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Introduction: The hygiene hypothesis identified a relationship between living in
rural areas and acquiring protective environmental factors against the
development of asthma and atopy. In our previous study, we found a correlation
between particular bacterial species and early-onset wheezing in infants from
the rural tropics of Ecuador who were corticosteroid-naïve and had limited
antibiotic exposure. We now describe a longitudinal study of infants conducted
to determine the age-related changes of the microbiome and its relationship
with wheezing.
Methods: We performed an amplicon sequencing of the 16S rRNA bacterial gene
from the oropharyngeal samples obtained from 110 infants who had a history of
recurrent episodic wheezing sampled at different ages (7, 12, and 24 months)
and compared it to the sequencing of the oropharyngeal samples from 150
healthy infants sampled at the same time points. Bioinformatic analyses were
conducted using QIIME and R.
Results: As expected, the microbiota diversity consistently increased as the infants
grew older. Considering age-based microbiota changes, we found that infants
with wheeze had significantly lower species richness than the healthy infants at
7 months, but not at 12 or 24 months. Most of the core and accessory
organisms increased in abundance and prevalence with age, except for a few
which decreased. At 7 months of age, infants with wheeze had notably higher
levels of a single Streptococcus operational taxonomic unit and core microbiota
member than controls.
Conclusions: In a cohort with limited antibiotic and corticosteroid use, a
progressively more complex and diverse respiratory microbial community
develops with age. The respiratory microbiota in early life is altered in infants
with wheeze, but this does not hold true in older infants.
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Introduction

Asthma is a chronic inflammatory disease of the airways which is characterized by

non-specific bronchial hyper-responsiveness and symptoms such as wheezing, dyspnea,

and cough (1, 2). Lung function tests are difficult to perform in infants aged <6 years,

and their inaccuracy complicates the diagnosis of asthma in this age group (3).
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Consequently, the presence of recurrent wheezing not related to

infections is the most important diagnostic indicator of asthma

in this group (4).

The hygiene hypothesis has been used to explain why some

populations have a higher frequency of an over-reactive immune

system. This hypothesis was initially proposed following

epidemiological studies of asthma and atopy (5) and has

subsequently been supported by data from studies in both

functional immunology and genetics (6). Urbanization,

migration, and modernization are critical factors related to

asthma risk, which reflect changes in nutrition, exercise, exposure

to allergens, antibiotic and vaccine use, microbial exposures,

effects of pollution, and psychosocial stressors (7, 8).

The Latin American country Ecuador has regional differences

reflected in studies conducted in its rural and urban areas.

According to the Global Initiative for Asthma (GINA) criteria,

the estimated prevalence of asthma in Ecuador was 8.2% (9). The

International Study of Asthma and Allergies in Childhood

(ISAAC) studies estimated a 10.9% prevalence of current

wheezing in children in the two most populated cities of Quito

and Guayaquil (9, 10), which was greater (16.6%) than 0.8% in

the rural Pichincha province (7, 11).

Several studies have found that early exposure to infections and

antibiotics from infancy is associated with a higher prevalence of

asthma and atopy (12, 13). In addition, a relationship between

distinct airway microbiome patterns and the development of

asthma has been also found. On the one hand, a higher frequency

of Proteobacteria has been observed in asthmatic adults compared

to controls, with Haemophilus spp. being more abundant (14). On

the other hand, Bacteroidetes, Firmicutes, and Actinobacteria were

more common in controls. Bacterial DNA quantification has

shown that asthmatics have larger bacterial burdens than controls

(15). Culture-based identification of pathogens in a birth cohort

showed that Streptococcus pneumoniae, Haemophilus influenzae,

Moraxella catarrhalis, and Staphylococcus aureus were more

common in wheezing children and predicted future asthma

development (16). In contrast, a European U-BIOPRED

multicenter study found no difference in the comparison between

microbiota patterns of asthmatic school-aged children and those

with mild/moderate and severe wheezing (17).

In a previous study (18), we used the 16S RNA gene sequencing

to discover the differences in the microbiota of oropharyngeal

samples collected from infants in rural Ecuador during a

wheezing episode and compared the results to those of the non-

wheezing controls. Here, we describe a prospective study of the

same population in which we investigate the microbiota

development in infants with a history of wheezing.
Materials and methods

Subjects

A case–control study was performed using samples from

infants aged 7, 12, and 24 months. It was designed as part of the

ECUAVIDA cohort, which aimed to study the effects of early
Frontiers in Allergy 02
infant infections on the development of allergic sensitization and

allergic diseases. The study was an unselected population-based

birth cohort that recruited 2,404 newborns in the rural district of

Quinindé in the Esmeraldas Province, Ecuador (19). Detailed

data have been collected by maternal questionnaire from the

mothers following birth and periodically to 24 months of age.

For the present study, a subcohort of the ECUAVIDA was

selected based on cohort children’s age and clinical

characteristics. The Ethics Committees of the Hospital Pedro

Vicente Maldonado and Universidad San Francisco de Quito,

Ecuador, approved the study protocol. Informed written consent

for participation in the study was obtained from parents or legal

guardians of children. The study was registered as an

observational study (ISRCTN 41239086).

Oropharyngeal samples were collected from infants with a history

of recurrent early-onset wheezing (cases) according to the GINA

guidelines (http://www.ginasthma.org/), but not during a wheezing

episode. Healthy controls with no wheezing history, current

respiratory disease, chronic disease, or current infections were

paired by age to cases. Cases and controls were similar regarding

ethnicity, area of residence, childhood vaccinations received

[Bacillus Calmette–Guerin (BCG), mumps, measles and rubella,

tetanus, diphtheria, hepatitis B, and Haemophilus influenzae B;

Ministry of Public Health of Ecuador (MSP), 2005], and access to

essential services (data not shown). There are no differences

between groups in delivery type rates, nor does the delivery type

account for changes in the microbiota diversity or relative

abundance. None had received anti-streptococcal vaccination

(which was not compulsory for the Ministry of Public Health of

Ecuador then). The location of participants’ households in the

Quinindé region of Ecuador is shown in Figure 1A (map tiles by

Stamen Design, under CC BY 3.0; data by OpenStreetMap, under

ODbL, and by OpenStreetMap, under CC BY SA).
Sample processing

Samples were collected, transported, and processed with DNA

extraction, 16S rRNA gene amplification, and pyrosequencing.

Bacterial DNA was extracted from the 400 throat swabs using a

modified protocol of the commercial QIAamp DNA Mini Kit

(Qiagen) (6). In the final step, 40 µl of nuclease-free water was

added instead of the elution buffer supplied by the kit. If the

DNA was not used immediately after extraction, samples were

stored at −20°C until required.

Polymerase chain reaction (PCR) was used to amplify the

variable regions (V3–V5) of the gene that encodes for 16S rRNA

in the bacteria. To minimize the PCR nucleotide insertion

mistakes, samples were amplified in quadruplicate reactions with

20 cycles each and then pooled. For the PCR, the V3 region of the

16S rRNA gene was amplified using the following conserved primers:

339F (Forward) 5′- CCTACGGGAGGCAGCAG-3′
907R (Reverse) 5′- CCGTCAATTCMTTTRAGT-3′

Each sample was amplified by quadruplication to decrease the PCR

nucleotide incorporation errors in further sequencing. PCR
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FIGURE 1

(A) Location of Ecuador and Quito and the sampling locations of the ECUAVIDA study in the Quinindé region of rural Ecuador. (B) Sample diagram
analyzed from the ECUAVIDA cohort.
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reactions and cycling conditions had been previously optimized

within the Molecular Genetics and Genomics group at the

National Heart and Lung Institute.

The amplicon libraries were quantified using Quant-iT

PicoGreen dsDNA Assay Kit according to the manufacturer’s

protocols (www.454.com). Subsequently, amplicons were diluted

separately to 1 × 109 molecules/µl in 1× tris(hydroxymethyl)

aminomethane and ethylenediaminetetraacetic acid (TE) buffer.

Then, samples were pooled in a workable solution, with every

sample containing the same number of molecules per microliter.

During the emulsion PCR prior to pyrosequencing, a maximum
Frontiers in Allergy 03
of 0.5 molecules of amplicon per bead was calculated to avoid

over-enrichment. Nucleic acid extraction, amplification, and

sequencing controls were used to determine the possible batch

effect bias.

For additional details, please see Supplementary Methods.
Data analysis

From the raw sequences obtained, data analysis was performed

using the third-party microbiological communities’ program
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QIIME v1.9 (http://qiime.sourceforge.net/) (20). A mapping file

was created containing the name of each sample, sample barcode

sequence, the linker/primer sequence used to amplify the

sample’s desired gene, and all the metadata related to each

sample: age, gender, case/control, wheezing status, treatment of

the subject whom the sample was collected from, and sample type.

Read errors were removed if there were <200 and >800

nucleotides (nt), barcode or primer mismatches, and ambiguous

nucleotides and if the quality score was <25. The AmpliconNoise

algorithm (21) was used to avoid overestimating the diversity and

for chimera removal. Sequences were randomly resampled

(rarefied) to 519 reads per sample. A preliminary ordination

analysis was carried out to identify four samples that did not

cluster with the remaining samples. On inspection of community

composition, these outliers were discovered to be dominated by

potential respiratory pathogens. The original notes taken during

sampling were checked for clinical evidence of current

respiratory infections. Two of these individuals had received

antibiotics for respiratory infections immediately after sampling;

therefore, their samples were removed from the analysis. There

was no clinical reason for excluding the other two samples, so

they were consequently retained.

Operational taxonomic units (OTUs) were defined using the

UCLUST algorithm (22). Sequences were aligned using a

Python-based tool employing the Nearest Alignment Space

Termination (NAST) algorithm called PyNAST (23) to the

Greengenes core reference alignment (24). The alpha diversity

coefficients such as Shannon, OTUs observed per sample,

evenness, and richness statistics (Chao1) were computed (20).

Beta diversity was calculated between groups at the OTU level

using Adonis R vegan package (25), and Canberra, Bray–Curtis,

UNIFRAC, and weighted UNIFRAC statistics were performed

(26). The statistical analysis to compare between groups was

performed in R version 4.0.3 (27) using RStudio version 1.4.1103

and phyloseq (28) along with other R vegan packages (24), such

as microbiome R package (29), and statistical differences (30),

such as Picante (R tools for integrating phylogenies and

ecologies), ggplot2 (graphical tool), plyr (tools for splitting,

applying, and combining data), Biostrings (string objects

representing biological sequences and matching algorithms) (31),

ape (analyses of phylogenetics and evolution) (32), and ade4

(analysis of Euclidean data). In generalized least squares

modeling, model 1 looked at the relationship between species

richness and the age of infants, and model 2 incorporated

whether they wheezed or were healthy. Generalized least squares

fit by restricted maximum likelihood (REML) are detailed in

Supplementary Methods. Statistical analysis of epidemiological

data was performed by SPSS version 22.
Results

Samples from 260 subjects (110 cases and 150 controls) were

obtained, and 91 cases and 134 controls remained after sample

processing (Figure 1B). Occasionally repeat samples were taken

from the same child simultaneously (27 samples). In these cases,
Frontiers in Allergy 04
the first sample from each child was retained for this analysis to

avoid partial repeated measures.

Samples were collected from cases and controls when they had

no evidence of a current airway infection (cold symptoms and

fever). All infants were corticosteroid-naïve, and none had

received antibiotics during the 2 weeks before sampling. The

respiratory tract episodes per person were only 0.02 in the case

group and 0.04 in the control group. From the clinical records,

the use of antibiotics for any reason was 0.06 doses per year per

person in the case group and 0.07 in the control group.
Development of the airways microbiome

A total of 116,775 sequences were analyzed post-filtering, and

796 OTUs were identified from the 225 samples. When cases (N

= 91) and controls (N = 134) were combined, the most abundant

OTUs that were present were Streptococcus spp., followed by

Neisseria spp., Veillonella spp., Actinomyces spp., and Prevotella

spp. We examined if the composition of the microbial

communities changed as the children grew older. Exploratory

ordination of the beta diversity of samples, the similarity of

communities, and their abundance in each sample using non-

metric multidimensional scaling (NMDS) of Jaccard similarity

were performed. This was colored by age and whether each

sample represented a case or control (Figure 2). The youngest

cases appeared at the bottom left and progressed to the oldest

controls at the right of the plot, suggesting that microbial

community structure might relate to age and wheeze. This was

formally tested using the permutational multivariate ANOVA

(Adonis). The most significant variation in beta diversity was

explained by age, accounting for 9% (P < 0.0001). A very small,

yet significant, proportion of the diversity was explained by

whether samples came from cases or controls (0.9%, P = 0.0168).

Given the small, significant effect of cases and controls in

explaining the variance in beta diversity, the effect was explored

further. Boxplots of species richness (Figure 3) and other

measures of alpha diversity (Shannon’s entropy and Simpson’s

index, not shown) all demonstrated a difference in diversity

between cases and controls, particularly at 7 months. Generalized

least squares models were constructed to test whether there was

an impact of the wheeze variable after considering age. Using

this approach, species richness significantly differed with age (P

< 0.0001). Including wheeze in this model improved the Akaike

information criterion (AIC), which was significantly different at 7

months, but not at 12 or 24 months (please see Supplementary

Methods for details of the models and model selection).

Other epidemiological variables were compared between cases

and controls to determine whether they may have influenced the

microbiota patterns or not. Gender, crowdedness of living,

maternal education, and parental income were not different

between groups (Table 1). Biometric measures at birth, such as

weight and height, were not different between both groups and

could not explain specific microbiota patterns. The infants

included in the study had fewer respiratory tract infections

(pharyngitis, pneumonia, and bronchitis). Malnutrition and
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FIGURE 2

NMDS of the Jaccard similarity between samples, colored by whether they are cases (wheeze) or controls and by age. A shift from lower left to right can
be seen for increasing age and health. ANOVA P < 0.00001.
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anemia were present in the clinical records of a few infants in both

groups. Still, they were not different between cases and controls,

with malnutrition found in 2% of infants in both groups and

anemia in 1% and 2% in the case and control groups,

respectively. Neither condition was present during sampling, nor

it has explained the diversity differences in the diversity analyses.

Next, we examined the dataset at the level of OTUs, presence,

and abundance of individual bacteria (Figure 4). Seven prevalent

OTUs formed the “core microbiome” in over two-thirds of all

samples. Six of these seven increased in abundance and

prevalence with age. The “accessory microbiome” showed a

similar trend, with most OTUs accruing and becoming more

prevalent with infants’ age. A few decreased with age, potentially

representing OTUs replaced by competing strains.

Indicator species analysis was used to identify the OTUs

associated with cases or controls aged at 7 months. Five OTUs

were significantly different at P < 0.05 level: Streptococcus_141 (P

= 0.03) was the indicator used in the case group, and

Streptococcus_290 (P = 0.005), Veillonella dispar_618 (P = 0.005),
Frontiers in Allergy 05
Veillonella dispar_1086 (P = 0.005), and Prevotella_345 (P =

0.005) were the indicators used in the control group, both aged

at 7 months. As indicator species analysis can be sensitive and

can pick up differences driven by only a single sample, an F-test

with Benjamini–Hochberg false discovery rate (FDR) correction

was carried out using the mt function of phyloseq. Four of the

above OTUs were also significant using this approach (Padj =

0.0187, FDR = 0.0078) with Prevotella_345 failing to achieve

significance (Figure 5).
Discussion

We did a nested case–control study in infants from the rural

tropics of Ecuador, where the prevalence of doctor-diagnosed

asthma is low (10). Still, wheezing symptoms occurred at a

frequency comparable with urban populations (33). A strength of

this study is that the infants had never used inhaled

corticosteroids and had low antibiotic usage, allowing
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FIGURE 3

Boxplot of increasing species richness with age. Cases and controls had significantly different species richness at 7 months of age, but not at the two later
time points of 12 and 24 months. *P < 0.00001.

TABLE 1 Epidemiological characteristics of cases and controls.

Case Control P < 0.05
Sex (% male) 54 46

Number of individuals per room of the house 3.15 3.06

Average parental income (US$ per month) 222 229

Average birth weight (g) 3,390 3,341

Average birth height (cm) 49.6 49.1

Maternal education (%)
Illiterate 2% 2%

Primary incomplete 17% 13%

Primary complete 23% 22%

Secondary incomplete 15% 16%

Secondary complete 32% 44% *

University incomplete 10% 3% *

University complete 1% 0%

Respiratory tract infections (episodes per person) 0.02 0.04

Antibiotics (numbers of times used per person) 0.06 0.07

Malnutrition (% reported) 2% 2%

Anemia (% reported) 1% 3%

*P < 0.05. Maternal education refers to the last formal instruction the mother had at

the time of the cohort inclusion.

Cardenas et al. 10.3389/falgy.2023.1214951

Frontiers in Allergy 06
investigation of the role of the microbiota in infantile wheezing

independently of bias from the consequences of medication.

According to the hygiene hypothesis, the rural environment, low

antibiotic usage, and high rate of parasitic infections in this

population would be protective against the development of

asthma and atopic disease (5, 33). The microorganisms’ influence

on asthma physiopathology has established that microbiota

alterations impact the host’s resistance to pathogen colonization

(34). Alterations in the normal microbiota may alter the host

resistance to pathogen colonization in the gut (35, 36) and in the

airways (37, 38) through direct inhibition of pathogen growth by

commensal secreted factors (39).

The current study shows that the upper airway microbiota

develops with age, principally through acquiring a more complex

and diverse microbiota over time (richness indexes in alpha

diversity and age clustering in beta diversity indexes). Although

the core OTUs remained similar from 7 months until 2 years of

age, other minor OTUs appeared through this period. The

observed increase in diversity was due to the acquisition of new

organisms. The most common bacteria in the infants’ upper
frontiersin.org
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FIGURE 4

A heatmap of the abundance of the “core” and “accessory” microbiota in airway samples from the ECUAVIDA cohort. Vertical lines divide the age classes
of children. Horizontal dashed lines separate OTUs, which increase between 7 and 24 months of age (above the line), and those that decrease (below the
line). OTUs in fewer than 10% of samples are not shown, and the “core microbiome” is defined as those in over two-thirds of samples.
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airways were Streptococcus spp. Bacteroidales is also a common

phylum in the upper airways, oral and nasopharyngeal microbiota.

It includes the genus Prevotella which has been considered

protective against the development of asthma in adults (14). These

results were consistent with previous culture-independent studies

of the airway microbiome in European populations (14, 40, 41)
Frontiers in Allergy 07
but differed from other studies that showed no differences in

asthma/wheezing status in oropharyngeal microbiota (17).

However, the current study did not cluster the wheezing status in

severity compared with U-BIOPRED.

Infants that presented with wheezing at 7 months of age

consistently had microbiota patterns that differed from controls
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FIGURE 5

Boxplots of OTU abundances of OTUs identified as significantly different by indicator species analysis and F-test are shown for subjects grouped by age
and case/control status. Streptococcus_141 increased in cases compared to the control group at 7 months of age, and all others were decreased
compared to that of the control group at the same age. *P < 0.00001.
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paired at the same age. This significant difference was not retained

in older age groups, suggesting that wheeze results in an early

perturbation that the accrual of OTUs in older children might

correct. Indicator species analysis identified one OTU that

characterized cases at 7 months of age and three that indicated

controls at the same age. All these OTUs were very prevalent,

with three core microbiota members present in more than two-

thirds of the samples, irrespective of age or wheeze. Significant

differences between wheezing and no-wheezing children can also

highlight the correlation between the upper airways and gut

microbiotas. Several studies have shown that a Mediterranean

diet (rich in butyrate) during the first year of life can be related

to asthma protection (42, 43), but is not affected by maternal or

adult diets (43). However, longitudinal randomized clinical trials

are needed to back up this hypothesis. It is also striking that a

rural/diverse diet possesses a dose–response effect in atopy and

asthma, including food allergies, as shown in the PASTURE

study group (44). This can be related to the ECUAVIDA cohort,
Frontiers in Allergy 08
where a rural, diverse diet can influence the upper airways and

gut microbiome (however, we did not record the diet

determinants and the effects of diet diversity).

Studies of airway microbiota using culture-independent

techniques have not been done previously in Latin American

countries where environmental exposure and disease incidence

differ significantly from Europe and North America. This project

establishes a relationship between wheezing and bacterial

microbiota patterns in the airways of children from the rural

tropics of Ecuador. During sampling, strict criteria were

established to avoid skewed results, for example, caused by

current infectious processes, recent use of antibiotics,

socioeconomic indexes, or incorrect oropharynx swabbing

techniques. The major limitation of the current study was that it

was not possible to obtain samples from the same children at all

time points, which has not allowed a longitudinal paired analysis.

In addition, no records of diet and metabolic determinants were

recorded on each subject, which did not allow us to correlate
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results with gut microbiota. A deeper shotgun metagenomics

approach will be considered in a future study to compare

ecological features between wheezing and not wheezing infants

and an approximation of the metabolic factors affecting the gut

microbiota/host relationships.

In conclusion, the upper airway bacterial microbiota differs

between infants with wheezing and healthy controls. Although it

is not possible to say whether the organisms and diversity

differences are in response to a wheezing episode or whether

they cause the episode, in this unique cohort, we can

demonstrate that this effect is independent of treatment with

either corticosteroids or antibiotics and that it affects core

members of the oropharyngeal microbiota. Whether these

differences are causative or not, they could influence the

physiopathology of asthma development later in life and

contribute to subsequent chronic inflammation in the airway

mucosa.
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