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Food allergy represents an increasing global health issue, significantly impacting
society on a personal and on a systems-wide level. The gold standard for
diagnosing food allergy, the oral food challenge, is time-consuming,
expensive, and carries risks of allergic reactions, with unpredictable severity.
There is, therefore, an urgent need for more accurate, scalable, predictive
diagnostic techniques. In this review, we discuss possible future directions in
the world of food allergy diagnosis. We start by describing the current clinical
approach to food allergy diagnosis, highlighting novel diagnostic methods
recommended for use in clinical practice, such as the basophil activation test
and molecular allergology, and go on to discuss tests that require more
research before they can be applied to routine clinical use, including the mast
cell activation test and bead-based epitope assay. Finally, we consider
exploratory approaches, such as IgE glycosylation, IgG4, T and B cell assays,
microbiome analysis, and plasma cytokines. Artificial intelligence is assessed
for potential integrated interpretation of panels of diagnostic tests. Overall, a
framework is proposed suggesting how combining established and emerging
technologies can effectively enhance the accuracy of food allergy diagnosis in
the future.
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1 Introduction

The prevalence of food allergy in Europe is increasing, with a recent meta-analysis

showing a pooled lifetime prevalence of 19.9%, and a point prevalence of 13.1% for

self-reported food allergy (1). US data from 2008 to 2016 show a 3.2-fold increase in

emergency department visits connected to anaphylaxis (2). For those diagnosed, there

are profound effects on every facet of their lives (3). Effects on mental health and

productivity in the workplace are increasingly recognized, with wider implications for a

healthy, cohesive society (4, 5). The development of accurate, economical tests for

correctly diagnosing food allergy is essential to help combat these issues.

Through the next decade, recent findings and technologies hold immense potential to

redefine the paradigm for food allergy diagnosis. Several novel modalities have been

proposed to reduce the need for food challenges via non-invasive lab-based tests. These

range across a variety of techniques, from conventional serology tests to artificial

intelligence (AI) systems. In this narrative review, we will focus on IgE-mediated food

allergy. First we will briefly describe the current status of food allergy diagnosis and

summarize unmet needs in the field. We shall then discuss each novel approach in turn
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and explore future directions for food allergy diagnosis, delineating

a pathway for the safe and effective integration of novel

technologies into clinical practice, in the future. We have also

generated Table 1 containing sensitivity and specificity data from

selected studies across a range of modalities to provide a

contextual background to the review.
2 Current clinical approach to food
allergy diagnosis

Typically, food allergy is diagnosed through a combination of a

thorough history and physical examination, and evidence of IgE to

the suspected allergen, using skin prick testing and/or

measurement of food-specific IgE in the serum (6). In patients

with a clear history of an immediate reaction to a certain food

and evidence of IgE to that food, the diagnosis of food allergy

can be confirmed. Conversely, in individuals with no history of

reacting to a food and no evidence of IgE sensitization to that

food, the diagnosis of food allergy can be excluded. In all

intermediate scenarios, additional tests need to be performed.

New guidelines from the European Academy of Allergy and

Clinical Immunology (EAACI) (7) recommend initiating the

diagnostic process with a detailed allergy-focused clinical history.

Following this, skin prick test (SPT) and specific IgE (sIgE) to

allergen extracts or the fresh food is strongly recommended. In

some cases, these first-line tests do now allow a precise diagnosis,

and for foods for which there are “informative components”,

molecular allergology (MA) should be used. Examples of such

informative components tests are sIgE to Ara h 2, Cor a 14, and

Ana o 3, for peanut, hazelnut, and cashew allergies, respectively.

For investigation of peanut or sesame seed allergies, basophil

activation test (BAT) to peanut or sesame can be used, if

available. BAT is a diagnostic technique involving basophil

response which will be discussed in more detail in a later section.

Of note, this was the first time molecular allergology and the

BAT have been included in clinical guidelines to date.

Currently, the reference standard for precise assessment of food

allergy is the Oral Food Challenge (OFC). Despite being expensive

and carrying risks of anaphylaxis, OFC provides direct

confirmation as to whether a patient will react to a given food

allergen (8, 9). OFC procedures can also be tailored to answer

specific clinical questions as needed. In equivocal cases, at

various stages of the diagnostic process, OFC may be indicated

and are ultimately the definitive diagnostic test currently. Open

OFC are suitable for clinical practice and double-blind placebo-

controlled food challenges are reserved for cases in which

open OFC are, or have the risk of being inconclusive, and for

research purposes.

The systematic review and meta-analysis conducted to inform

the new EAACI food allergy clinical guidelines confirmed high

sensitivity of SPT for the diagnosis of cow’s milk and cooked egg

allergy (90% and 94% respectively) (10). Sensitivity of sIgE to

whole extract was 81%, 82%, 73/85%, and specificity 83%, 92%,

88/73%, for peanut, cow’s milk, and raw/cooked egg respectively.

In comparison to whole extracts, molecular allergology for
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individual components is highly specific for some foods. For

instance, Ara h 2-sIgE has specificity of 92%, Cor a 14-sIgE 95%,

Ana o 3-sIgE 94%, casein-sIgE 93%, ovomucoid-sIgE 91% for

peanut, hazelnut, cashew, cow’s milk, and cooked egg

allergies, respectively.

The relatively lower sensitivity of components for milk and egg

identified (67% and 74% for casein-sIgE and ovomucoid-sIgE

respectively) were not superior to extracts, so were not included

in the new guidelines. The BAT was both highly specific and

highly sensitive for peanut and sesame, the only allergens for

which there were sufficient numbers of BAT studies to perform

meta-analyses (sensitivity and specificity of 84% and 90% for

peanut, 89% and 93% for sesame). Since the review, BAT has

also successfully displayed sensitivity and specificity of 78% and

77% to identify reactors to baked egg (11). Summary of the

recommended tests in the new EAACI guidelines is shown

in Figure 1.
3 Novel approaches in clinical practice

3.1 Molecular allergology

By characterizing molecular components of a given allergen

that are recognized by patients’ IgE, molecular allergology (MA)

can be used to confirm suspected IgE-mediated food allergy (12).

One of the main strengths of MA is that it allows for

differentiation between co-sensitization and cross-reactivity,

improving accuracy (13). The typical example is sensitization to

plant foods secondary to pollen allergy—detecting IgE to the

cross-reactive component (e.g., Ara h 8, Cor a 1) helps

differentiate from primary systemic food allergy, associated with

sensitisation to primary food allergens (for example, seed storage

proteins Ara h 1/2/3/6 and Cor a 9/14). Further, MA has

applicability to risk-stratification, helping to guide clinical

management. Despite this, MA has demonstrated comparable

specificity, but lower sensitivity, than OFC so far, limiting its

value for primary diagnosis, with sensitivity of 67% and

specificity 93% for casein, 74% and 91% for hen’s egg

ovomucoid, 82% and 92% for peanut Ara h 2 respectively (14).

Exact values of sIgE titres are of limited clinical value, as severe

reactions may still occur with sIgE of low levels and high affinity

while conversely sIgE can also be present in the serum of

resolved patients (15). Cost of MA is a limitation compared to

SPT, though integration of novel multiplex platforms may help

to minimize economic barriers, in the cases that require testing

to many allergen components.
3.2 Basophil activation test

The BAT assesses degranulation of basophils in vitro

following stimulation with the allergen. Basophils drive acute

allergic responses via IgE recognition of the allergen and

activation via the high-affinity IgE receptor. Following

stimulation by allergens, flow cytometry is used to look for
frontiersin.org
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TABLE 1 Sensitivity and specificity for food allergy diagnostic modalities from selected studies. BAT, basophil activation test; MA, molecular allergology;
MAT, mast cell activation test; AI, artificial intelligence; DBPCFC, double-blind placebo-controlled food challenge; OFC, oral food challenge.

Author Year Technique Food
allergy

Tested allergen Sample
size

Cutoff/model Reference
test

Sensitivity Specificity

Krawiec (11) 2023 BAT Baked egg Egg extract 150 %CD63 100 ng/ml DBPCFC 78 77

Krawiec (11) 2023 BAT Baked egg Egg extract 150 SI CD203c 10 ng/ml DBPCFC 78 78

Rubio (18) 2010 BAT Cow’s milk Cow’s milk extract 112 >6% CD63+ OFC/clinical
history

91 90

Sato (76) 2010 BAT Cow’s milk Cow’s milk extract 71 SI CD203c≥1.9 OFC/clinical
history

89 83

Sato 2010 BAT Cow’s milk Casein 71 SI CD203c≥1.3 OFC/clinical
history

67 71

Sato 2010 BAT Cooked egg Egg 71 SI CD203c≥2.4 OFC/clinical
history

74 62

Sato 2010 BAT Cooked egg Ovomucoid 71 SI CD203c≥1.7 OFC/clinical
history

80 73

Sato 2010 BAT Raw egg Ovomucoid 71 SI CD203c≥1.7 OFC/clinical
history

77 63

Sato 2010 BAT Raw egg Egg white 71 SI CD203c≥1.6 OFC/clinical
history

83 83

Ocmant (77) 2009 BAT Cooked egg Ovomucoid 67 ≥5% CD63+ SPT 77 100

Ocmant 2009 BAT Cooked egg Ovomucoid 67 SI CD203c≥1.6 SPT 63 96

Tokuda (78) 2009 BAT Wheat Wheat 58 >11.1% CD203c+ OFC/clinical
history

86 58

Tokuda 2009 BAT Wheat Omega-5 gliadin (nTri a
19)

58 >14.4% CD203c+ OFC/clinical
history

86 58

Tokuda 2009 BAT Wheat Omega-5 gliadin (rTri a
19)

58 >7.9% CD203c+ OFC/clinical
history

83 63

Santos (27) 2014 BAT Peanut Peanut 104 ≥4.78% CD63+ OFC/clinical
history

98 96

Glaumann
(79)

2012 BAT Peanut Ara h 2 38 ND DBPCFC 92 77

Brandstrom
(80)

2015 BAT Hazelnut Hazelnut 40 CD-sens >1.7 DBPCFC 100 97

Alessandri
(81)

2012 MA Cow’s milk Bos d 4 66 >0 (kUa/l) DBPCFC 56 88

Alessandri 2012 MA Cow’s milk Bos d 4 66 >0.01 (kUa/l) DBPCFC 62 88

Ando (82) 2008 MA Egg Gal d 1 108 >0.37 (kUa/l) DBPCFC 97 36

Ando 2008 MA Egg Gal d 1 108 >4.4 (kUa/l) DBPCFC 76 81

Ayuso (83) 2012 MA Shrimp rPen a 1 37 >0.35 kUa/l DBPCFC 88 24

Klemans (84) 2014 MA Peanut Ara h 2 107 >0.3 ISU/l DBPCFC 69 91

Klemans 2014 MA Peanut Ara h 2 107 >1.0 ISU/l DBPCFC 59 95

Lieberman
(85)

2013 MA Peanut Ara h 1 167 >0.35 kUa/l DBPCFC 57 87

Lieberman 2013 MA Peanut Ara h 2 167 >0.35 kUa/l DBPCFC 80 92

Masthoff (86) 2013 MA Hazelnut Cor a 1 161 >0.35 kUa/l DBPCFC 80 7

Masthoff 2013 MA Hazelnut Cor a 8 161 >0.35 kUa/l DBPCFC 6 96

Masthoff 2013 MA Hazelnut Cor a 9 161 >0.35 kUa/l DBPCFC 60 88

Santos (26) 2018 MAT Peanut Peanut extract 174 17.2% of CD63+ LAD2
cells

OFC 73 98

Bahri (24) 2018 MAT Peanut Peanut extract 42 MAT-AUC 6.3 DBPCFC 97 92

Suarez-
Farinas (29)

2021 BBEA Peanut Ara h 1, Ara h 2, Ara h 3 82 > 0.3 kUA/l DBPCFC 91 92

Suarez-
Farinas

2021 BBEA Peanut Ara h 1, Ara h 2, Ara h 3 84 > 0.3 kUA/l DBPCFC 93 98

Kuniyoshi
(69)

2020 AI Combination 84 Logistic regression OFC 70 73

Kuniyoshi 2020 AI Cooked egg Combination 84 Support vector machine OFC 68 74

Kuniyoshi 2020 AI Cooked egg Combination 84 Extreme gradient
boosting

OFC 51 66

Lin (87) 2012 AI Peanut Ara h 1, Ara h 2, Ara h 3 62 Decision tree DBPCFC 87 94

Lin 2012 AI Peanut Ara h 1, Ara h 2, Ara h 3 62 Support vector machine DBPCFC 90 97

Zhang (88) 2023 AI Milk α-Lactalbumin, β-
Lactoglobulin, Cow Milk,
Casein, Whey

1,112 Naïve Bayes ensemble OFC 48 73

(Continued)
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TABLE 1 Continued

Author Year Technique Food
allergy

Tested allergen Sample
size

Cutoff/model Reference
test

Sensitivity Specificity

Zhang 2023 AI Milk α-Lactalbumin, β-
Lactoglobulin, Cow Milk,
Casein, Whey

1,112 Logistic regression
ensemble

OFC 84 63

Zhang 2023 AI Milk α-Lactalbumin, β-
Lactoglobulin, Cow Milk,
Casein, Whey

1,112 Support vector machine
ensemble

OFC 97 60

Zhang 2023 AI Milk α-Lactalbumin, β-
Lactoglobulin, Cow Milk,
Casein, Whey

1,112 Random forest ensemble OFC 98 72

Zhang 2023 AI Milk α-Lactalbumin, β-
Lactoglobulin, Cow Milk,
Casein, Whey

1,112 Learning Using Concave
and Convex Kernels
ensemble

OFC 94 95

Gryak (89) 2024 AI Peanut Peanut, Ara h 1, Ara h 2,
Ara h 3, Ara h 8 and Ara
h 9

464 Learning Using Concave
and Convex Kernels
ensemble

OFC 99 100

Gryak 2024 AI Peanut Peanut, Ara h 1, Ara h 2,
Ara h 3, Ara h 8 and Ara
h 9

186 Naïve Bayes ensemble OFC 76 98

FIGURE 1

Recommended tests and their sequential use for diagnosis of food allergy in the new clinical guidelines for the diagnosis of IgE-mediated food allergy
of the European academy of allergy and clinical immunology (EAACI). SPT, skin prick test; sIgE, specific IgE; MA, molecular allergology; BAT, basophil
activation test.
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upregulation of the key markers CD63 and CD203c as a proxy

for basophil degranulation. BAT has shown excellent

diagnostic performance in clinical trials, having the potential

to reduce the need for OFC (16). BAT has improved

specificity compared to SPT and sIgE, while retaining

sensitivity- limiting the number of false positives- with

optimal cutoffs showing 98% sensitivity and 96% specificity

for peanut (17). Further, BAT has potential utility for

predicting disease trajectory, with some studies using repeated

BAT to monitor acquisition of desensitization and remission

of the allergic response (18). The ability of BAT to categorize

allergic disease phenotypes through threshold dose reactivities

offers opportunities for increased granularity of diagnostic

approach, facilitating personalised care (19). Some of the

barriers to further integration of BAT into clinical practice

include the ca. 10% of individuals with basophils selectively

unresponsive to FcϵRI-mediated signalling. As an ex-vivo test

on fresh (whole) blood, BAT features logistical difficulties in

terms of procuring the sample from patients, requiring time-

constrained transport to the lab and processing.
Frontiers in Allergy 04
3.3 Low-dose and low-risk oral food
challenges

Various approaches have been suggested attempting to improve

feasibility and deliverability of OFC. In patients with minimal risk

of reacting to the allergen, cumulative OFC has been adopted to

reduce the time involved and the risk of desensitization during

OFC, which has been associated with false-negative OFC.

Cumulative OFC consists in a single dose OFC which resembles

the age-appropriate portion size. Another approach often

adopted for baked milk and baked egg is the low-dose OFC,

which offers a way to establish a dose below which patients can

continue eating the food at home. A lower dose has been used in

a standard OFC, with one study defining the dose as 1%–10% of

usual OFC dose (20, 21). The danger of a low dose OFC is the

fact that the threshold of reactivity can change over time and

allergen-content of foods is not always declared, thus care needs

to be taken to avoid the allergen in circumstances known to be

associated with a reduction in allergen threshold (e.g., infections,

sleep deprivation, intense exercise, menstruation, etc), and to
frontiersin.org
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ingest foods with known allergen content that is within the

recommended range for that patient.
4 Unmet needs

Primarily, there is a need for a non-invasive test that reduces

the need for OFC to when absolutely necessary, due to the

potential risk of a life-threatening anaphylactic reaction. Beyond

risks to patients, logistically there is also limited capacity for

OFCs due to its high resource-burden (22). It is noted that even

in allergy centres with the highest capacity a prohibitively large

imbalance between supply and demand results in long waiting

lists. In the United Kingdom, contemporary data shows only 677

challenges per week over 139 centres (23). Reduced ability to

deliver sufficient tests mandates prioritization of the most at-risk

patients, and thence delay for much of the patient population.

This carries a high cost, as delay in introducing foods back into

the diet while immunoplasticity persists in young infants can

increase the risk of developing food allergy later, especially in

high-risk sensitized infants (9). Equally, late confirmation of food

allergy being absent runs the risk of irreversible effects on

patients’ food preferences and personal tastes.

There are also issues surrounding geographical equity; robust

diagnosis of food allergy is currently limited to developed

secondary and tertiary centres. This indicates an accessibility

inequality in regions with limited care provision beyond primary

care. Additionally, as therapies targeted to specific

pathophysiological mechanisms are developed, accurately

delineating the course of disease progression, and phenotypically

stratifying diagnosed patients into discrete categories, will

become increasingly more important.
5 Tests approaching clinical use

5.1 Mast cell activation test

Similarly to the BAT, the mast cell activation test (MAT) uses

flow cytometry to observe the in vitro activation of mast cells to

ascertain the degree of allergic response to particular allergens.

Diagnostic performance of the MAT has been shown to exceed

the SPT with an AUC of 0.99 compared to 0.73 for SPT (24).

Mast cell lines or primary mast cells derived from peripheral

blood hematopoietic stem cells are passively sensitized with the

patient’s serum or plasma, then incubated with allergen to assess

response. The requirement for serum/plasma rather than fresh

blood is a key distinguishing factor between BAT and

MAT, potentially improving the feasibility of MAT and allowing

for testing samples collected prospectively over time in the same

experiment. However, growing mast cells can be challenging and

primary cells are difficult to isolate, require tissue or large volumes

of blood and are highly variable, with passive sensitization limiting

sensitivity significantly (25). Requiring transfer of IgE to cells that

are not autologous, MAT has lower sensitivity than the BAT with

one study showing 75% to peanut compared to over 83% for BAT,
Frontiers in Allergy 05
so could be more useful in a sequential process following BAT,

especially in cases of basophil-non-responders (26, 27).
5.2 Bead-based epitope assays

The bead-based epitope assay (BBEA) represents a scalable,

high through-put multiplex assay for IgE and IgG4 to several

sequential epitopes, requiring microliter samples only (28). This

technology utilises peptides mechanically coupled to beads,

which are incubated with serum or plasma samples, followed by

quantification of fluorescence by fluorophore-labelled antibodies.

Sensitivity and specificity of epitope detection, at 92% and 94%

respectively, has been defined for peanut allergy. BBEA can also

be used for phenotypic stratification and severity prediction (29,

30). A particular strength of BBEA is its reproducibility, which is

key for effective widespread use. Errors pertaining to technical

details (well position, reading order), as well as batch effects, are

possible limitations.

BBEA requires precise prior knowledge of epitope amino acid

sequences corresponding to each allergenic food of interest (29).

Further implementation of BBEA is therefore predicated on

continued advances in basic research concerning protein

sequencing, as well as the sharing and processing of large epitope

datasets developed from robustly characterised patient cohorts.

Consequently, in the near future, BBEA likely has most

applicability to diagnosis of the well-researched peanut allergy.

An important limitation is that BBEA is limited to sequential

epitopes, whereas in reality conformational epitopes also play a

key role in food allergy. BBEA analysis also does not capture the

totality of the IgE response, as it does not reflect components

such as affinity and cellular response which are better

characterized by the cellular assays mentioned earlier, as well as

only demonstrating allergen sensitisation rather than overt

clinical allergy (31). Utility of BBEA results may therefore be

improved with parallel investigation of cellular assays, and

correlation with clinical history.
6 Exploratory approaches

6.1 Glycosylation of allergen and
glycosylation of IgE

Glycosylation of natural allergens can lead to cross-reactivity

mediated by glycan-specific antibodies (14, 32). For instance,

sensitization to cross-reactive carbohydrate determinants (CCD)

can cause detectable IgE to peanut whilst resulting in negative

SPT or BAT to peanut, reflecting the absence of clinical

relevance in this CCD sensitisation. In Ghanaian children, CCD

was identified as the underlying reason for IgE cross-reactivity

between IgE to peanut and IgE to parasites, such as Schistosoma

Mansoni (33). While IgE to glycans is often regarded as a barrier

to specificity of in vitro diagnostics, it could represent another

component of the allergic response to fully investigate in

addition to conventional IgE serology, defining distinct patient
frontiersin.org
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sensitization profiles (34). For instance, IgE to α-Gal has previously

been associated with meat-allergy delayed anaphylaxis (35).

A different prism is that of IgE glycosylation, which has been

implicated in the pathogenicity of IgE in its ability to induce

mast cell and basophil degranulation in vitro, and anaphylaxis in

a mouse model, when compared with non-allergic individuals

(36). However, the functional consequences of differences in IgE

glycosylation between allergic and tolerant individuals has yet to

be assessed between allergen-specific IgE molecules.
6.2 Allergen-specific IgG4 and IgA

Some studies have shown potential significance in testing for

specific IgG4 against foods (37, 38). IgG4 is an IgG subclass that

is produced under the influence of the same cytokines as IgE

and has the unique ability for monovalent bispecific binding via

Fab-arm exchange, theorized to be associated with IgE class-

switching. However, it has been suggested that IgG4 merely

represents a bystander of immunological tolerance rather than a

factor driving such immune response (39). In the LEAP study,

peanut-specific IgG4 increased over time in the study arm who

consumed peanut from the first year of life, who also had less

peanut allergy (40). In a recent cross-sectional egg allergy study,

sIgG4 to egg, egg white and egg components, ovomucoid and

ovalbumin, was higher in allergic compared with tolerant

children and in consumers compared with avoiders (41). More

research is needed to understand the role of IgG4 in food allergy

and, certainly, to understand its utility in food allergy diagnosis.

sIgA is also presumed to play a role in the pathophysiology of

food allergy, as sIgA deficiency has been linked to higher rates of

allergies including food allergy, and salivary IgA has correlated

with oral immunotherapy response for peanut allergy (42, 43).

One cohort study indeed revealed higher plasma sIgA counts in

children with peanut allergy, though no evidence was found for

protection of food-specific IgA against development of food

allergy or its potential utility for food allergy diagnosis (44).
6.3 T cell assays

A novel food allergy biomarker involves gauging the frequency

of pathogenic T cell subsets and their activation in response to

allergen stimulation. T cells are key immune cells in

orchestrating food allergic and tolerant responses. In particular,

Th2A cells, a subset of terminally differentiated memory CD4 +

helper T cells, with characteristic expression of CD molecules

and distinct functionality from conventional Th2 cells, have been

associated with a specific stable allergic disease-related phenotype

(45). One study examining pathophysiological trajectories of

peanut allergy in a cohort of patients receiving oral

immunotherapy showed clinical utility of subgroup division

according to peanut-specific T-cell mediated immune profile

(46). Discrete peanut-reactive T cell immunotypes based on

relative proportions of Th2A cells were demonstrated, which

were significantly related to distinct responses to allergen-specific
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immunotherapy. Additionally, Tfh13 cells, a subset of T follicular

helper cells, may also be implicated in inducing anaphylaxis

through induction of high-affinity specific IgE via sequential

switching of B cells from IgG1 to IgE (47). In a study elucidating

the position of T regulatory cells in spontaneous cow’s milk

allergy recovery, artificial neural networks were used to identify

the markers FoxP3, Nfat-C2, IL-16, and GATA-3 as associated

with the persistence of cow’s milk allergy, with higher FoxP3

intensity in cow’s milk allergic children, linking Th2 and Treg

expression profiles with food allergy disease activity (48). An

enhanced understanding of further Th subtypes could permit

personalised care via assessment of individual T cell phenotypic

signatures, designing and delivery of novel immunomodulatory

therapies, as well as prediction of treatment response.
6.4 B cell assays

Playing an integral role in the production of allergen-specific

antibodies, characterization of B cells is another possible

biomarker for food allergy, determining specific attributes of the

B cell receptor. IgE + B cells are directly related to the

pathogenesis of food allergy, but are low in frequency and

therefore difficult to identify. Investigative studies into IgE + B

cells have identified the majority of IgE + B cells as immature

plasmablasts with a common clonal family (49). IgE +memory B

cells have been detected in the circulation, but they can also be

present in the tissue, namely in the stomach and duodenum

(50, 51). IgE + clonal signatures from gut samples could therefore

represent one potential avenue to identify food allergy, though

limited by access to relevant tissue sites in the gut. As with T

cells, specific B cell subsets may also allow for further insights

into food allergy, such as type 2-polarised memory B cells which

are implicated in generating sIgE in early sublingual

immunotherapy for birch pollen/house dust mite allergy (52).

Similarly, a unique population of CD23 + IgG1 +memory B cells

has also been described in the long-term persistence of

peanut allergy in children, with frequency correlating to serum

IgE levels (53, 54).
6.5 Microbiome analysis

In a similar vein to characterization of T cell responses,

studying microbiome dynamics could permit discrete

categorisation of food allergy trajectories. Disparities in the

prevalence of certain bacterial species between peanut-allergic

and non-allergic patients were demonstrated in a

multidimensional multi-omic study of the oral microbiome,

accompanied by significant differences in short-chain fatty acid

and IL-4 titres (55). In particular, abundances of Prevotella

species were protective against a Th2-mediated response, whereas

milieus tending towards Neisseria categorized Th2-mediated

allergic response. This corroborates with literature suggesting a

role for Neisseria-related mucosal inflammation. In a similar

study using faecal samples, a metabolome network analysis from
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infancy to mid-childhood was conducted, revealing significant

associations between reduced microbiome diversity, temporal

bacterial variation, and histidine, butyrate, isovalerate pathway

metabolites with development of peanut allergy (56).

Iterating on the evidence provided by associative trials, oral and

gut microbiomes have been clinically implicated in influencing

disease reaction thresholds. A prospective multiscale study

revealed characteristic oral and gut microbiome signatures

affiliated with peanut allergy, observing significant associations

between prevalence of Veillonella and Bacteroides species with

high-threshold peanut-allergic patients (57). Consistency of

ordinal trends was also noted between these discriminative

bacteria and non-allergic participants. These findings suggest

integrated analysis of combined oral and gut environments could

be worthwhile in exploring crosstalk and categorical summation

of host-microbe-immune dynamics. Advances in microbiome

analysis may be laterally transferable to other allergenic foods, as

pro-allergenic micro-environments are likely to be shared

between food allergies without requiring precise knowledge of

peptide sequences, as in BBEA. Despite modest predictive

performance in preliminary research, the complex and

interdependent mechanisms of the gut and oral microbiome

create fundamental limitations for the specificity of any proposed

diagnostic test involving the microbiome, as confounding effects

(diet, ethnicity, comorbidities) may create statistical noise,

making microbiome analysis unlikely to be significantly useful

outside the context of a broader picture of host metabolites and

IgE levels (58, 59).
6.6 Plasma cytokine analysis

As a natural extension from effector immune cell responses,

characterization of the cytokine milieu could further define

patient-specific immunopathogenetic signatures. Plasma cytokine

profiles have been studied as predictors of food allergy diagnosis

and resolution among sensitized infants, with specific reference

to higher levels of allergy-defining IL-4, IL-13, IL-12p70, and

lowered IL-10 (60, 61). Heterogeneity of cytokine profile has also

been described between peanut and egg-allergic patients, which

has been related to disparities in resolution rate (62). One

prospective study explored the clinical utility of these markers,

observing significantly raised median TNF- α and IL-6 levels

before a therapeutic elimination diet in food-allergic participants,

followed by significant decreases post-diet. The existing literature

suggests a role for plasma cytokines in quantifying success of

immunotherapeutic interventions, with decreases in IL-5 and IL-

13 observed after food allergen immunotherapy, though it is

worth noting the transience of this immunologic suppression (63,

64). These results are positive toward integration of plasma

cytokine levels in initially confirming food allergy and tracking

disease trajectory, but must be interpreted with particular

consideration to time-course due to their fluctuant nature. More

utility may therefore be derived from multiple readings

longitudinally and single-cell cytokine studies. The efficacy of

single-cell cytokine analysis is highlighted in the work of Chiang
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et al., who used single-cell profiling to interrogate heterogenous

Th2 effector subsets in peanut-allergic patients, revealing a

delayed, IL-2-dependent CD154 upregulation on Treg cell

marker-expressing cells (65). Similarly, Neeland et al. showed

significantly greater Il-6 and TNFα production, and lower IFN-γ

production, with single-cell analysis of CD3/CD28 stimulated

naïve CD4+ T cells in food allergic adolescents (66).
6.7 Artificial intelligence

AI methods hold a revolutionary potential for precisely

identifying food allergy and synthesizing results of various tests

for enhanced diagnostic accuracy. In comparison to conventional

computerised protocols, artificial intelligence is able to fluidly

adapt to provided datasets; learning from prior experience and

applying this to novel situations. Specifically, machine learning

(ML) frameworks, defined as a subset of AI involving teaching

machines to emulate human learning while avoiding explicit

programming, have utilized biomarkers including omics, total

IgE, sIgE, sIgG4, and SPT data to successfully predict food

allergy in infant populations (67). ML has also been efficacious

as part of a medical algorithm identifying food allergy from data

on methylation of highly discriminating cytosine-phosphate-

guanine dinucleotides, reaching 100% accuracy through an

ensemble voting scheme (68). Furthermore, prediction of

tolerance to oral food challenge has been successfully

demonstrated with Random Forest model sensitivity and

specificity of 98% and 95% respectively for heated egg (69). ML

processes have also been integrated within the novel bead-based

epitope profiling mechanism described earlier, with the ability

to accurately examine baseline variables influencing response to

oral immunotherapy (70).

One of the major benefits of artificial intelligence approaches is

the possibility for exploratory, unbiased data-driven analysis such

as K-Means Clustering, which is an unsupervised algorithm

enabling the grouping of unlabelled datasets into discontinuous

clusters. Effective application of this to the MAT technique has

been demonstrated, creating distinct clusters of phenotypes

within a dataset of patients with similar responses to MAT

(24, 71). AI models have also been successfully applied to MA

multiplex arrays (72). As described in previous sections, the

process of food allergy diagnosis lends itself to categorization of

specific phenotypes in continuous unlabelled datasets, indicating

high potential to accelerate our understanding of allergic patient

presentations across a wide array of allergens and laboratory

techniques. As well as this lateral applicability, there is also

immense forward capability for analysis of methods that have yet

to be discovered or refined, permitting swifter validation

and optimization.
7 Conclusion

It is worth noting that no one modality described in this review

is likely to be the perfect discriminant of food allergy. Rather,
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FIGURE 2

Framework for future directions in the diagnosis of IgE-mediated food allergy. BAT, basophil activation test; SPT, skin prick test; MA, molecular
allergology; MAT, mast cell activation test; BBEA, bead-based epitope assay; AI, artificial intelligence.
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combinations of tests have been postulated to maximize diagnostic

accuracy (73, 74). In the short-term, upscaling of existing, proven

technologies such as MA and BAT, that have recently begun to be

introduced into clinical practice may carry the timeliest return-on-

investment in achieving tangible improvements in quality-of-care

for patients with suspected food allergy. Laboratory tests made

more streamlined, high-throughput, and affordable will be

impactful in improving access to food allergy diagnosis in under-

resourced communities. This requires a parallel investment in

laboratory processing capabilities, and development of rapid,

efficient processes on a macroscopic systems level.

Alongside this, ongoing research into the exploratory

techniques described in this review will pay dividends for the

treatment and management of food allergy on a long-term scale.

As advances are made in targeted immunotherapy, increased

depth and granularity of food allergy diagnosis will be

necessitated to access its full potential. For example, personalized

biologic treatments could be selected based on a patient’s unique

signature of cellular response, cytokine milieu, and microbiome.

Underlying this, a data-driven approach guided by high-quality

trained ML networks will be essential for enhanced interpretation

of intricate omics datasets (75). A suggested pathway for

direction of future food allergy diagnostics is shown in Figure 2.

Overall, this review suggests the rapidly changing face of food

allergy diagnosis is well-positioned to address the projected

increase in clinical burden in the near future, through an

integrated approach combining laboratory technologies, artificial

intelligence, and the art of medicine, to make a precise and

timely diagnosis for every single food allergy in each individual.
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