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Early life exposures of childhood
asthma and allergies—an
epidemiologic perspective
Rajesh Melaram*

College of Nursing and Health Sciences, Texas A&M University—Corpus Christi, Corpus Christi, TX,
United States
Children around the world are continuing to develop and suffer from chronic
lung diseases such as asthma. Childhood asthma commonly presents with
recurrent episodes of cough, shortness of breath, and wheezing, all of which
can lead to missed school days and hospitalization admissions. The role of
environmental pollutants and aeroallergens has been increasingly recognized
in relation to asthma etiology. We showcase the impacts of air pollution and
pollen exposures in early life on childhood asthma and allergies through an
epidemiologic perspective. We also examine the effects of indoor microbial
exposures such as endotoxin and glucan on allergic diseases in schoolchildren
as many spend most of their time in a household or classroom setting.
Findings of this work can assist in the identification of key environmental
factors in critical life periods and improve clinicians’ diagnoses of asthma
during early childhood.
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Introduction

Asthma is a chronic respiratory disease caused by a combination of genetic,

environmental, and lifestyle factors (1–3). Globally, asthma is the 28th leading cause of

disease burden and 16th leading cause of years lived with disability, based on disability-

adjusted life years. In the next year, the prevalence of asthma is expected to reach 400

million worldwide (4). Children represent a large fraction of asthma incidence and

prevalence (5). Asthma development begins during early childhood and can progress

throughout life, with some adults experiencing a first-time occurrence (4). Because of

their underdeveloped organs and weakened immune systems, children are more

susceptible to asthma symptoms (i.e., shortness of breath, cough, wheezing) and

hospitalization admissions compared to their adult counterparts (6). However, asthma

morbidity and mortality remain higher in adults (4) who have an increased risk of fixed

airflow obstruction (7), alongside a greater potential for rapid lung function decline

(4, 7, 8). Despite these differences, children often possess several risk factors for poor

health outcomes and thus depend on others daily to meet their basic needs (9, 10).

Various environmental exposures are established risk factors for asthma including air

pollution, tobacco smoke, and farm animals (11). The degree and timing of

environmental exposures in early life (i.e., pregnancy and infancy) is crucial and may

either serve as risk factors or protective factors for asthma. Maternal risk factors during

pregnancy including antibiotic exposure, atopic disease, smoking, and stress have been

associated with asthma (12, 13). Postnatal factors such as respiratory viral infections and

indoor microbial exposures have shown to potentially safeguard against the development
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of asthma (12, 14). Climate change on the other hand is indirectly

correlated with the increasing incidence of allergic diseases with

recent focus on the role of air pollution and pollen exposures in

asthma development and exacerbation (15). Studies provide

compelling evidence that air pollution and pollen exposures result

in asthma exacerbations and related allergy symptoms, as well as

hospitalizations and emergency department presentations,

respectively (16–20). The impact of prenatal and postnatal

exposures to air pollution and pollen on childhood asthma and

allergic disease risk is paramount and still uncertain in epidemiology.

As such, the primary objective of this perspective is to reveal the

latest epidemiological evidence on early life exposures to air pollution

and pollen exposures and their associations with childhood allergic

diseases. In a secondary objective, we examine the role of microbial

exposures on the risk of asthma and allergic conditions in

schoolchildren. Enhanced knowledge of environmental exposures in

early life can improve asthma prevention efforts, thereby improving

the health of the pediatric population.
Air pollution

Particulate matter

Particulate matter (PM) consists of microscopic solid and

liquid particles whose diameters are less than 10 (PM10) or 2.5

(PM2.5) micrometers. The impact of early life exposures of PM

on childhood allergic diseases are well-studied (21–27) (Table 1).

In a sex-stratified analysis, maternal daily exposure to elevated

PM2.5 levels at midgestation (16–25 weeks) was found to

associate with an increased risk of asthma development in urban

boys by age 6 (21). Furthermore, a population-based study of

four European birth cohorts reported an increased risk of asthma

incidence after age 4 from early life exposure to PM2.5 (Odds

Ratio [OR] 1.29, 95% Confidence Interval [CI] (1.00–1.66). The

authors also examined the effect of PM2.5 on allergic

rhinoconjunctivitis but did not identify a positive association

(22). A Danish study on COPSAC10 birth cohort observed

significant associations between postnatal PM2.5 [OR 1.51, 95%

CI (1.08–2.07)] and PM10 [OR 1.56, 95% CI (1.14–2.09)] in

relation to childhood asthma at age 6, supporting the impact of

PM exposures during early life.

In terms of childhood allergic diseases, there are fewer

studies addressing the effect of prenatal PM exposures,

particularly on asthma. In the United States, a multicity

sample of two pregnancy cohorts demonstrated the saccular

phase (24–36 weeks gestation) to be a critical window for

PM2.5 exposure and subsequent development of asthma at age

4 (27). A mediation analysis on prenatal PM10 exposure and

asthma incidence showed that airway hyperresponsiveness at

age 1 potentially mediates the association between exposure to

PM10 during the second trimester and asthma incidence at age

7 in schoolchildren (23). For early life exposure, outdoor PM10

was found to associate with lifetime eczema [OR 1.17, 95% CI

(1.06–1.28)], but not asthma, wheeze, or rhinitis among

preschool children (26). A different study observed an
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increased risk of childhood asthma from early life exposure to

PM10 [OR 1.11, 95% CI (1.02–1.20)]. Compared to asthma,

more attention has shifted towards allergic rhinitis as of late

given its increased prevalence alongside the compounding

effects of climate change and ambient particle pollution in

Westernized countries.
Nitrogen dioxide

Nitrogen dioxide (NO2) is a gaseous oxide commonly

produced by combustion processes, fossil fuel emissions,

industrial activities, and transportation (35). Indoor sources of

NO2 include building heat, natural gas stoves, and tobacco

smoke (36, 37). Because children spend ∼70% of their time

inside, they may be exposed to higher levels of indoor NO2 than

outdoor NO2 (38). Epidemiological studies have identified

associations between outdoor NO2 exposure and risk of

childhood asthma and wheezing (39, 40). The effect of prenatal

and postnatal NO2 exposures on childhood asthma remains less

investigated, with few studies highlighting an increased risk of

asthma in preschool-aged children (28, 29). More recently, a

prospective cohort study explored the relationship of indoor and

outdoor NO2 in mixed rural-urban settings with childhood

asthma; however, no significant association was detected (30).

The feasibility study used a small sample (n = 947), which may

have contributed to a lack of an association.

Moreover, a study in Canada explored the role of NO2

exposure in the first year of life and risk of allergic diseases

including asthma, allergic rhinitis, and eczema. Early life

exposures to NO2 were associated with an increased risk of

incident asthma [OR 1.06, 95% CI (0.96–1.16)] and eczema

[OR 1.05, 95% CI (0.99–1.11)] in comparison to allergic

rhinitis [OR 0.94, 95% CI (0.87–1.02)] (34). In China, a group

of researchers analyzed the association between prenatal and

postnatal NO2 exposures and childhood allergic rhinitis

prevalence. No significant association was observed for

prenatal NO2, while an increased odds of allergic rhinitis

resulted from postnatal exposure in the first year of life [OR

1.013, 95% CI (1.002–1.025)] (41). Considering these findings,

the association between early life exposure to NO2 and

childhood allergic diseases are inconsistent and necessitate

longitudinal cohort studies.
Sulfur dioxide

Sulfur dioxide (SO2) is a noxious gas primarily generated from

fossil fuel combustion or industrial processes. Epidemiological

studies revealed an increased risk of asthma exacerbations in

children exposed to high levels of SO2 in the short term (42–44).

Continued interest in this arena may be due to the toxic effects

of SO2 in sensitive asthmatics, although the exact mechanisms

are not completely understood (45). However, researchers report

inconsistent findings on early life SO2 exposures and risk of

asthma and allergic rhinitis. For example, residential exposure to
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TABLE 1 Epidemiological studies on air pollution exposures in early life and childhood allergic diseases.

Pollutant Location Study design Study population Findings References
Particulate
matter 10 (PM10)

South Korea Retrospective cohort
study

Elementary schoolchildren
(n = 3,570)

Airway hyperresponsiveness at age 1 potentially
mediated prenatal PM10 exposure and
childhood asthma at age 7

(23)

China Retrospective cohort
study

Preschool children
(n = 39,782)

PM10 exposure in early life associated with
lifetime eczema

(27)

China Cross-sectional study Young children (n = 29,418) PM10 exposure in early life associated with
childhood asthma

(25)

Particulate
matter 2.5
(PM2.5)

United States Retrospective cohort
study

Full-term children
(≥ 37 weeks, n = 736)

High prenatal PM2.5 exposure during
midgestation increased the risk of asthma at age
6 in boys

(21)

United States Population-based
cohort study

Young children (n = 1,469) High prenatal PM exposure during the saccular
phase (24–36 weeks gestation) increased the
risk of asthma at age 4

(26)

Brazil, Canada, China,
Denmark, France, Norway,
Poland, Singapore, South
Korea, Spain, Sweden, United
Kingdom, United States

Systematic review and
meta-analysis

Young children
(n = 133–93,635)

High prenatal PM2.5 exposure increased the risk
of childhood asthma, atopic dermatitis, and hay
fever

(24)

Germany, Sweden, and
Netherlands

Population-based
cohort study

Participants from four
prospective birth cohorts
(n = 14,126)

PM2.5 exposure in early life increased the risk of
asthma development after age 4 but not
rhinoconjunctivitis

(22)

Nitrogen dioxide
(NO2)

Canada Population-based
nested case-control
study

Resident children
(n = 37,401)

High prenatal and postnatal NO2 exposures
increased the risk of asthma in preschool
children

(34)

Brazil, Canada, China,
Denmark, France, Norway,
Poland, Singapore, South
Korea, Spain, Sweden, United
Kingdom, United States

Systematic review and
meta-analysis

Young children
(n = 133–93,635)

High prenatal NO2 exposure increased the risk
of childhood asthma, atopic dermatitis, and hay
fever

(24)

China Retrospective cohort
study

Preschool children
(n = 3,358)

NO2 exposure in the first year of life was
associated with an elevated risk of asthma and
rhinitis in preschool children

(41)

United States Prospective cohort
study

Pediatric primary care
patients (n = 947)

Exposure to indoor and outdoor NO2 in rural-
urban settings was not associated with
childhood asthma

(30)

Sulfur dioxide
(SO2)

Canada Population-based
cohort study

Young children
(n = 722,667)

Residential exposure to elevated SO2 emissions
increased the risk of asthma development in
children before age 4

(31)

Canada Population-based
nested case-control
study

Residential children
(n = 37,401)

Prenatal and postnatal SO2 exposures increased
the risk of asthma development in preschool
children

(28)

China Retrospective cohort
study

Preschool children
(n = 3,358)

Prenatal SO2 exposures was not associated with
childhood asthma and rhinitis

(29)

Ozone (O3) Canada Administrative cohort
study

Residential children
(n = 1,183,865)

Residential exposure to elevated O3 levels at
birth increased the risk of childhood asthma

(33)

Canada Population-based
cohort study

Schoolchildren (n = 1,286) Exposure to O3 at birth increased the risk of
allergic rhinitis and eczema

(34)

China Case-crossover study Children with asthma
attacks (n = 3,714)

Increased O3 levels at low concentrations
increased the risk of asthma attacks

(32)

Location and study population for systematic review and meta-analysis study includes more than one country and sample size range for all eligible included studies.
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industrial SO2 emissions in Quebec, Canada was shown to

contribute to childhood asthma development mostly before 4

years of age (31). In an earlier study, children exposed to high

levels of SO2 in pregnancy and in infancy had an elevated risk of

asthma onset [OR 1.03, 95% CI (1.02–1.05) for both periods]

(28). No significant relationship was observed between prenatal

SO2 exposure and risk of childhood asthma and allergic rhinitis

in China (29). A follow-up study among Korean schoolchildren

discovered a high risk of allergic rhinitis associated with high

atmospheric SO2 concentrations [OR 1.056, 95% CI (1.006–

1.109)] (46). With continued investigations on SO2 exposures

and childhood allergic diseases associations may become clearer.
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Ozone

Ozone (O3) is a reactive gas existing in both the stratosphere

and troposphere of Earth’s atmosphere. Stratospheric O3 prevents

harmful health effects by absorbing ultraviolet rays from the sun.

Inhalation of tropospheric O3 at high concentrations can cause

cardiovascular and respiratory diseases in children (47). There

is increasing evidence supporting the relationship of O3

exposure with asthma exacerbations or development in

childhood. A case-cross over study found that O3 exposure

>80 µg/m3 increased the risk for asthma attacks on each day of

lag, with a significant effect observed for levels >100 µg/m3
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(32). Conversely, findings from an administrative cohort study in

Québec, Canada indicated an increased risk of asthma

development with respect to residential exposure to O3 at

birth [Hazard Ratio (HR) 1.11 95% CI (1.10–1.12)] (33).

Associations have similarly been reported for O3 exposure at

birth and childhood allergic rhinitis [HR 1.15, 95% CI (1.00–

1.31)] and eczema [HR 1.05, 95% CI (0.95–1.16)] (34).
Pollen

With global climate change extending the pollen season and

distribution of airborne pollen, the adverse effects of early life

pollen exposures on young children are becoming more

pronounced. Several factors contribute to variable pollen levels in

the atmosphere including vegetation source (i.e., trees, grasses,

and weeds), seasonality, and weather conditions (48). Seasonal

pollen exposure stimulates IgE-mediated inflammatory responses,

resulting in itchy eyes, nasal congestion, rhinorrhea, and

persistent sneezing (49, 50). Many epidemiological studies have

thus investigated associations between pollen season of birth and

childhood allergic diseases (51–53). Given the increasing trends

in global climatic patterns some studies are seeking to

understand the impact of pollen exposures on asthma and

allergic disease outcomes (Table 2). For instance, one study

reported an increased risk of sensitization to atopic disease from

high pollen exposure during pregnancy and in infancy, with the

latter showing a greater tendency towards sensitization (55). An

earlier cross-sectional study by the same authors revealed an

increased odds of sensitization [OR 2.4, 95% CI (1.2–4.6)] and

allergic asthma [OR 2.6, 95% CI (1.2–5.6)] from high pollen

exposure in infancy.

Another study noted an increased risk of asthma

hospitalization from pollen exposure during late pregnancy and

in the first year of life (20). Interestingly, the same study showed

that high pollen levels in early pregnancy had a protective effect

on asthma hospitalization by age 1. Limitations within the study

included a lack of allergic disease phenotypes and potential

misclassification of pollen exposures (20).
TABLE 2 Epidemiological studies on pollen exposures in early life and childh

Location Study design Study population
Sweden Cross-sectional

study
Children with atopic
heredity (n = 583)

High
of ato

Sweden Cross-sectional
study

Children identified from
birth records (n = 1,725)

High
impac
comp

Sweden Register based
cohort study

Singleton children delivered
vaginally (n = 110, 381)

Prena
risk o

Australia, Canada, Israel,
United States, Spain

Systematic review
and meta-analysis

Young children and
adolescents
(n = 1,076–199,533)

Expos
depar

Australia, Austria,
Denmark, Finland, France,
Germany, Spain,
Switzerland, United
Kingdom, United States

Systematic review
and meta-analysis

Children and adults
(n = 12–430)

Acute
allerg

Location and study population for systematic review and meta-analysis studies includes more th
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Microbial allergens

Bacterial endotoxin

Bacterial endotoxins are lipopolysaccharide (LPS) molecules

found in Gram-negative bacteria. Multiple studies from the early

2000 s assessed the relationship between household endotoxin

exposures and allergic diseases among schoolchildren (57–61).

Various associations on endotoxin exposure occurred from

these studies including an increased or a decreased risk of

asthma or allergies to no association with asthma. In a

longitudinal study of children with a parental history of atopy,

high endotoxin exposure at ages 2–3 months associated with a

decreased odds of atopy [OR 0.6, 95% CI (0.3–1.4)] and

rhinitis [OR 0.3, 95% CI (0.1–0.9)] in schoolchildren, but an

increased risk of wheeze from ages 1 to 7 years [HR 1.23, 95%

CI (1.07–1.43)]. No significant association occurred between

endotoxin exposure and asthma at 7 years (62). A case-control

study in Canada suggested an increased risk of asthma or

wheeze at age 12 in children whose parents reported a history

of allergic disease to endotoxin exposure, but not for non-

allergic children (63). These findings demonstrate that parental

history of atopic disease could play a part in the protective

effect of high postnatal endotoxin exposure and development

of allergic diseases at earlier ages, and thus be treated as a

potential confounder in epidemiological analyses.
Glucan

Fungi are heterotrophic microorganisms composed of

chitinous cell walls and release spores for dispersal and

colonization. Few exposure assessments on fungal species or

glucan in house dust have been conducted (64–66). High

glucan exposure has been associated with a decreased risk of

atopic eczema by school age [OR 0.73, 95% CI (0.51–1.05)]

(67). Similarly, a decreased risk of allergic sensitization in

children ages 2–4 years resulted from glucan exposure [OR

0.67, 95% CI (0.56–0.81)] (68). In Puerto Rico, an increased
ood allergic diseases.

Findings References
levels of exposure to birch pollen during infancy increased the risk
pic disease in children aged 4–5 years

(55)

levels of exposure to birth pollen during infancy exhibited a greater
t on the risk of atopic sensitization in children aged 4–5 years
ared to high levels of the same allergen during pregnancy

(54)

tal and postnatal pollen exposures associated with an increased
f asthma hospitalizations during infancy

(20)

ure to grass pollen associated with childhood asthma emergency
tment presentations

(19)

exposure to grass pollen associated with an increased risk of
y and asthma symptoms

(56)

an one country and sample size range for all eligible included studies.
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odds of atopy in control subjects [OR 2.46, 95% CI (0.37–4.55)]

and emergency department/urgent care visits for asthma [OR

8.76, 95% CI (2.70–28.4)] was reported in schoolchildren

exposed to high glucan levels (69). The study was cross-

sectional in design, meaning it only captured the link between

glucan exposure and risk of atopy and emergency department

visits at a single time point. Collectively, epidemiological

studies on glucan exposure are scarce, suggesting mixed

findings on the risk of atopic and allergic phenotypes.

Longitudinal cohort studies are therefore needed to assess the

temporal sequence of indoor fungal exposures and allergic

diseases in schoolchildren.
Conclusion

This perspective sheds light on air pollution and pollen

exposures as key environmental determinants in early life with

respect to childhood allergic diseases. Findings on prenatal

and postnatal air pollution and pollen exposures were

analyzed and presented to indicate the potential risk of

developing asthma and allergy in early childhood. As climate

change continues to influence environmental changes, the

interactive effects of air pollution and pollen exposures on

allergic diseases may receive increasing attention. We even

evaluated the role of indoor microbial exposures in connection

with allergic diseases in schoolchildren. Despite conflicting

findings on postnatal endotoxin and glucan exposures, future

studies should explore maternal exposure to indoor pollutants

and aeroallergens as well as potential mediators (i.e.,

viral infection and DNA methylation) with childhood

allergic diseases.
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