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The prevalence and severity of allergic diseases have increased over the last 30
years. Understanding the mechanisms responsible for these diseases is a major
challenge in current allergology, as it is crucial for the transition towards
precision medicine, which encompasses predictive, preventive, and
personalized strategies. The urge to identify predictive biomarkers of allergy at
early stages of life is crucial, especially in the context of major allergic
diseases such as food allergy and atopic dermatitis. Identifying these
biomarkers could enhance our understanding of the immature immune
responses, improve allergy handling at early ages and pave the way for
preventive and therapeutic approaches. This minireview aims to explore the
relevance of three biomarker categories (proteome, microbiome, and
metabolome) in early life. First, levels of some proteins emerge as potential
indicators of mucosal health and metabolic status in certain allergic diseases.
Second, bacterial taxonomy provides insight into the composition of the
microbiota through high-throughput sequencing methods. Finally,
metabolites, representing the end products of bacterial and host metabolic
activity, serve as early indicators of changes in microbiota and host
metabolism. This information could help to develop an extensive identification
of biomarkers in AD and FA and their potential in translational personalized
medicine in early life.
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1 Introduction

The prevalence and severity of allergic diseases have increased over the last 30 years

(1). The pathophysiological mechanisms underlying allergic diseases are different

depending on the organs affected, but many patients who initially had an allergic

disorder, such as atopic dermatitis (AD), eventually develop other allergies such as

rhinitis, allergic asthma and/or food allergy (FA). This is commonly known as the

“Allergic/ Atopic March” and refers to the natural history of allergic inflammation (2–4).

Atopic dermatitis, also known as eczema, is a skin disorder characterised by skin

inflammation, with lesions and intense itch. It affects up to 30% of children and

persists in 10% of adults in Western countries (5, 6). Skin barrier disruption could be

the first step in the atopic march as well as in AD, leading to both skin inflammation
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and allergic sensitization. Although it is difficult to diagnose

because of its great variety of symptoms, course, and severity,

skin lesions, intense pruritus, and a chronic or relapsing course

are used as AD diagnosis criteria. However, infants often present

with poorly defined erythema lesions with oedema, excoriations,

vesicles, and serous exudate, typically distributed on the face,

cheeks, and trunk (7). Therefore, AD diagnosis and treatment

mostly rely on clinical scores (8).

Food allergy is an unfavourable immune reaction towards food

antigens, becoming a global health concern, since it affects both

industrialized and developing countries, where their populations

are adopting a westernized lifestyle (9). The estimated prevalence

of FA is 8% in children and 5% in adults (10). It can be IgE-

mediated and non-IgE-mediated. Non-IgE-mediated FA has a

late onset of symptoms, and mostly affects the gastrointestinal

system and skin, whereas IgE-mediated FA is characterized by a

quick onset of symptoms, ranging from mild to severe life-

threatening conditions, and involve the respiratory,

gastrointestinal, dermatological, and cardiovascular systems (11).

The complexity of FA makes it essential to diagnose, monitor

and manage this disease by a personalized approach. In children,

the diagnosis of FA has fairly improved in the last years, being

clinical history, skin prick test and serum allergen-specific IgE

levels, together with oral food challenge, the main diagnostic

methods. In contrast, the management of FA needs improvement

as food avoidance remains the major treatment nowadays.

A major challenge in current allergology is to unravel the

mechanisms responsible for these diseases, in order to provide

the patients with preventive, and personalised strategies, which

has been collectively named as precision medicine (12).

Biomarkers are genes, proteins, metabolites, or features by which

a particular pathological or physiological process can be

identified. They are valuable tools for precision medicine, as they

can shed information for diagnosis and patient stratification,

identification of therapeutic targets, and monitoring treatment

efficacy (13–16). Identifying biomarkers of allergic diseases in

early life could improve allergy handling at early ages and pave

the way for personalized preventive and therapeutic approaches.

Over the past few decades, high-throughput omic techniques

have been developed and used in the search for allergy

biomarkers (13, 17–19).

In this review, we summarize the current knowledge on three

biomarker categories (proteome, microbiome, and metabolome)

in two major allergic diseases such as AD and IgE-mediated FA

in early life (20–23) (Table 1).
2 Proteome

The study of the proteome, which is the set of proteins present

in a cell at a certain time, is called proteomics, and remains

challenging due to its dynamic nature (57). Proteomics usually

encompasses multi-dimensional separation and protein

identification by mass spectrometry (MS), followed by data

analysis by bioinformatic tools. Regarding allergic diseases,

proteomic approaches include the measurement of allergen-
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specific IgE and IgG antibodies, serum tryptase, “damage-

associated molecular patterns (also called alarmins), as well as

basophil and mast cell activation tests, among others. Some of

these procedures are commonly used for diagnosis in clinical

practice with more or less satisfactory outcomes depending on

the type of allergy innovations in this field are needed to provide

novel and robust protein biomarkers that contribute to a better

understanding of the molecular mechanisms underlying allergic

diseases. In this sense, recent technological advancements in

next-generation proteomics, such as OLINK® PEA (Proximity

Extension Assay) technology (OLINK Proteomics, Uppsala,

Sweeden), enable multiplexing thousands of proteins using

minimal sample amounts (58, 59). Therefore, it is a promising

tool to improve stratification of patients and characterization of

allergic diseases.
2.1 Proteome in AD

The AD proteome is still largely unexplored. Searching for

“atopic dermatitis” in proteomic databases (8th November 2023),

such as PRIDE [proteomics identifications database; (60)] or

GPM [global proteome machine; (61)] retrieved 16 entries, and

entries from 3 different studies, respectively (62–64). Twenty-

seven AD-related proteins (retrieved on 1st September 2017)

were previously reported in Uniprot (2, 65–67).

Regarding the IgE and IgG levels in AD, it is long known that

children and adults with AD had high or very high serum IgE levels

(68–74). More recently, Wollenberg et al. reviewed data on the

efficacy of omalizumab, an anti-IgE biological, in AD and found

them inconclusive, as many studies have reported varying

degrees of efficacy of this biological drug. Five years earlier, Totté

et al. described the association of AD severity with the IgG

response against Staphylococcus aureus in young children.

A systematic review and meta-analysis about the correlation

between AD severity and biomarkers previously identified serum

thymus and activation-regulated chemokine (TARC/CCL17), a

member of the T-helper 2 (Th2) chemokine family (TARC),

attractant of Th2 effector cells, as the most reliable AD severity

biomarker for both children and adults (75, 76). Further Th2-

related chemokines have also emerged as potential biomarkers,

including CCL18/PARC (pulmonary and activation-regulated

chemokine), CCL22/MDC (macrophage-derived chemokine),

CCL26/eotaxin-3, CCL27/CTACK (cutaneous T-cell-attracting

chemokine), and lactate dehydrogenase (LHD), but additional

research is needed (8, 75, 77–79).

Serum interleukin (IL)-13 and IL-22 levels are known to be

higher in AD patients than in healthy controls (80). However,

AD cytokine biomarkers are preferably assessed in the skin.

Upregulation of thymic stromal lymphopoietin (TSLP), IL-4, IL-

13, and IL-33, has been related to AD pathogenesis (80–83).

Mouse models of AD have demonstrated the critical role of

TSLP, which is released by keratinocytes upon epithelial damage,

in inducing Th2 responses and AD pathogenesis (84–86). In

addition, TSLP plays an important role in the differentiation of

follicular T helper cells (TFH), which are critical players in
frontiersin.org
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TABLE 1 Biomarkers associated to AD and/or FA in early life identified by omics techniques. Each omic technique is highlighted in different color: green
for proteomics; red for metabolomics; blue for microbiome sequencing (genomics).

Pathology Matrix Compound/
Microorganism

Omic technique Description References

AD Vernix Polyubiquitin-C19;
Calmodulin-like protein 5

Proteomics (LC-MS/MS) Polyubiquitin-C and calmodulin-like protein 5
negatively correlated with AD

(24)

Plasma from umbilical
cord blood and infant
blood

Interleukins, growth factors,
chemokines and
metalloproteinases

Proteomics (multiplexed affinity-
based assay)

MHC class I proteins, IL-15, TNFAIP3 and
MYDGF negatively correlated with AD; IL-9, IL-
17, CCR10, GADD45A, MPO and MMP9
positively associated with AD later in life

(25)

Serum Interleukins, chemokines
and extracellular
metalloproteinases

Proteomics (OLINK) inflammatory markers positively associated with
AD lesional and non-lesional skin

(26)

Skin swabs Commensal Staphylococci Bacterial 16S ribosomal RNA
sequencing & Metagenomic
sequencing

Commensal Staphylococci at 2 months of age are
negatively associated with AD later. S.
epidermidis significantly increased during AD
flares. S. epidermidis predominates in patients
with less severe AD

(27)

(28)

(29)

Skin swabs Staphylococcus aureus MALDI-ToF MS & Metagenomic
sequencing & Bacterial 16S
ribosomal RNA sequencing

S. aureus at 3 months of age is positively
associated with AD later. S. aureus prevalence at
AD onset and 2 months before is higher than in
healthy infants. At AD onset, infants with S.
aureus were younger than uncolonized subjects.
S. aureus predominates in patients with more
severe AD. S. aureus correlated with more severe
AD and during disease flares

(30)

(29)

(28)

Skin swabs Streptococcus,
Propionibacterium,
Corynebacterium

Bacterial 16S ribosomal RNA
sequencing

Streptococcus, Propionibacterium,
Corynebacterium increased during AD therapy

(28)

Faeces Fecal microbiota Bacterial 16S ribosomal RNA
sequencing & Quantitative PCR
& Pyrosequencing

Reduced diversity is associated with AD.
Clostridium sensu stricto is associated with AD//
Clostridia at 5 and 13 weeks of age is associated
with AD// Clostridium and Akkermansia
negatively correlated with persistent AD.
Streptococcus positively correlated with AD score
(SCORAD)

(31)

(32)

(33)

(34)

Skin tape strips Ceramides, Sphingomyelin Metabolomics (lipidomics by LC-
ESI-MS/MS)

Ceramides negatively correlated with S. aureus
colonization. Sphingomyelin positively
associated with AD

(35)

(36)

(37)

Placenta Glutathione thiol-disulfide
balance

Metabolomics Prenatal maternal depression and anxiety
increase the risk of AD in offspring by decreasing
the ratio of placental glutathione to glutathione
disulfide

(38)

Serum Glutathione thiol-disulfide
balance

Metabolomics (automated
spectrophotometric method)

The thiol-disulfide balance in the patient group
was weakened, and it shifted to the oxidative side
in infants with AD.

(39)

Plasma PUFAs Metabolomics (LC-MS) Omega-3 polyunsaturated fatty acids (PUFAs)
negatively and omega-6 PUFAs positively
associated with AD later in life

(40)

Urine Lactate Metabolomics (NMR
spectroscopy)

Lactate was found to be increased in urine
samples from children with AD

(41)

Nutritional
supplementation

Micronutrients Logistic regression Maternal intake of iron, folic acid, beta-carotene,
vitamin E, vitamin D, zinc, calcium, magnesium,
and copper during pregnancy resulted in a
decreased risk of the offspring developing AD.

(42)

(43)

Breast milk SCFA Metabolomics (GC-MS) Caprylate and acetate might negatively correlate
with AD

(44)

AD & FA Faeces SCFA Metabolomics (HPLC) Decreased gut propionate, butyrate, and valerate
in AD and FA

(45)

(46)

Serum Lactate Metabolomics (LC-MS) Higher lactate levels have been suggested as a
non-invasive marker for evaluating temporal
alterations in cell stress and toxicity in AD and
FA. Lactate levels can serve as a marker of the
balance between oxidative and anaerobic
metabolism.

(47)

Faeces Lactate Infants with eczema were found to have
increased lactic acid levels at 26 weeks of age,

(48)

(49)

(Continued)
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TABLE 1 Continued

Pathology Matrix Compound/
Microorganism

Omic technique Description References

Metabolomics (Enzymatic
analysis using a D-/l-lactic acid
assay kit & HPLC)

suggesting a potential link between lactic acid
levels and development of AD. In addition, there
was a significant increase in Lactococcus, a lactic
acid-producing bacterium, with the introduction
of non-hydrolyzed cow’s milk proteins in infants
who successfully outgrew oral milk allergy
without immunotherapy.

FA Faeces Fecal microbiota Bacterial 16S ribosomal RNA
sequencing

Reduced Ruminococcus, Bacteroides, Prevotella,
and Coprococcus in FA from infancy to school
age. Reduced Prevotellaceae family in FA at 6
months.

(50)

(51)

Serum Tryptophan metabolites,
eicosanoids, plasmalogens,
phospholipids

Metabolomics (UPLC-MS/MS &
GC-MS)

Children with FA exhibited dysregulation of
metabolites such as lysoplasmalogens,
lysophospholipids, N2-acetyllysine, β/γ
tocopherol, and sphingomyelins, which were
uniquely altered compared to controls.

(52)

Faeces Acylglycerols Metabolomics (LC-MS) Significant enrichment of diacylglycerol was
found in healthy twins compared to infants with
FA.

(53)

Cord plasma Acylglycerols Metabolomics (LC-MS) Triacylglycerols of long carbon chains and
multiple double bonds have been identified as
potential novel predictive biomarkers for
identifying high-risk children FA.

(54)

Faeces Bile acids Metabolomics Variations in primary bile acid biosynthesis and
reduced levels of intestinal bile acid metabolites
synthesized through the alternative pathway have
been observed to differentiate subjects with
persistent FA from healthy controls and those in
remission from FA.

(55)

Serum PUFAs Metabolomics (LC-MS) A decline in omega-3 PUFAs levels was
observed in resolving FA cases, while an increase
occurred in persistent FA cases.

(56)

(GC-MS, gas chromatography-mass spectrometry; LC-MS, liquid chromatography-mass spectrometry; LC-ESI-MS/MS, liquid chromatography electrospray ionization

tandem mass spectrometry; UPLC-MS/MS, ultra-performance liquid chromatography coupled with high resolution mass spectrometer; HPLC, high-performance liquid

chromatography; PUFAs, polyunsaturated fatty acids; NMR, Nuclear magnetic resonance; MALDI-ToF MS, Matrix Assisted Laser Desorption Ionization-Time of Flight

Mass Spectrometry).

Zubeldia-Varela et al. 10.3389/falgy.2024.1359142
humoral immunity, and AD severity in children (83, 87, 88). In

addition, the proinflammatory cytokine IL-33, which belongs to

the IL-1 inflammatory cytokine family, activates group 2 innate

lymphoid cells (ILC2s) that induce the expression of IL-5 or IL-

13. Moreover, IL-33 directly acts on keratinocytes by reducing

the expression of junctional proteins, such as filaggrin and

claudin-I, leading to skin barrier disruption (82). Similarly, IL-4

and IL-13 downregulate keratinocyte filaggrin expression

(26, 89). Pavel AB et al. found considerably higher levels of

inflammatory markers, such as proinflammatory interleukins (IL-

1R1, IL-33), and metalloproteinases (MMP12) in lesional and

non-lesional skin of moderate-to-severe AD patients (26).

Searching for biomarkers by non-invasive sampling

approaches, Holm et al., quantified 203 proteins in the vernix of

34 newborns, of which 18 children had developed AD at two

years of age (24). The study showed that peroxiredoxin-2 and

serpin A12 were present at higher levels in the AD group, and

polyubiquitin-C and calmodulin-like protein 5 at lower levels

when compared to healthy children. These four proteins had the

highest impact on an orthogonal projection to latent structures-

discriminant analysis (OPLS-DA) model. The authors concluded

that the abundances of polyubiquitin-C and calmodulin-like
Frontiers in Allergy 04
protein 5, negatively correlated with AD development, are

promising AD biomarker candidates.

When looking for reliable protein biomarkers, age at sampling

is a key factor to take into account, since the proteome is dynamic

over time. Stockfelt et al., phenotyped 230 proteins in plasma

prepared from umbilical cord blood, and blood collected at 1, 4,

18 months of age (and further) (25). They found that samples

collected at 1 month of age were the most informative for the

prediction of atopy later in childhood. Precisely, they found 27

proteins, including MHC class I molecules, interleukins and

chemokines that were associated either with a lower risk, such as

MHC class I proteins, IL-15 as well as TNFα-induced protein 3

(TNFAIP3) and Myeloid Derived Growth Factor (MYDGF), or a

higher risk of developing atopy later in life, such as the

interleukins IL-9 and IL-17, the chemokine receptor-10 (CCR10),

the Growth Arrest and DNA Damage Inducible-α (GADD45A),

as well as the proteases MPO and MMP9.

On the other hand, stratification of patients according to a

cluster of several protein biomarkers, seems to be a promising

approach in the elucidation of AD endotypes, as shown by

studies from Thijs JL et al. and followed up by Bakker DS et al.

(90, 91). In the first study, four serum biomarker-based clusters
frontiersin.org
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were identified and associated with different severity scores in a

cohort of 193 patients. Three years later, with a different cohort

of 143 AD patients, Bakker DS et al. identified four distinct

patient clusters, three of them very similar to the previously

identified. However, none of the studies could show a clear

association between the clusters and atopic comorbidities or

epidemiological variables, such as age. More studies are needed

in this sense because the elucidation of AD endotypes might

contribute to the development of personalized medicine and the

better election of specific therapies in the management of AD.
2.2 Proteome in FA

Component resolved diagnosis or molecular diagnosis has led

to a shift in the diagnosis of FA, improving accuracy, allowing

the identification of complete amino acid sequences and IgE-

binding epitopes of food allergens. These advances contribute to

improved diagnosis and prognosis of FA, as well as safety

assessment of foods and allergy testing (92, 93). Several

immunological markers, such as specific IgE (sIgE), IgG4, sIgE/

total IgE ratios or cytokines, have been monitored ever since in

the course of FA. Kukkonen et al., described that sIgE levels to

Ara h 2 and Ara h 6 were associated with more severe reactions

to peanut in a cohort of 102 patients (6- to 18-year-olds) with

peanut sensitization and a high risk of suffering peanut allergy (94).

Compared to peanut and tree-nut allergies, milk and egg

allergies have better outgrown outcomes in children (94). Cow’s

milk tolerance has been associated with elevated levels of cow’s

milk-specific IgG4 and an elevated IgG4/sIgE ratio in two

independent studies (95, 96). However, in 2018, another study

found no significant correlation between sIgE levels and milk

tolerance in a cohort of 84 cow’s milk allergic infants (6 months-

3 years old) who tolerated baked milk in oral food challenge)

(97). In the case of egg allergy, ingestion of baked egg together

with decreased sIgE levels and increased egg-specific IgG4 were

associated to the development of egg tolerance, while a Th1

cytokine profile and increased levels of IL-10 protein were

associated to allergy resolution (98–101).

Biomarkers other than specific IgE and IgG antibodies are

being studied in FA. Proteins or peptides released after

immunological stimulation, degranulation, or cell damage or

death, have been extensively described in the pathogenesis of

asthma or AD (as discussed in the previous section). These

molecules have been referred to as alarmins since 2006 and are

increasingly considered in the study of the pathogenesis of FAs,

as well as their potential role as biomarkers of the disease or

possible therapeutic targets (102, 103). When damage occurs, due

to inflammation or pathogen invasion, epithelial cells initiate a

cascade of events encompassing the production of alarmins, such

as TSLP, IL-33, and IL-25 (104). These signaling molecules

activate innate lymphoid cells (ILC2) and Th2 cells, leading to

the release of cytokines that promote a Th2-type immune

response. For example, IL-5 and IL-13, produced by these

alarmins, contribute to the recruitment and accumulation of

eosinophils in the tissue and trigger the switch in IgE antibody
Frontiers in Allergy 05
production, respectively. IL-4, produced by Th2 cells, activates

mast cells and basophils (105). Cutaneous infiltration of

basophils may direct eosinophil recruitment and enhance food

antigen sensitization. These observations emphasize the

hypothesis that skin barrier disruption in children triggers

transcutaneous sensitization and leads to the development of

IgE-mediated FA (106).

Another type of alarmin is calprotectin, an immunomodulatory

and antimicrobial protein found in mucosal epithelial cells,

macrophages, and neutrophil cytoplasm (107). As its

concentration in feces is six times higher than in plasma, it is

considered a fecal biomarker and is well-established as a reliable

biomarker of intestinal inflammation (108–110). Regarding FA, it

has been proposed as a good diagnostic indicator of cow’s milk

protein allergy (CMPA) and shows promise for monitoring

intestinal allergies due to its correlation with inflammation and

immune responses to food antigens (111–114).

The heterogeneity of FA, with multiple triggers and

confounding factors in the allergic history of patients, makes it

necessary to continue the search for reliable and robust

biomarkers and validate them for use in daily clinical practice.
3 Microbiome

The term microbiota refers to the living microorganisms

inhabiting a defined environment or body site, such as the skin,

the gut, the oral cavity, and the vagina. The term microbiome

refers to “the collection of genomes from all the microorganisms”

in a specific environment. This “also includes the microbial

structural elements, metabolites, and environmental conditions”

(22, 115, 116).

Initial colonization of the microbiota at the body’s interface

occurs at birth. During natural delivery, the mother provides the

neonate with the founder commensals, derived from her vagina

and faeces (117, 118). Breast milk feeding further helps shaping

microbiota diversification by providing secretory IgA and

prebiotic glycans that promote the expansion of specific species

(119–121). In contrast, delivery by caesarean section provides the

infants with the mother’s skin-derived microbiota (122–124). A

study found that caesarean section delivery predisposed to the

development of FA but not AD in early childhood (125). In

turn, epidemiological studies have linked perinatal (pre- and

post-) antibiotic use to the appearance of AD and cow’s

milk allergy in infants (126–128). Whether early disruption of

the microbiota directly affects future risk of allergic diseases

remains elusive.
3.1 Microbiome in AD

Skin microbiota composition in infants shifts over time being

distinct from that observed later in life. Therefore, age affects

skin microbiome composition, together with the birth delivery

mode and maternal commensals (27, 129). Longitudinal studies

found alterations in skin microbiota that predate AD onset.
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Two-day-old infants have site-specific differences in their skin

microbiomes that might influence the future development of AD.

Precisely, the abundance of Staphylococcus species was higher on

the extremities, whereas Gemella and Propionibacterium species

were more abundant on facial sites (27). Further evidence

showed that 12-month-old infants with affected skin had

significantly less commensal Staphylococci at month 2 when

compared with unaffected infants (27, 130). Thus, commensal

Staphylococci might confer protection against AD development.

In a prospective birth cohort study, Staphylococcus aureus’

prevalence was higher on the skin of 3-month-old infants who

developed AD later, as compared with age-matched, non-atopic

infants. Moreover, at AD onset, infants with S. aureus on their

skin were younger than those without it (30). Several genomic

studies confirmed S. aureus abundance and that of other

coagulase-negative Staphylococci (CoNS) to increase in AD,

whereas Streptococcus, Propionibacterium, Acinetobacter,

Cutibacterium, and Corynebacterium genera are typically present

in the homeostatic skin (28, 29, 131–134). These data suggest

that alterations in skin colonization may contribute to AD onset

in early life. Currently ongoing, the “Munich Atopic Prediction

Study” collects information on pregnancy, parental exposures to

potential allergens, environmental factors, child development, and

acute or chronic diseases of both children and parents together

with microbiome analyses from stool and skin swabs, and clinical

examination by trained dermatologists at 2 months after birth and

every 6 months thereafter. Results from this study will certainly be

useful for the identification of AD biomarkers (135).

Studies in mice showed that the establishment of a homeostatic

skin microbiota are preferential in early life, and likely to be more

significant in the skin than in other tissues (136). When neonatal

mice are colonized by S. epidermidis, a CoNS commensal, a

large proportion of Tregs specific for S. epidermidis develops,

ensuring homeostasis to this microbe. In contrast, delaying

exposure to S. epidermidis abrogates its protective effect and

promotes skin inflammation (137).

Prominent research shows the impact of the gut microbiome

on the skin microbiome and the development of skin diseases

(138, 139). This is referred to as the gut-skin axis (140). Wang

et al., found a reduced diversity in the faecal microbiota of

infants with AD during the first 18 months of life (31).

Moreover, Penders et al., observed an association between the

colonization with Clostridium species at 5 and 13 weeks of age

with an increased risk of AD in the subsequent 6 months of life

(33). In turn, Marrs et al., described that a greater abundance of

Clostridium sensu stricto was associated with AD in 3-month-old

breastfed infants (32). In contrast, recently, Park et al. found low

levels of Clostridium and Akkermansia and high levels of

Streptococcus in children with persistent AD. Moreover, the

relative abundance of Streptococcus positively correlated with AD

score (SCORAD), whereas that of Clostridium negatively

correlated with SCORAD. (34). The findings of these two studies

may seem contradictory. However, the different experimental

approaches may account for their different findings. Park et al.

did not define any correction for confounding factors such as

introduction to solid foods or mode of delivery, and they
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collected faecal samples at 6 months of age, particularly when

Marrs et al. found the larger differences in gut microbiota

composition due to diet. Moreover, the definition of the

Clostridia species also differed in these two studies.

Understanding the factors modulating skin and gut

microbiomes is essential for identifying predictive AD

biomarkers and maintaining a homeostatic skin.
3.2 Microbiome in FA

The gut microbiota is a major ecosystem, which changes in

response to environmental factors such as diet, pathogens, and

antibiotic treatment, significantly influencing immune system

maturation through dendritic cell–mediated regulation (124, 141,

142). Alterations in the gut microbiota composition together with

decreased levels of Tregs have been found in subjects with

rhinitis, asthma, AD, and FA to peanuts, eggs, or cow’s milk (22,

50, 124, 143–145). The amount of Tregs in the gut seems to

associate to specific genera of bacteria; therefore, this could be a

mechanism by which the gut microbiota modulates FA course.

Protective effects against FA have been linked with genera such

as Lactobacillus, Bifidobacterium, Faecalibacterium, Akkermansia,

Staphylococcus, and Clostridium (51, 146–148). SCFA-producing

bacteria from phylum Firmicutes, including Lactobacillaceae,

Ruminococcaceae and Lachnospiracea families, actively contribute

to regulating intestinal immune responses, by enhancing mucin

production, improving barrier integrity, and preventing the

colonization of harmful strains (149–152). On the contrary,

certain genera, such as Clostridium, Enterococcus, Klebsiella, and

Enterobacter, have been related to a higher likelihood of

developing FA (146, 147, 153).

Mera-Berriatua et al., analysed the faecal microbiota of 34

cow’s milk allergic infants vs. 16 non-allergic controls (51). They

found an increased frequency of the Prevotellaceae family in

control and formula-fed infants compared to allergic and

hydrolysate-fed infants, respectively. However, since samples were

collected at only one timepoint (6 months old) when cow’s

milk allergy was already established, they could not discern

whether differences were due to the infants’ allergy or their diet.

When analysing the gut microbiota of the mothers, they did not

find anymicrobial signatures predisposing to FA and transmitted

by the mothers. Abdel-Gadir et al., analysed the faecal microbiota

of 56 infants with FA and 98 controls at different times (154).

They found that infants with FA presented a dysbiotic faecal

microbiota composition that evolved over time. Therapy with

Clostridiales or Bacteroidales suppressed FA in mice. Recently,

early inoculation with certain Clostridium species was reported

to decrease IgE levels in adulthood. Conversely, 3-week-old

infants that presented higher proportions of Clostridium difficile

than Bifidobacterium had higher chances of being allergic to food

and aeroallergens (155).

These findings underscore the intricate relationship between

gut microbiota, immune function, and FA course. Despite

advances in this field, it is still unknown whether a dysbiosed gut
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microbiota triggers FA or is the disease itself the one altering

microbiota composition and functionality.
4 Metabolome

Metabolites are the final products of cellular activity and

significantly impact immune responses. Therefore, the

identification and analysis of metabolic biomarkers is essential to

improve our understanding of AD and FA. The Human

Metabolome Database [HMDB; (156)] offers an efficient

electronic resource readily accessible for comprehensive

information on human metabolites. It includes links to various

databases, along with numerous tools for structure and pathway

visualization. Additionally, this database facilitates guidance on

diseases wherein the target metabolite can act as a biomarker.
4.1 Metabolome in AD

The skin of mammals, especially the epidermis, contains

extensive amounts of lipids. These lipids, including ceramides,

cholesterol, and free fatty acids, are integral epidermal barrier

components (140, 157). Lipid alterations in the outer skin layer

led to barrier impairment and eventually to AD. The alteration

of epidermal ceramide composition also promotes inflammatory

and allergic events in infants with AD (36). Moreover, reduced

levels of ceramides associate with S. aureus colonization in AD

patients (35). A recent study on newborns showed that at the age

of 2 months, children with future AD had reduced protein-

bound ceramides and increased unsaturated sphingomyelin

species in the skin. This study demonstrated a significant

predictive power for AD in 2-month-old children. Precisely,

TSLP, at the age of 2 months was predictive of the onset of

atopic dermatitis by the age of 24 months with an odds ratio

(OR) of 4.1 (95% CI, 1.7–10.1). When combined with family

history of atopic diseases, the predictive power of TSLP level rose

to the OR of 6.0 (with 95% CI of 2.3–15.8). Additionally, the

combination of high TSLP, high 24:1-SM, and low O30:0(C20S)-

CER had the highest OR of developing AD by the age of 24

months at 29.6 (95% CI, 4.9–179.7) (37).

Moreover, alterations in the fatty acid composition of plasma

[decreased levels of omega-3 polyunsaturated fatty acids (PUFAs)

and increased levels of omega-6 PUFAs] have been observed in

infants who later develop AD. Furthermore, the findings suggest

that adjusting the diet to include more omega-3 fatty acids,

particularly through fish oil supplementation during pregnancy

and lactation, could effectively restore this balance and

potentially reduce the risk of AD in infants (40). However,

information on other relevant metabolites in adult AD, such as

sphingosine 1-phosphate and acylcarnitines, is lacking in children

(158). These data suggest that an in-depth analysis of cutaneous

lipid profile could aid in the early diagnosis and effective

management of AD (159).

As previously said, the gut-skin axis is important in AD. Gut

microbiota generates numerous metabolites, which can permeate
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the circulatory system and reach remote body sites (160). SCFA,

including acetate, propionate, butyrate, and valerate, are

byproducts of intestinal microbiota fermentation of fibre (44,

149, 161–163). A distinct SCFA profile has been identified in AD

patients. Therefore, nutrition plays a key role. Atopy in children

has been associated with deficiencies of micronutrients such as

iron (164, 165). Iron deficiency leads to immune cell activation

(166). A study reported that when mothers were supplemented

for both iron and folic acid, their children had a 4-fold decreased

risk for AD (42). In a systematic review, Venter et al., found that

maternal intake of beta-carotene, vitamin E, zinc, calcium,

magnesium, and copper during pregnancy resulted in a

decreased risk of AD for the offspring. Supplementation with

omega-3 PUFAs in pregnant women has been shown to reduce

infant sensitization to egg, and the risk and severity of atopic

dermatitis in the first year of life, especially in children of

mothers with a low habitual intake of omega-3 PUFAs (40, 43,

167–169). Several studies provided preliminary evidence of a

protective effect of prenatal vitamin D supplementation on the

likelihood of childhood AD. Notably, infants with AD had a

significant vitamin D deficiency and insufficiency, which

correlated with the severity of IL-17A-dependent AD (170).

Additionally, prenatal maternal depression and anxiety were

reported to increase the risk of AD in the offspring by decreasing

the ratio of placental glutathione to glutathione disulfide (38).

This implies that oxidative stress plays a part in the pathogenesis

of AD. In fact, thiol-disulfide balance has been proposed as a

biomarker of childhood AD (39). These findings highlight the

importance of diet in the maternal period and early life, as

alterations of the metabolome in AD infants have been in

correlation to the gut microbiota.
4.2 Metabolome in FA

Various metabolites have been recognized as potential

biomarkers for FA. Crestani et al., described reduced

sphingolipids and ceramides in children with FA, indicating a

potential association between altered gut microbiota and immune

function. Children with a history of anaphylaxis and multiple

allergies display alterations in tryptophan metabolites, including

decreased levels of metabolites in the kynurenine and serotonin

pathways, and increased levels in the indole pathway.

Additionally, changes in eicosanoids, plasmalogens, and fatty

acids have been observed. Children with FA exhibited unique

dysregulation of lysoplasmalogens, lysophospholipids, N2-

acetyllysine, β/γ tocopherol, and sphingomyelins, compared to

controls (52). A recent prospective study established the

relationship between newborn lipid profiles and the development

of FA. Cord triacylglycerols of long carbon chains and multiple

double bonds were identified as potential early-life biomarkers

for high-risk infant FA (54). Another study described a

significant enrichment of diacylglycerol in healthy twins

compared to those with FA (53). Additionally, children with FA

exhibited a significant increase in sphingolipids and a decrease in

acylcarnitines when compared to healthy controls. Interestingly,
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at the time of diagnosis, individuals with resolving FA displayed

elevated omega-3 PUFAs levels and decreased platelet-activating

factors in comparison to those with persistent FA. However, over

time, a decline in omega-3 PUFAs levels was observed in

resolving FA cases, while an increase occurred in persistent FA

cases (56). Omega-3 metabolites, derived from eicosapentaenoic

acid (EPA) and docosahexaenoic acid (DHA), play a crucial role

in this context. In individuals with resolving FA, high levels of

hydroxydocosahexaenoic acid (HDoHE) were observed, while

levels of the pro-resolving mediators RvD1 and RvD2 were low.

This may be attributed to the utilization of 17-HDoHE during

the production of resolvins. Such a process could reduce IgE

production by human B cells and suppress the differentiation of

naive B cells into IgE-secreting cells, which are relevant in the

context of allergies. Additionally, RvD1 has been reported to

modulate allergic airway responses by reducing eosinophils and

pro-inflammatory mediators. Furthermore, the association

between HDoHE levels and the PAK5 gene, previously linked to

atopy and psoriasis, supports their relevance to allergic diseases.

The study suggests that HDoHEs and D-series resolvins may

play a significant role in the pathophysiology of FA and FA

resolution, potentially serving as markers for FA resolution.

However, it is important to note that studies on omega-3

exposure in childhood allergic diseases have produced

inconsistent results, highlighting the complexity of these processes.
FIGURE 1

Summary of major common and exclusive biomarkers for atopic dermatitis
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Distinct patterns of bile acids, amino acids, steroid hormones,

and SCFA were found in individuals with FA. At 3–6 months and/

or 1 year of age, reductions were observed in bile acids, amino

acids, and steroid hormones. Conversely, individuals with FA

exhibited elevated levels of diacylglycerols at 3–6 months.

Variations in primary bile acid biosynthesis and reduced levels of

intestinal bile acid metabolites synthesized through the

alternative pathway have been described to distinguish subjects

with persistent FA from those in FA remission (55).

Furthermore, the microbiome’s production of SCFA is crucial for

gut health and immune modulation. Changes in the microbiome

that lead to alterations in bile acid metabolism and SCFA

production may impact the persistence or remission of food

allergies. Precisely, lower levels of propionate, butyrate, and

valerate have been associated with FA in infants (45, 46).

Although there is limited information on immune metabolism

in AD and FA, both conditions have been associated with impaired

barrier function of epithelial cells, characterized by a

predominantly glycolytic phenotype and mitochondrial

dysfunction (171, 172). Increased lactate levels, resulting from

increased lactic acid bacteria, have been proposed as a non-

invasive marker for assessing temporary changes in cellular stress

and toxicity in AD and FA (41, 47–49).

Figure 1 summarizes the major biomarkers identified by omics

techniques associated with AD and/or FA in early life.
and food allergy in early life. Created with Biorender.com.
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5 Conclusions

The identification of potential biomarkers in early life could

improve the diagnosis, monitoring, and management of AD and

FA. Exploring the relationship between proteomics, microbiota

and metabolomics is crucial, as some alterations in the

microbiome can induce changes in the host. For example,

common microbiota-derived metabolites such as SCFA and

lactate, along with the presence of certain bacteria in faecal

samples such as the genus Streptococcus, may play a role in

shaping the host immune response. The integration of data from

various omics technologies coupled with advances in statistical

and computational techniques, is expected to enable the

application of precision medicine and targeted therapy in allergic

patients within the next decades, allowing the classification of

heterogeneous diseases like FA and AD into endotypes and

phenotypes. There is therefore an urgent need of extensive

clinical and basic research to identify biomarkers in AD and FA

specific for different allergic phenotypes.
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