as lysine and threonine (82).
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Interestingly, 41 metabolites were significantly altered in children

with multiple, as opposed to single FA, and some metabolites were

altered in children who had anaphylactic reactions. Similarly,

serum metabolomics identified 12 metabolites that were

differentially abundant in FA and control children including

sphingolipids, acylcarnitine, and lysophosphatidic acid

metabolites, which were used to build a random forest model

for the prediction of FA (AUC 0.708, 95% CI 0.483–0.926) (83).

Interestingly, 12 metabolites were differentially abundant

between children with persistent vs. transient FA, which could

be used for the prediction of FA resolution (AUC 0.947, 95% CI

0.748–1.000). However further studies are needed to validate

this model in a large independent cohort.

In addition to serum/plasma other studies are starting to

investigate the metabolome of other biofluids. The FARMFLORA

birth cohort found 8 cord blood metabolites that were associated

with the eventual development of FA, however no single metabolite

was associated with FA development across all time points (18

months, 3 years, and 8 years) possibly due to the low sample size

in this cohort (n = 44) (84). In contrast, lipidomics from cord blood

samples in the Boston Birth Cohort identified several triacylglycerols

that were decreased in children who developed FA with C56:8

having the strongest association (OR 0.57, 95% CI: 0.42–0.77) (85).

A study of adult twins with FA found 97 metabolites that were

differentially altered in fecal samples of healthy and allergic twins

(86). Interestingly, the strongest sub-pathway in these metabolites

was diacylglycerol, which was enriched in healthy as opposed to FA

twins. Urinary metabolomics from a milk allergic mouse model

found that tetranor-prostaglandin D metabolite (tetranor-PGDM)

was in increased in FA mice and was associated with disease

severity (87). These findings were validated in humans where

urinary tetranor-PGDM was significantly increased in human

patients with FA in comparison to healthy controls (P < 0.001) and

other atopic diseases. Liquid chromatography/mass spectrometry

from saliva samples found that peanut allergic patients had

decreased acetate, butyrate and propionate in comparison to healthy

controls (88), highlighting that saliva may be an easy to collect

source of FA biomarkers.

Together these findings demonstrate that metabolomics holds

great potential for the characterization of FA development, with

several studies identifying potential markers for predicting FA

development and resolution (79, 82, 84, 85). Importantly, these

studies highlight the importance of building a panel of

prognostic biomarkers, as the predictive power of individual

markers was generally not very powerful. Future studies

investigating the durability of these prognostic markers in larger

cohorts across more diverse age groups would facilitate the

translation of these exciting findings to the clinic (Table 1).

Other key questions of interest are whether these markers are

better at predicting the trajectories of one allergen vs. another

and whether metabolic differences could be used to predict

response to therapy. For instance, the metabolism of patients

with peanut allergy may be notably different than those with

milk allergy given the differences in their resolution. These

questions would require a very large patient cohort, highlighting

the importance of large-scale international collaborations.
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resource for discovering the disease development and druggable

targets in many different diseases (89–91), and technological

advances continue to make these technologies more powerful

and affordable. To date, the use of genomics, transcriptomics,

proteomics, metabolomics, and lipidomics have been more

focused on identifying biomarkers for the presence or absence of

FA, however application of these technologies could also be used

for the characterization of FA development. This would not only

aid in the identification of patients that are likely to have

persistent FA who are more likely to benefit from therapeutic

options but could also help predict which patients are at risk for

developing other atopic diseases.
Using multi-omics approaches to
characterize FA development

So, when should these omics technologies be applied to FA to

assess FA development? The landmark Learning Early About

Peanut (LEAP) trial as well as follow-up studies demonstrated

that early introduction of peanut can prevent the development

of peanut allergy even in sensitized children (19, 92, 93),

indicating that the risk of FA begins developing early in life.

Therefore, dissecting the mechanisms governing the

heterogeneity FA development, would require longitudinal

monitoring of patients from close to birth until later in life,

making large scale birth cohort studies most suitable for

identifying markers for different FA trajectories and endotypes

(Figure 1). Due to the challenges in recruiting a large diverse

patient cohort at a single center, large international

collaborations between birth cohort studies could greatly

enhance our ability to characterize FA development. Although

combining multiple cohorts does increase the complexity of the

data, tools have been developed to facilitate the integration of

patient cohorts (94, 95). Once it is clear what trajectories

patients follow, samples collected early in life could be profiled

to identify predictive markers for the stratification of patients

based on disease trajectories and identification of individuals

who would benefit from preventative therapies (24, 96)

(NCT03742414, NCT04798079). Although most studies, in FA

to date have focused on single omics approaches a combined

multi-omics approach using machine learning allows for the

development of a much stronger predictive model than any

single approach alone (68). This highlights the importance of

collaboration across groups with different research backgrounds

as different omics approaches each have their own unique

advantages in characterizing FA development. Future studies

should work closely with international consortia to establish

standardized methodologies for FA diagnosis, sample

collection, and treatment. This would greatly facilitate large-

scale collaborations which are often challenging due to the lack

of standardized practices. Furthermore, the generation of large-

scale publicly available sample biobanking would provide a

tremendous resource for dissecting molecular mechanisms of

FA development as well as many other crucial research questions.
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FIGURE 1

Using birth cohorts to unravel FA endotypes. Schematic of how omics approaches could be applied to birth cohorts to characterize the molecular
mechanisms of FA development.
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Conclusion

In the last several years there has been an increasing application

of omics technology in FA demonstrating a strong rational to

leverage these powerful technologies for the identification of FA

trajectories and endotypes. Although there have been relatively

few studies so far, they have already uncovered many exciting

leads that with further development could allow for the

prediction of which patients are likely to develop FA and would

be greatly benefit from preventative strategies. The potential

markers for FA resolution could be further developed to identify

which patients are most likely to benefit from therapies such as

OIT. Lastly, preliminary markers for therapeutic outcomes could

lead to the development of next generation therapies to improve

the ability to achieve sustained desensitization. We look forward

to the future application of these technologies in large-scale

longitudinal birth cohorts and would like to encourage the use of

large-scale international collaborations to allow for rigorous

assessment of these complex challenges.
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