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Birch pollen—The unpleasant
herald of spring
Marianne Raith and Ines Swoboda*

Competence Center for Molecular Biotechnology, Molecular Biotechnology Section, FH Campus Wien,
University of Applied Sciences, Vienna, Austria

Type I respiratory allergies to birch pollen and pollen from related trees of the
order Fagales are increasing in industrialized countries, especially in the
temperate zone of the Northern hemisphere, but the reasons for this increase
are still debated and seem to be multifaceted. While the most important
allergenic molecules of birch pollen have been identified and characterized, the
contribution of other pollen components, such as lipids, non-allergenic
immunomodulatory proteins, or the pollen microbiome, to the development of
allergic reactions are sparsely known. Furthermore, what also needs to be
considered is that pollen is exposed to external influences which can alter its
allergenicity. These external influences include environmental factors such as
gaseous pollutants like ozone or nitrogen oxides or particulate air pollutants,
but also meteorological events like changes in temperature, humidity, or
precipitation. In this review, we look at the birch pollen from different angles
and summarize current knowledge on internal and external influences that have
an impact on the allergenicity of birch pollen and its interactions with the
epithelial barrier. We focus on epithelial cells since these cells are the first line
of defense in respiratory disease and are increasingly considered to be a
regulatory tissue for the protection against the development of respiratory
allergies.
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Introduction

IgE-mediated respiratory allergies are constantly increasing in industrialized countries

(1). The reasons for this increase are still under debate and involve beside the

improvement of the health care system that leads to improved diagnosis and greater

awareness of the diseases, genetic as well as environmental factors. Environmental factors

that have been proposed as causes of higher prevalence are increased allergen exposure

resulting from shifts in the geographic distribution or in vegetation time of plants,

increased air pollution and a decrease in microbial exposure. The most important plant-

derived inhalant allergen source is pollen. Currently, pollen allergy affects about 20%–25%

of the European population (2), resulting in impaired quality of life and high

socioeconomic costs. In Europe, there are several pollen alert services, mostly provided by

the government, which can help affected individuals to avoid outdoor activities on days

with high pollen counts. However, it seems that not only the amount of pollen in the air

is responsible for the severity of allergic reactions, but that other factors may also have an

influence, either on the pollen directly or on the affected individual.

Tree pollen, especially pollen from angiosperms, is well studied from various aspects:

e.g., pollen composition and development, the role in the plant as a male gametophyte,

the impact on human health as an important allergen source, and the influence of
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/falgy.2023.1181675&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/falgy.2023.1181675
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/falgy.2023.1181675/full
https://www.frontiersin.org/articles/10.3389/falgy.2023.1181675/full
https://www.frontiersin.org/journals/allergy
https://doi.org/10.3389/falgy.2023.1181675
https://www.frontiersin.org/journals/allergy
https://www.frontiersin.org/


Raith and Swoboda 10.3389/falgy.2023.1181675
environmental conditions (e.g., air pollution) on pollen, but a

multidisciplinary overview is lacking. Therefore, the aim of this

review is to combine research from different fields and to

provide a comprehensive overview of birch pollen, the major tree

pollen allergen source in Central and Northern Europe, its

composition, known external influences on its allergenicity, and

its effects on the human body, especially on the epithelium of

the respiratory tract.

In Central and Northern Europe, the most important tree

pollen allergies are caused by birch pollen and pollen from

related trees of the order Fagales, including the genera Corylus

(hazel), Fagus (beech), Alnus (alder), Quercus (oak), Carpinus

(Hornbeam) and Castanea (Chestnut), which affect almost 25%

of allergic individuals (3). The most dominant pollen allergen of

Fagales trees is Bet v 1, the major birch pollen allergen, that

cross-reacts with homologous allergens from related trees and

usually initiates the sensitization process to these pollens. In

Central and Northern Europe, 95% of birch pollen allergic

individuals react to Bet v 1 (4), and 60% are solely sensitized to

this birch pollen allergen (5). Still, in addition to Bet v 1 five

other allergens have been described in birch pollen (see below).

Interestingly, pollen from these trees not only affects sensitized

individuals through the air, but a number of pollen allergens

have homologs in plant foods and cause the so-called pollen-

food-syndrome (PFS), formerly known as oral allergy syndrome

(OAS) (6).

Most studies focusing on birch pollen as a cause of allergic

symptoms, consider the pollen primarily as a carrier of the

allergenic molecules Bet v 1 to Bet v 8, while it is often neglected

that allergens do not encounter the human respiratory tract in

pure form, but together with other pollen-derived proteins

(allergenic and non-allergenic), lipids and carbohydrates and

other pollen-associated substances, even living organisms (e.g.,

bacteria or fungi). Single (recombinant) allergens are of great

value when it comes to component-resolved diagnostics and may

also be beneficial for future therapeutic approaches, but when

studying the influence of pollen allergens on airway epithelial

cells, the impact of accompanying factors is of immense

importance to understand the mechanisms leading to allergic

reactions.
Structure and composition of the
pollen grain

Architecture of the pollen grain

Sexual reproduction in wind-pollinated plants starts with the

male gametophytes, which are transported through the air to the

stigma, which is part of the female birch flower. The pollen itself

contains one large vegetative cell and two smaller spermatocytes

(Figure 1). The spermatocytes have their own plasmalemma and

are thus separated from the vegetative cell. In addition to the two

spermatocytes, the vegetative cell has a large central nucleus with

an adjacent endoplasmic reticulum, mitochondria, starch

containing plastids and many storage organelles. They are rich in
Frontiers in Allergy 02
proteins, carbohydrates and lipids, often contained in specialized

organelles, called lipid droplets.

The pollen grain is surrounded by a series of envelops forming

a thick wall, starting with the plasmalemma that surrounds the

cytoplasm, followed by the intine and the exine, which is then

coated by various lipids such as sterol esters or triacylglycerides

(the pollen coat). While the intine consists mainly of cellulose

(fibrillar cellulose and hemicellulosa), pectins and associated

enzymes important for the germination and growth of the pollen

tube, the exine consists of sporopollenin, an extremely stable

structure. The exine itself has two layers: the endexine towards

the intine and the ektexine (consisting of a foot layer, a

columella layer, and the tectum) towards the pollen coat. The

lipids in the pollen coat (also known as pollenkitt) protect the

pollen from external influences such as UV light (7) or

dehydration (8), but also from pathogens. The pollen coat is also

a habitat for various symbiotic microbes, which form the pollen

microbiome. In contrast to the continuous lining of the intine,

the exine also has one or more thinner areas, called apertures

that facilitate water and gas exchange and from where the pollen

tube germinates. The number, morphology, and position of

apertures vary greatly among species (9). In dicotyledonous

plants, such as birch, three apertures are predominant. In

addition to their function in the germination process, the

apertures also play an important role in adaption of the pollen to

volume changes due to desiccation and hydration (10).
Lipids in the pollen

As expected from the multilayered structure of the pollen wall

and intracellular structures, a high number of fatty acids are found

in the pollen grain. The lipids that form the phospholipid-bilayer of

the plasma membrane and the typically large endoplasmic

reticulum in the vegetative cell are synthesized de novo in the

chloroplast stroma. The most abundant fatty acids of these

cellular membranes are octadecadienoid (linoleic) and

hexadecenoic (palmitic) acids (11). As in most biological

membranes in photosynthetic plants, glycerophospholipids

dominate, although the polar head groups can be highly variable.

In pollen membranes, choline, ethanolamine, serine, glycerol, and

inositol are the most abundant (12).

In addition, a highly stable and chemically resistant layer of

sphingolipids is found in the membrane of the plasmalemma and

the endoplasmic reticulum, which play an important role in the

response to biotic and abiotic stress, such as drought (13). Other

important lipids in plant pollen grains are glycoceramides

(mainly in intracellular membranes) and galactolipids (mainly in

plastids), the latter also playing an important role in the response

to abiotic stress.

As mentioned above, cytoplasmic lipid droplets are also present

in pollen. They consist of a monolayer of phospholipids and a core

of triacylglycerides, which make up the bulk of lipid droplets (14).

Lipid droplets are known to have structural and/or metabolic

functions and thus represent reserves of energy-rich metabolites

and other components for future metabolic needs. Lipid droplets
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FIGURE 1

Schematic representation of the structure of the pollen grain. Birch pollen has a diameter of 18 to 30 µm and consists of a large vegetative cell and two
smaller spermatocytes. The vegetative cell is surrounded by the plasmalemma, the intine and the exine, the latter being composed of the endexine
(towards the intine), the ektexine, and the pollen coat (at the outer most part), which is colonized by the microbiome. In the cytoplasm, the
vegetative cell contains a central nucleus with an adjacent endoplasmic reticulum, as well as mitochondria, starch containing plastids, lipid droplets,
and other storage organelles. Created with BioRender.com.
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increase during pollen development and are transported from

the pollen grain to the pollen tube, where they are involved in

pollen germination, penetration of the stigma and pollen tube

growth (15).

It is known that among the immunomodulatory components

present in pollen, lipids play an important role. In this context it

has been shown that lipid-derived fatty acids can either directly

interact with allergens such as Bet v 1 (16) or they can influence

the immune response by their interaction with innate

lymphocytes, such as natural killer T (NKT) cells (17). It has

indeed been shown that polar lipids, diacylglycerols, free fatty

acids, and triacylglycerols can be internalized by dendritic cells

and can be presented by CD1 molecules to NKT cells, which

release cytokines such as IL4 that promote the differentiation of

Th0 lymphocytes into Th2 cells (18). Two of the most important

forms in which lipids can reach the airways and modulate the

immune response, are lipopolysaccharides (LPS) released by

bacteria, which will be discussed later in this review, and so-

called pollen-associated lipid mediators (PALMs). Under the
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to eicosanoids are summarized. Behrendt et al. showed that

substantial amounts of PALMs are released during hydration of

pollen grains (19). In the pollen, PALMs appear to be involved

in the stress response to pathogens or heavy metal exposure (20,

21). Due to their similarity to eicosanoids, PALMs can induce

maturation and migration of dendritic cells and trigger Th2 cell

polarization that then contributes to the development of allergy

in pollen-exposed tissues of predisposed individuals (22).
Proteins and enzymes in the pollen

Mature pollen is usually metabolically inactive and has a rather

small transcriptome. Genes expressed in pollen contribute to cell

wall metabolism as well as carbohydrate and energy metabolism.

As in any eukaryotic cell, cytoskeletal proteins and proteins for

signal transduction are also expressed. Here we attempt to

provide an overview of the most relevant allergenic and
frontiersin.org
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immunologically relevant non-allergenic proteins in birch pollen

known to date (Figure 2, left panel). However, we are aware that

this is ongoing research and therefore this list needs to be

constantly expanded.
Allergenic proteins

Bet v 1 and Bet v 1-like protein family

Bet v 1 is the major allergen in birch pollen and belongs to the

pathogenesis-related protein class 10 (PR-10), which are highly

conserved proteins of small size of about 160 amino acids and a

molecular mass of ∼17 kDa with a similar structure (23). More

than 100 proteins of the PR-10 class are known today, among

them also many other aeroallergens and food allergens that are

known to be highly IgE cross-reactive and are thus regarded as

important panallergens. In general, PR-10 proteins are suggested

to participate in defense mechanisms and play a protective role

in the plant. However, PR-10 proteins are also constitutively

expressed in some parts of the plant (e.g., pollen) and could also

have other functions, such as in plant growth or development

(23). In 1989, the first Bet v 1 cDNA was cloned by

immunoscreening of a pollen cDNA library using sera of birch

pollen allergic individuals (24). Later, several Bet v 1 isoforms

have been identified, which differ only by a few amino acids (25,

26), but display variable IgE reactivities, with Bet v 1a showing

the strongest IgE binding capacity (27). Crystallographic analyses

revealed that Bet v 1 has a hydrophobic cavity that can bind

different ligands depending on the Bet v 1 isoform (28). One of

the most interesting Bet v 1 ligands is quercetin, a glycosylated

flavonoid, because this siderophore plays an important function in

iron binding and thus influences the allergenicity of Bet v 1 (29–

31). It has been shown that Bet v 1 in the absence of iron induces

T cells to elicit a Th2 response, which is not the case when

quercetin binds Fe3+ and ligates to Bet v 1 (31). The explanation

for this could be a change in the structure of Bet v 1, as it has

been shown that interaction with the ligand increases the volume

of the hydrophobic pocket, causing a structural change that could

affect the uptake and processing of the protein (32, 33).
Profilin (Bet v 2)

Another plant panallergen present in birch pollen is Bet v 2, a

member of the profilin family, which is expressed in pollen, seeds

and fruits of almost all plants (34). Profilins are actin-binding

proteins, which can also bind poly-L-proline or phosphoinositide

and thus play an important role in many signaling pathways

responsible for cell growth, apoptosis, vesicular transport or lipid

metabolism (35). Profilins from different sources have a

molecular mass of ∼15 kDa and a highly conserved structure

that consists of a compact beta sheet in the center surrounded by

several alpha helices (36). In particular, the IgE-binding regions

are highly conserved [as reviewed in (37)], resulting in strong

IgE cross-reactivity between most plant profilins. Because of the
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other plant sources such as pollen from grasses or weeds (38) or

plant foods such as pear, cherry, and celery (39). Interestingly,

sensitization rates vary widely within Europe: while 2%–12% of

birch pollen allergic patients from Northern European countries

show IgE reactivity against Bet v 2, the sensitization rate in

patients from Central and Southern Europe is up to 50% (40, 41).
Polcalcins (Bet v 3 and Bet v 4)

Beside Bet v 1 and Bet v 2, the polcalcins Bet v 3 and Bet v 4

can be regarded as the third group of panallergens in birch pollen.

Polcalcins are ubiquitous pollen proteins with molecular masses of

24 kDa (Bet v 3) and of 7–8 kDa (Bet v 4). They are thought to play

a role in pollen germination and, as the name “polcalcin” suggests,

also in the regulation of calcium levels in pollen, which is

underlined by their conserved structure with two (Bet v 4) or

four (Bet v 3) EF-hand motifs (42, 43). Both, Bet v 3 and Bet v 4

have been shown to bind IgE, but their sensitization rates are

rather low with 15% for Bet v 3% and 21% for Bet v 4 among

birch pollen allergic individuals (44). Even though sensitization

rates in birch pollen allergic individuals are low, sensitization to

polcalcins can have a strong impact on the sensitized patients

due to the high cross-reactivity between polcalcins from different

species.
Isoflavone reductase (Bet v 6)

Isoflavone reductase Bet v 6, formerly known as Bet v 5, has a

molecular mass of ∼35 kDa and was identified as an allergen in

12%–32% of birch pollen allergic individuals and shows cross-

reactivity to isoflavone reductases present in certain fruits and

vegetables among them also orange, strawberry, persimmon or

zucchini (45). Isoflavone reductase has also been described in

Japanese cedar, where unlike Bet v 6, it is a major allergen causing

seasonal pollinosis (46). In legumes, isoflavone reductases are well

studied and are known to have various functions, especially in the

defense against pathogens (47); however, the function in birch

pollen is not fully understood (48). In general, in pollen, isoflavone

reductases seem to play a role in the germination, the pollen tube

growth and the pollen-stigma recognition (49).
Cyclophilin (Bet v 7)

Bet v 7, a member of the cyclophilin A family, has a molecular

weight of ∼18 kDa and was identified as a birch pollen allergen in

1995 (50, 51). Bet v 7 exhibits IgE cross-reactivity to other plant

cyclophilins, e.g., from hazel pollen, meadow grass pollen or

tomato (51). In contrast no cross-reactivity to allergenic

cyclophilins from fungal species was detected (51). In plant

pollen, cyclophilin has been shown to be induced in response to

biotic and abiotic stressors, such as heat, drought or in response

to fungi (52).
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Glutathione-S-transferase (GST, Bet v 8)

The most recently discovered allergen in birch pollen is Bet v 8,

a protein homologous to glutathione-S-transferase (GST) with a

molecular mass of ∼27 kDa. GST has been shown to bind IgE,

with a sensitization rate of ∼13% in a cohort of Austrian birch

pollen allergic patients (44). Interestingly, GST has also been

reported as an allergen in house dust mites (53), cockroaches

(54), Alternaria alternata (55), and wheat (56). However, in

pollen allergic individuals with a known IgE reactivity to Bet v 8,

no cross-reactivities between Der p 8 (the GST from house dust

mites) and Bet v 8 were found (44). In the plant, GSTs are

involved in various plant functions, such as detoxification of

xenobiotics, secondary metabolism, growth and development,

and most importantly, protection against biotic and abiotic

stress (57).
Non-allergenic proteins

14-3-3 protein

The phosphoserine/threonine binding protein 14-3-3, with a

molecular weight of 25–30 kDa, interacts with lipoxygenases and

in this way affects the levels of pollen-associated lipid mediators

(PALMs). Together with other non-allergenic proteins, it has

been shown to be upregulated in urban pollen as compared to

pollen from rural areas (58, 59). It was suggested that pollutants

might be involved in the upregulation of 14-3-3 and other non-

allergenic proteins and that this might contribute to the higher

allergenic potential of urban as compared to rural pollen, whose

allergen content remained unchanged (58).
Lipid transfer protein

Birch pollen also contains lipid transfer proteins belonging to

the pathogenesis-related protein 14 (PR-14) group, but in

contrast to LTPs present in ragweed or Parietaria pollen or in

plant foods such as peach (60), LTP from birch pollen has not

yet been identified as an allergen. In Arabidopsis, LTPs have

been shown to play a role in systemic resistance signaling (61,

62) or in cuticular wax accumulation (63, 64). However, LTPs

also play a central role in pollen and seed development (65) as

well as in fruit development (66) and seed germination (67).

Probably the most important role of LTPs is their action in

response to biotic stress (e.g., to fungi) (68) and their putative

response to abiotic stress (e.g., to drought) in plants (69).
Enzymes in the pollen

In a multi-approach analysis, it was shown that among the

proteins easily released from birch pollen and thus present in

Betula verrucosa pollen extracts were endogenous proteases as

well as proteases of bacteria (70). Using a proteomics-based
Frontiers in Allergy 05
approach McKenna et al. identified in total 42 proteases, which

belong to the catalytic classes of serine-, cysteine-, aspartic-,

threonine-, and metallo-proteases (70). The endogenous

proteases are usually important for the germination process and

are activated when pollen grains hydrate on a compatible stigma

(71). However, pollen can also hydrate when they come into

contact with the mucosa of the respiratory epithelium (72). For

other allergenic pollen it has been shown that proteases can

either be allergens themselves (73) or that they can damage as

non-allergenic proteins the epithelial barrier and thus allow

allergens to enter the tissue, leading to sensitization or, in already

sensitized individuals, provocation of an allergic response (74). A

further way, how pollen enzymes can contribute to allergic

reactions is shown by NADPH oxidases. These enzymes produce

reactive oxygen species (ROS) in the airway epithelium, which

could thus be a factor that promotes allergic sensitization or

exacerbates allergic reactions (75).
The microbiome of the pollen

The pollen coat contains lipids and sugars that are an ideal

source of nutrients for microorganisms such as bacteria or fungi,

and indeed pollen usually carries several microorganisms on its

sticky pollen coat. These microorganisms seem to have an impact

on the allergenicity of birch pollen, and higher bacterial diversity

has been associated with higher amounts of Bet v 1 and PALMs

produced by birch pollen (76). On the other hand, bacterial

diversity appears to be affected by air pollutants, with NO2 levels

being negatively and O3 levels being positively correlated with

bacterial diversity (76). Pollutants thus influence the pollen

microbiome, which then impacts the expression of allergenic

proteins and PALMs in the birch pollen.

It is known that microbial exposure, either to microbes from

the environment or to the endogenous microbiome influences

immune responses and has also an effect on the development of

allergic diseases. Microbial exposure is actually regarded as an

important factor in the protection against allergic diseases, as it

has been shown that the so-called “farm effect”, namely the

exposure to microbes in early infancy, can modify allergy

susceptibility. For example, it has been shown that the prevalence

of childhood asthma in urban areas was significantly higher than

in children who grew up in traditional agricultural environment,

although the genetic background was similar (77). The “farm

effect” may be explained, at least in part, by exposure to high

levels of lipopolysaccharides (LPS), a component of the cell wall

of gram-negative bacteria and of bacterial DNA (78). In addition,

a Finnish birth cohort study and a German study both showed

that the risk of asthma was lower in non-farm households when

the composition of the microbiome in these households was

similar to that in households of farmers. This suggests that

microbial diversity and the presence of specific microbes has a

protective effect, rather than the number of bacteria (79).

However, LPS has to be considered as a molecule with a dual

role that, in addition to its antiallergic function, may also

promote the development of allergy. Kaur et al. showed that the
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protective effect of LPS depends on the presence or absence of the

immune-modulatory cytokine GM-CSF (80).

The environmental and the endogenous microbiome can

interact, and the environmental microbiome can change the

composition of the host microbiome and may therefore also

influence the development of allergic diseases. This is in line

with the observation that in asthmatic individuals different levels

of bacteria (e.g., increased levels of proteobacteria) and a reduced

diversity of the lung microbiome were observed as compared to

healthy individuals (81). Interestingly, the microbial composition

of skin exposed to urban green spaces was shown to resemble

the microbiome in soil, whereas the microbiome in nasal samples

resembled the microbiome in air (82), thus the environment has

a direct influence on the diversity of the microbiome. However,

it is not known whether environmental microbes can survive

on the skin or mucous membranes and whether they can

replicate (83).
FIGURE 2

Internal and external influences on birch pollen and the pollen’s inter
immunomodulatory effects of birch pollen (left panel): Birch pollen contains
class 10 protein), Bet v 2 (a profilin), Bet v 3 and Bet v 4 (both polcalcins),
glutathione-S-transferase), but also non-allergenic immunomodulatory pro
enzymes. In addition, also lipids are present in high amounts in birch pollen,
(such as idaeovirus or cherry leaf roll virus) (85) are found in the pollen coat.
(right panel): Meteorological influences such as temperature, wind and hum
pollen load, but other biotic (e.g., microbes and viruses) and abiotic (e.g., air
panel: Respiratory cells that interact with the birch pollen. The cellular compo
with the large airways (trachea, bronchi) having higher number of goblet
BioRender.com.
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External influences on birch pollen

Plants are exposed to a variety of natural stress factors,

including too much or too little water or sunlight, different

intensities of UV radiation, too low or too high temperatures, or

mechanical factors such as the wind, but also anthropogenic

stress factors such as particulate or gaseous air pollutants

(Figure 2, right panel).
Pollutants

Plants are very important for all aerobic organisms because

they absorb carbon dioxide (CO2) and produce oxygen (O2) in

all green parts of the plant by photosynthesis, providing vital

oxygen, but also removing the important greenhouse gas CO2

from the atmosphere, thus counteracting global warming.
action with the human respiratory tract. Internal influences on the
a number of allergenic proteins, such as Bet v 1 (a pathogenesis-related
Bet v 6 (an isoflavone reductase), Bet v 7 (a cyclophilin) and Bet v 8 (a
teins such as 14-3-3 protein, lipid transfer proteins and a number of
and microbes (such as proteobacteria or actinobacteria) (84) and viruses
External influences on birch pollen and their immunomodulatory effects
idity can affect the immunomodulatory activity of the pollen and the
pollutants) factors can also affect the allergenicity of the pollen. Lower
sition of the airway epithelium changes throughout the respiratory tract,
cells than the small airways (bronchioles) or the alveoli. Created with
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However, besides their importance for the production of O2 and

the removal of CO2, the leaves of some trees, such as Betula

pendula, are also able to capture particulate matter (PM) and

thus have a positive impact on the removal of pollutants,

especially in urban areas (86). Diesel exhaust particles (DEP),

produced by incomplete combustion of diesel fuel in motor

vehicles, were also found in the coating of birch pollen (87, 88).

DEPs consist of a carbon core on which organic chemical

components (CO, NO, NO2, SO2, hydrocarbons) and heavy

metals are deposited (89). More than 80% of all DEPs belong to

the ultrafine particle range, i.e., they have a diameter of less than

0.1 µm and can therefore easily enter the respiratory tract,

including the lower airways (90, 91). In addition, these ultrafine

particles have been shown to penetrate the lipid bilayer of

alveolar epithelial cell membranes and to be translocated

transcellularly by diffusion (92) and are thus capable of causing

airway inflammation and tissue damage [as reviewed in (93)].

Even worse, DEPs could also be a vehicle for birch pollen

allergens, a similar effect has already been described for Lol p 1,

an important grass pollen allergen from Lolium perenne (94).

Air pollution (e.g., PM) and high ozone (O3) concentrations

have also been shown to increase the levels of stress proteins in

plants and also in pollen, and since some of these stress proteins

are allergens (e.g., Bet v 1), the allergenicity of pollen also

increases (95, 96). In addition, it has been suggested that elevated

O3 levels not only lead to the formation of birch pollen with

increased Bet v 1 content, but also alter PALM composition,

ultimately leading to a higher proinflammatory potential of the

pollen (95). Moreover, it has already been shown that nitration

of Bet v 1.0101 by NOx, a group of gaseous air pollutants, leads

to oligomerization of the allergen (97), thus increasing its

allergenicity (98). Interestingly, Stawoska et al. recently showed

that urbanization and air pollution also affect the secondary

structure of Bet v 1, by inducing a decrease of regular α-helix

and β-structures and an increase of β-turns together with anti-

parallel β-sheet structures. It can be expected that such

modifications will most likely also affect the protein’s functions

and probably even its allergenicity (99). In addition to these

rather indirect effects of pollutants on the pollen, pollutants can

also act directly on pollen by increasing the fragility of the exine,

which then facilitates the release of substances, among them

allergens, into the environment (100).
Meteorological events and climate change

Temperature
The main drivers of greenhouse gases are increased CO2,

methane, and NOx concentrations in the atmosphere, which lead

to an increase in temperature, also known as global warming.

The increase in temperature due to global warming also affects

the composition and diversity of plant communities (101). While

some tree species have problems adapting to the changing

environmental conditions, Betula species appear to be adaptable

and can even survive under drought and high-temperature stress

(102). The rise in temperature can induce an earlier onset of
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pollen seasons (103), which has been described for many sites in

Europe in case of birch pollen (104, 105). In general, analysis of

data from 34 years of observation (1959–1993) showed that

spring events in Europe were advanced by an average of 6 days,

while autumn events were delayed by 4.8 days, resulting in an

overall extension of the annual growing season by 10.8 days

(106). However, earlier onset of the pollen season could also lead

to an interruption of the season due to unfavorable weather

conditions in late winter/early spring [as reviewed in (107)]. This

in turn could lead to an increase in allergens, as a delay in

pollen release (e.g., due to lower temperatures) allows pollen to

spend more time in the anthers and thus to mature longer,

resulting in higher pollen allergen content (108). However, the

opposite can also be the case: when immature pollen is

dispersed, the allergen content is lower, because it has been

shown that Bet v 1 is only expressed in mature birch pollen

shortly before pollination (109). Immature pollen does not

mature after dispersal because it dries up immediately after

release from the anthers (110) and lacks the water required for

biochemical processes.

Wind
Most allergenic plants are wind pollinated (e.g., trees of the

order Fagales), for this, they have developed special strategies to

increase the probability of pollination: They develop small, dried

pollen with good aerodynamic properties that allow them to be

transported over distances of several hundreds of kilometers

(111–113). In the past few centuries, birch trees have also

become increasingly popular as decorative plants, especially in

parks and public places, which has led to an increase in pollen

counts from these trees (114). In addition, elevated CO2

concentrations are also known to boost plant growth and thus

lead to increased pollen production. In general, the content of

pollen grains in the air during pollination can be quite high,

ranging from 1,000 to 10,000 pollen grains per 1 m3. In the case

of wind-pollination, however, it is the size that matters. While

the relatively small birch pollen with a diameter of about 18 to

30 µm can be transported over very long distances, grass pollen

(e.g., from timothy grass) with an average diameter of 22 to

122 µm can only be transported over shorter distances

(115, 116). While intact pollen grains are usually found in the

coarse fraction of particulate matter (i.e., sizes greater than

10 µm), pollen fragments can also be found in the fine

particulate matter fraction (i.e., smaller than 2.5 µm), the latter

being able to penetrate the alveolar cells of the lungs (117).

Humidity and thunderstorms
Global warming also leads to a change in precipitation patterns.

The allergenic proteins normally found in the pollen protoplast are

released during rehydration (118). Thus, for the birch pollen

allergens Bet v 1 and Bet v 2, it has been shown that they are

found in the anhydrous state in the pollen cytoplasm, usually in

close proximity to ribosome-rich areas, but are released from the

apertures within minutes after rehydration and are subsequently

found on the entire pollen surface (118–120). In addition to

precipitation under normal conditions, climate change also
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effects the frequency and intensity of thunderstorms and tropical

cyclones (121). In particular, thunderstorms are thought to

induce the rupturing of pollen due to an osmotic shock and the

subsequent liberation of a high concentrations of allergenic

particles of small size that can reach the lower airways and are

then responsible for the extreme asthma events associated with

thunderstorms (122, 123).
Interactions of birch pollen with the
human airways

As mentioned above, Bet v 1 and many other allergens have

been shown to be quickly released within minutes after contact

of the pollen with a humid environment, such as the mucosa

(119). It is thought that the moist surface of the mucosa induces

the release of allergens, but also of non-allergenic proteins and

other bioactive molecules from the pollen. In order to initiate

sensitization process, allergens then need to get into contact with

sub-epithelial immune cells. For this, they have to cross the

epithelial cell layer, which protects the body from external

noxious agents. The fact that the disruption of this epithelial

barrier promotes allergic sensitization, has led to the concept of

the epithelial barrier hypothesis (124, 125). Disintegration of the

epithelial barrier can occur due to a variety of causes, including

proteolytic activities of the allergen itself, as in the case of the

major house dust mite allergen Der p 1 (126) or, as mentioned

earlier, due to non-allergenic proteases present in the allergen

source or in the associated microbiome, but also due to a

concomitant exposure to other risk factors, such as viruses,

bacteria, or toxins such as cigarette smoke (127, 128), to name

only a few.

The airway epithelium is composed of different cell types,

including ciliated columnar, goblet and basal cells (Figure 2,

lower panel). In addition, there are pulmonary neuroendocrine

cells and secretory Club cells (formerly known as Clara cells).

Cell types vary in different parts of the airways: in the large

airways (from the nose to the trachea and the larger bronchi),

there are predominantly ciliated columnar epithelial cells,

whereas in the bronchioles and terminal bronchioles there is a

mixture of non-ciliated and ciliated cells, and in the alveoli (the

respiratory tissue) the majority of cells are non-ciliated alveolar

type I and II cells. While the main function of the goblet cells is

mucus secretion, the ciliated cells are crucial for the mechanical

removal of foreign particles from the lungs through the

coordinated movement of their apical cilia, and the main

function of the alveolar cells is gas exchange. The combined

action of the mucin-producing secretory goblet cells with the

movement of the cilia of ciliated cells results in efficient removal

and expulsion of foreign material, also known as “mucociliary

clearance” (129). However, it is important that mucus production

is tightly regulated, as it was shown that in respiratory allergies,

mucus release from goblet cells is stimulated by IL-13 [a cytokine

produced from Th2 cells and considered as a central mediator in

allergic asthma, as reviewed in: (130)] leading to hypersecretion

of mucus, which may contribute to disease exacerbation in
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affected individuals. The non-ciliated, secretory epithelial Club

cells have the capacity of self-renewal and can differentiate into

ciliated cells. Club cells play a key role in the protection of the

epithelial cell layer by secretion of substances lining and

protecting the bronchioles of the airways and by detoxification of

inhaled foreign substances (131).

Although the cellular composition of each section of the

respiratory tract is different, the term “united airway hypothesis”

was introduced, since upper and lower airways represent a

unified morphological and functional unit with common

structures, such as the ciliary epithelial cells, the glands, and the

goblet cells. Pathophysiological and clinical evidence for

the “united airway hypothesis” is the observation that the

pathological process of one section of the airway also affects the

function of the entire respiratory system, such as allergic rhinitis

in the nose and the manifestation of asthma in the lower airways

(132, 133). The fact that one trigger (e.g., birch pollen) can cause

two symptoms (e.g., rhinitis and asthma) can be explained by the

finding that immune response to allergens are the same in the

upper and lower respiratory tract involving the activation of T

cells, IgE class-switching in B cells, activation of mast cells,

basophils and eosinophils, and the expression of chemokines and

cytokines (134–136).

As already demonstrated, the epithelium is not only a

mechanical barrier, but it has been shown to play an active role

in both innate and adaptive immune responses. Epithelial cells

recognize allergens with different kinds of pattern recognition

receptors (PRRs) and respond [as reviewed in: (137); or shown

in: (138)] by expression of pro-inflammatory chemokines and

cytokines, such as CCL-5, IL-8, IL-1ß, IL-18, IL-25, TSLP and

IL-33 (139). Lipids and carbohydrates released from the pollen

and from microorganisms present on pollen are also recognized

by PRRs and can thus contribute to the pro-inflammatory

immune response (140). Interactions between inhaled allergens

and allergen-associated lipids also occur at the air-liquid interface

of the airways, as type II epithelial cells produce surfactant that

covers epithelia in the airways and is known to be itself

composed of a high proportion of lipids (∼90%), such as

phosphatidylcholine and phosphatidylglycerol as well as proteins

(∼10%) (141). Due to differences in the surfactant composition

and in the surface activity between asthmatic patients and non-

asthmatic individuals, it was suggested that the surfactant

composition could play an important role in the pathogenesis of

allergic asthma (142, 143). Whether the altered surfactant

composition is the reason or the cause for allergic asthma is not

yet known, but it has been shown that different compounds of

the surfactant counteract allergic reactions (144). Furthermore, it

has been shown that the lipid-binding allergen Bet v 1 can be

transported through the nasal epithelial cells by lipid rafts in a

caveolar-dependent manner (145). Once allergens have crossed

the epithelial barrier, they are taken up, processed, and presented

by antigen-presenting cells (APCs), such as dendritic cells (DCs).

However, allergens can also activate DCs directly, as DCs can

also reside directly beneath the airway epithelium in the

conducting airways and extend their dendrites through the tight

junctions of the bronchial epithelial lining into the lumen of the
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airways (as reviewed in: (146). Cytokines released by the epithelial

cells provide an environment that supports DC activation and

initiates their migration to the lymph nodes, where they present

the processed allergen MHC-II to naïve T cells and induces their

polarization into Th2 cells. The origin of IL-4 required for Th2

polarization is still not known. Either basophils or NKT cells are

proposed as sources of IL-4. The Th2 immune response then

initiates the class-switch of B cells to IgE-producing plasma cells.

Interestingly, it has already been shown that the allergenic

potential of a protein depends on specific characteristics of the

peptide presented in the HLA-complex. For example, for Bet v 1,

it has been shown that more than 60% of individuals sensitized

to birch pollen recognize the same T cell epitope and that such

allergens with immunodominant peptides show higher

sensitization rates than others (147). In contrast, allergens lacking

an immunodominant T cell epitope, such as the Bet v 1-

homolog from apple, Mal d 1, or from celery, Api g 1, do not

seem to induce allergy sensitization (33).

Although the mechanisms of both phases, the sensitization as

well as the effector phase are well known, it is still not clear how

allergens can activate the immune system and whether different

allergens interact in a similar way with the airway epithelial cell

layer. Therefore, further studies at the molecular level are needed

to understand the pathophysiology of type I hypersensitivity

reactions.
Conclusion and challenges

In summary, IgE-mediated respiratory allergies to tree pollen,

such as birch pollen, are a major burden, especially in regions

with continental climate, and the prevalence of these respiratory

allergies is constantly increasing. Various factors affect the

allergenicity of birch pollen: external factors such as air pollution

or climate change, exposure of trees and their pollen to biotic

and abiotic stress, resulting in a shifted or prolonged pollen

season, or the expression of stress response factors and an altered

microbiome on their surface. These factors also influence the

interaction between birch pollen and respiratory epithelial cells

and immune cells. Understanding the mechanism of this altered

reactivity is important for future effective treatments or for

establishing preventive measures for respiratory allergies.

However, the study of birch pollen allergy in the context of

environmental conditions and epithelial cells presents a number

of challenges.

• Investigating the composition of birch pollen can be challenging,

as their composition can be highly variable, depending on the

location of the sampling, e.g., in urban or rural areas, but also

depending on weather conditions and may not be comparable

from one location or one day to another.

• To study the effects of external conditions and birch pollen on

the human respiratory tract, either patient studies are

performed, animal models are used, or human epithelial cell
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cultures are established. However, all these methods raise

additional issues, such as ethical concerns, insufficient patient

numbers, problems in excluding interindividual differences,

problems in transferring data obtained in animal (e.g., mouse)

models to humans, or the artificiality of the cell culture

system. The solution probably lies in the combination of

several methods and in an interdisciplinary approach.

• In vitro studies of environmental factors affecting birch pollen

and the respiratory epithelium often have a weakness in the

experimental setup, as it is difficult to mimic external

influences such as air pollution in an experimental setup. For

example, it is challenging to incubate cells of the respiratory

epithelium with particulate matter or gaseous pollutants

because stimulation of these cells is only possible within

narrow limits regarding toxicity so that their viability is not

impaired.

In conclusion, the study of birch pollen allergy in terms of

environmental conditions and epithelial cells presents a number

of challenges. However, by using different approaches, a better

understanding of the mechanisms underlying this disease can be

gained, which may contribute to the development of more

effective treatments and prevention measures.
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