& frontiers | Frontiers in

'.) Check for updates

OPEN ACCESS

EDITED BY
Svetlana P. Chapoval,
University of Maryland, United States

REVIEWED BY

Dina Rnjak,

University Hospital Centre Zagreb, Croatia
Xingnan Li,

Icahn School of Medicine at Mount Sinai,
United States

*CORRESPONDENCE

Xiaodong Xia
306146269@qg.com

Weixi Zhang
zhangweixil12@163.com

'These authors have contributed equally to
this work

RECEIVED 05 October 2024
ACCEPTED 03 January 2025
PUBLISHED 29 January 2025

CITATION

Zhong X, Song J, Lei C, Wang X, Wang Y, Yu J,
Dai W, Xu X, Fan J, Xia X and Zhang W (2025)
Machine learning-based screening of asthma
biomarkers and related immune infiltration.
Front. Allergy 6:1506608.

doi: 10.3389/falgy.2025.1506608

COPYRIGHT
© 2025 Zhong, Song, Lei, Wang, Wang, Yu,
Dai, Xu, Fan, Xia and Zhang. This is an open-
access article distributed under the terms of
the

. The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in

Original Research
29 January 2025
10.3389/falgy.2025.1506608

Machine learning-based
screening of asthma biomarkers
and related immune infiltration

12,3t

Xiaoying Zhong'**, Jingjing Song'*, Changyu Lei",
Xiaoming Wang"?, Yufei Wang'?, Jiahui Yu™*, Wei Dai**, Xinyi Xu'?,
Junwen Fan'?, Xiaodong Xia"* and Weixi Zhang"**

*Allergy and Clinical Immunology Center, The Second Affiliated Hospital and Yuying Children’s Hospital
of Wenzhou Medical University, Wenzhou, Zhejiang, China, 2Department of Pediatric Allergy and
Immunology, The Second Affiliated Hospital and Yuying Children’'s Hospital of Wenzhou Medical
University, Wenzhou, Zhejiang, China, The 2nd Ward of Pediatrics, Jinhua Maternal and Child Health
Care Hospital, Jinhua, Zhejiang, China, “Renji College, Wenzhou Medical University, Wenzhou,
Zhejiang, China

Introduction: Asthma has an annual increasing morbidity rate and imposes a
heavy social burden on public healthcare systems. The aim of this study was
to use machine learning to identify asthma-specific genes for the prediction
and diagnosis of asthma.

Methods: Differentially expressed genes (DEGs) related to asthma were identified
by examining public sequencing data from the Gene Expression Omnibus,
coupled with the support vector machine recursive feature elimination and
least absolute shrinkage and selection operator regression model. Gene
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene set
enrichment analysis and correlation analyses between gene and immune cell
levels were performed. An ovalbumin-induced asthma mouse model was
established, and eukaryotic reference transcriptome high-throughput
sequencing was performed to identify genes expressed in mouse lung tissues.
Results: Thirteen specific asthma genes were obtained from our dataset analysis
(LOC100132287, CEACAMS, PRR4, CPA3, POSTN, LYPDZ2, TCN1, SCGB3A1,
NOS2, CLCAL, TPSAB1, CST1, and CZorf26). The GO analysis demonstrated
that DEGs linked to asthma were primarily related to positive regulation of
guanylate cyclase activity, gpi anchor binding, peptidase activity and arginine
binding. The renin-angiotensin system, arginine biosynthesis and arginine and
proline metabolism were the key KEGG pathways of DEGs. Additionally, the
genes CEACAMS5, PRR4, CPA3, POSTN, CLCA1, and CST1 expression levels
were positively associated with plasma cells and resting mast cells. The mouse
model revealed elevated nos2 and clcal expression in the asthmatic mouse
group compared with that in normal mice, which was consistent with the
findings in asthmatic patients.

Discussion: This study identified new marker genes for the prediction and
diagnosis of asthma, which can be further validated and applied clinically
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Asthma is a chronic respiratory illness marked by
inflammation and remodeling of the airways that is triggered by
complex genetic regulation and environmental exposure to
allergens (1). It is caused by swelling and increased mucus in the
airways (inflammation) and narrowing of the airways due to
muscle spasm (bronchospasm) leading to bronchial overreaction
and airway obstruction (2). Asthma affects 5%-10% of the
China,

approximately 4.2% of adults over the age of 20 years and older

population in many developed countries. In
have asthma. There are more than 300 million people with
asthma worldwide, and its prevalence is increasing every year (3).
Asthma usually occurs in preschool years and causes reducing
quality of life and early death, which leads to a large public
health burden.

Many patients with asthma use self-care and pharmacological
therapies to control their symptoms. Recently, monoclonal
antibodies have been applied to benefit patients (4). However,
their efficacy differs owing to the diverse forms of asthma, and
some individuals do not respond to current asthma treatments
(5). In recognition of inadequacies in the current understanding
of asthma mechanisms, our research highlights the need of
having a thorough grasp of diagnosis and immunological
variability in asthma.

Asthma involves multiple inflammatory responses. The initial
barrier to resistance against microorganisms, gases, and allergens
is the bronchial epithelial cells, which is also the centre of the
inflammatory response (6). First, allergens can be eliminated by
airway epithelial cells via mucus (7). Second, by using pattern
recognition receptors,
chemicals associated with pathogens or hazards, and release
cytokines and chemokines (such as IL25, TSLP, CCL5, and
CCL22), activate dendritic cells, connect innate and adaptive

airway epithelial cells may identify

immunity, and trigger local immune responses (8, 9). Third, they
function as antigen-presenting cells, which help trigger type II
immunological responses by causing naive T cells to differentiate
into CD4+ T cells (10). Therefore, we chose samples of bronchial
epithelial cells from public datasets for sequencing and analysis
in this study.

Machine learning is a collection of computational intelligence
techniques that allows a computer to learn a task autonomously,
improving its experience without being explicitly programmed.
This method can be used to analyze large amounts of data,
establish complex and nonlinear relationships, and identify
patterns and relationships between data and interesting
outcomes. Zhang et al. identified the immune infiltration-related
diagnostic genes SLC27A3 and STAUI using machine learning in
patients with Chronic Obstructive Pulmonary Disease. The area
under the receiver operating characteristic (ROC) curve (AUC)
was up to 0.900 and 0.971, which demonstrated their high
(1.

pulmonary frailty were previously identified using the least

diagnostic  value Potential biomarkers of idiopathic

absolute shrinkage and selection operator (LASSO) regression
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model, random forest algorithms, and support vector machine
(SVM-RFE). These methods
were very helpful in enabling an early diagnosis and enhancing

recursive feature elimination
prognosis (12). Research to date shows that machine learning
helps uncover the potential causal mechanisms of asthma
with good predictive efficacy and can generate new
hypotheses (13, 14).

Despite its significant impact on public health, the diagnosis
of asthma mostly depends on symptoms and accompanying
testing, which does not allow for prediction and treatment. Our
study explored differentially expressed genes (DEGs) in asthma
by analyzing the bronchial epithelial cell transcriptome of the
GSE63142 and GSE158752 databases from the Gene Expression
(GEO)

learning approaches. We evaluated the diagnostic utility of

Omnibus public sequencing data using machine
these genes using the AUC after doing functional, pathway,
and gene set enrichment analyses of the DEGs. We hope to
contribute to the genetic diagnosis and prediction of asthma in

the future.

2.1 Microarray data processing and analysis

We obtained the GSE63142 and GSE158752 asthma datasets
from the GEO database of the National Center for Biotechnology
Information (NCBI) ( ). The
GSE63142 dataset (GPL6480 platform) (15) was uploaded in
2014 and included transcriptome studies of the bronchial
epithelial cells from 27 healthy participants and 128 patients with
asthma. In the GSE158752 dataset (GPL18573 platform) (16), 50
bronchial epithelial cell samples from patients with asthma and
17 normal samples were obtained. R software (version 4.2.2;

) and RStudio software (version 4.2.2;
) were used to process and analyze
the datasets.

2.2 Analysis of differentially expressed
genes

All profiles of the gene transcription microarray data were pre-
processed utilising the “SVA” package (version 3.46.0), which
included background correction and normalization. Gene
symbols were annotated based on the annotation data. To
execute advanced feature selection and visualization, we utilized
GSE63142 as a training set for the DEGs analysis and used
GSE158752 as a test set. We examined transcriptome samples
from healthy controls and asthma patients to support the
expression of the crucial genes identified. The GSE158752 dataset
was used for verifying the core gene differential expression.
Using the “limma” R package, we determined the DEGs between

samples from patients with asthma and healthy subjects using a
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conservative threshold (|log2FC|> 1.0, p <0.05). We utilised the
“pheatmap” (version 1.0.12) and “ggplot2” packages (version
3.4.2) to generate a heatmap and volcano plot, respectively.

2.3 Function, pathway and gene set
enrichment analysis and protein—protein
interaction network analysis of DEGs

Gene Ontology (GO), Kyoto Encyclopedia of Genes Genomes
(KEGG) pathway enrichment analyses were used to identify the
characteristic biological, molecular, and cellular attributes and
reveal associated enriched pathways. Gene Set Enrichment
Analysis (GSEA) was employed to investigate the role of genes in
biology (17). Analyses using KEGG, GO, and GSEA were
performed using the R package “clusterProfiler” (version 3.14.3).
Significantly enriched biological processes, molecular functions,
cellular components, and pathways were chosen based on a
threshold of p-value<0.05 and an false discovery rate
(FDR) < 0.05. The STRING database ( )
was used for the protein-protein interaction (PPI) network
analysis of DEGs related to asthma. It provides uniquely
comprehensive coverage, integration, and interactions obtained
through text mining (18).

2.4 Techniques for machine learning to find
diagnostic indicators

Using the training set, we applied two types of machine
learning algorithms to predict asthma disease-associated genes:
SVM-RFE and LASSO regression models. The LASSO regression
is a model for variable selection and complexity regularisation.
We used the “Venn” package to intersect the diagnostic markers
of asthma patients generated by the LASSO regression and the
techniques of SVM-RFE. To gauge the performance of these
models, we deployed the ROC curve and computed the AUC.
The AUC quantifies the capacity of these two models to
discriminate between healthy control and asthma samples, with
predictions based on the chosen features. In summary, we
implemented the LASSO regression and SVM-RFE techniques in
the training set to select and utilise the training and test sets to
then identify important DEGs for asthma diagnosis and evaluate
the models’ performance by employing the ROC curve and
AUC values.

2.5 Connection between immune cells and
core genes

We performed immunoinfiltration analysis using the
“CIBERSORT.R” package in the training cohort, used the
“corrplot” packages to analyze the differentiated infiltration of
immune cells between healthy people and patients with asthma,
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used the “preprocessCore” package to generate immunocyte
content, and analyzed the correlation of core gene expression
and immune cells by the “reshape2”, “ggpubr”, and “ggExtra”
packages. Data with p-values<0.05 and g-values<0.05 were
retained and volplot, barboplot, lollipop pictures were generated.

2.6 Animal experiments

Female wild-type C57BL/6 mice were obtained from the Beijing
Vital River Laboratory Animal Technology Co (Beijing, China).
Mice were provided unlimited access to water and standard food
and were raised under specific pathogen-free conditions
(22°C £ 1°C, 50% * 5% humidity) with a light/dark cycle of 12 h/
12h. One week before use, the mice were isolated and
acclimated. Ten mice were classified into two groups (n=5
each): sham and ovalbumin (OVA). Mice in the OVA group
were given an intraperitoneal injection of sensitized OVA
(100 pg; Cat #: A5503, Sigma-Aldrich, USA) and aluminium
hydroxide (1 mg; Cat #:77161, Thermo Fisher Scientific, USA) on
days 1 and 13, while saline (100 ul) was injected into mice in the
Sham group. Mice in the OVA group were administered 2%
OVA in an aerosol form for over 30 min for seven consecutive
days, while mice in the sham group were administered saline. All
animals were sacrificed within 24 h of the last nebulization. The
Ethics Wenzhou Medical University

Laboratory Animal Resource Center (Wenzhou, China) granted

Committee of the

consent for all studies to be conducted in accordance with the
ARRIVE criteria.

2.7 Transcriptome analysis

Library building for the high-throughput sequencing of the
eukaryotic reference transcriptome from the examined mouse
lung tissue samples was performed by LC-Bio Technology Co.,
Ltd. (Hangzhou, China). An Illumina HiSeq X Reagent Kit
(Ilumina, San Diego, USA) was used as the sequencing platform.
The expression of each transcript was calculated using the
fragments per kilobase per million read technique to identify the
DEGs between samples.

2.8 Statistical analysis

For statistical analysis and visualisation, R version 4.2.2 was
employed, while GraphPad Prism 8.2.0 was used to statistically
analyze the images. Student’s t-tests were used to compare group
variables. Results were shown as the mean * standard deviation.
At least three replicates were performed for each experiment.
Statistical significance was set at p < 0.05.


https://cn.string-db.org/
https://doi.org/10.3389/falgy.2025.1506608
https://www.frontiersin.org/journals/allergy
https://www.frontiersin.org/

Zhong et al.

10.3389/falgy.2025.1506608

Type

weo2

‘ crot26

ﬂ |] Tont

Nos2

I}I [

PR

C D

13 13 13 13 12 11 11 108 8 8 7 4 4 0O

scasaat

-
|lm|m I i
a

cEACMS.

o

w

Sig
© Down

® Not

~log10(adj.P.Val)

©

o Up

LASSO SVM-RFE

0.370 |

.
b
2
&
|

L
Validation)

0.360 |

1
0.355 |

10.350 |

L I
RMSE (Cross-

0.345 |

Binomial Deviance
065 070 075 0.80 0.85 0.90 0.95
L

0.340 |

LOC100132287
CEACAMS
PRR4

CPA3

POSTN

LYPD2

TCN1

FIGURE 1

DEGs of patients with asthma using the GSE63142 datasets. (A) Heatmap of the the GSE63142 datasets; gene upregulation is indicated by red and gene
downregulation is indicated by blue,highlighting the differences in gene expression between healthy controls and asthma patients. (B) Volcano plot of
the GSE63142 datasets; significant DEGs with a conservative threshold of |log2FC|>1.0, p<0.05; red represents gene upregulation and blue
represents gene downregulation. 13 genes were differentially expressed between healthy controls and patients with asthma (9 genes upregulated
and 4 genes downregulated). (C) The LASSO regression analysis to identify the most relevant genes for asthma diagnosis based on the differential
expression analysis results, which identified 8 diagnostic core genes. (D) The SVM-RFE menthod using the el071, kernlab and caret package,
which identified 10 diagnostic core genes. (E) Venn plot depicting the identification of key genes for distinguishing between healthy and asthma
patients. The intersection of two machine learning algorithms—lasso regression and SVM-RFE method—reveals 8 pivotal genes (LOC100132287,
CEACAMS, PRR4, CPA3, POSTN, LYPD2, TCN1, and SCGB3A1) as robust and discriminative features. DEGs, differentially expressed genes; LASSO,
least absolute shrinkage and selection operator; SVM-RFE, support vector machine recursive feature elimination.

SCGB3A1

3 Results

3.1 Machine learning model development
and identification of critical genes for
asthma discrimination

A total of 30,889 genes from 155 bronchial epithelial cell
samples obtained from 128 patients with asthma and 27 healthy
individuals were included in the training set from the GEO
dataset. The age range of subjects was 18-62 years, with an
average age of 37 years. We first divided the data into two
groups to examine the gene expression matrix of the training set:
healthy controls and patients with asthma. The subsequent DEG
analysis revealed a notable variation in gene expression between
the two groups, as demonstrated in the heatmap, highlighting the
distinct gene expression landscape of patients with asthma
(Figure 1A). A comparatively small number of DEGs were found
in this comparison, with a volcano plot displaying 9 upregulated
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and 4 downregulated genes with a conserved threshold of
[log2FC| > 1.0, p < 0.05 (Figure 1B).

We constructed the LASSO regression model for feature
selection, which identified 8 diagnostic core genes of asthma.
This approach reduced unimportant feature coefficients to zero.
The SVM-RFE is a learning algorithm used in nonlinear
classification, which constructs a hyperplane in the feature classes
with a maximum margin (19, 20). The SVM-RFE method is used
to identify the most critical diagnostic markers associated with
asthma progression. Using the SVM-RFE approach, 10 asthma
diagnostic genes were identified. Through the convergence of the
SVM-REFE approach and LASSO regression, eight important
genes were found to be discriminative characteristics that might
be used to separate asthma sufferers from healthy individuals
[LOCI100132287, carcinoembryonic antigen-related cell adhesion
molecule 5 (CEACAMS5); proline-rich 4 (PRR4); carboxypeptidase
A3 (CPA3); periostin (POSTN); LY6/PLAUR domain cintaining
2 (LYPD2); (TCN1); and

transcobalamin 1 secretoglobin

frontiersin.org
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family 3A member 1 (SCGB3A1)], as shown in the Venn diagram
( -E).

3.2 Pathway enrichment analysis

Considering the significant variations in asthma gene
expression patterns, we continued with a more comprehensive
study focusing on the 13 DEGs. According to the results of the
GO enrichment analysis, 95 GO items comprised 19 molecular
functions (MF), 64 biological processes (BP), and 12 cellular
components (CC). Several processes were significantly enriched.
Notably, these included the response to oxygen levels and
positive regulation of guanylate cyclase activity for BP, collagen-
containing extracellular matrix, zymogen granule and anchoring
membrane component for CC, and gpi anchor binding, peptidase
activity, arginine binding and intracellular calcium activated
chloride to MF. These
underscore the importance of protein metabolism and enzyme
—Q).

We performed the KEGG pathway analysis to explore the

channel activity regard findings

regulation in the pathogenesis of asthma (

higher levels of biological functions associated with asthma. This
approach focuses on how a collection of genes in the genome is
linked to gene products (enzymes) to create pathways that are
distinct in any particular organism (21, 22). According to the
KEGG pathway analysis, the DEGs were primarily linked to the
pancreatic secretion, arginine biosynthesis, renin-angiotensin
). Nitric
oxide is a vasodilator with anti-inflammatory and bronchodilatory

system and arginine and proline metabolism (

properties. Since arginine stimulates the synthesis of nitric oxide, it
is possible that changes in the arginine metabolome contribute to
the pathophysiology of asthma (23). KEGG enrichment analysis
further emphasized that the DEGs were deeply intertwined with
the pathogenesis of asthma.

Based on the findings of the KEGG enrichment study, we
annotated KEGG using the GSEA approach. The results
highlighted
nucleotide sugar metabolism, glycan biosynthesis, parkinsons

significant enrichment of amino sugar and
disease, protein export, steroid hormone biosynthesis. There
was significant enrichment of protein export and amino sugar
and nucleotide sugar metabolism. Thus, protein, amino sugar
and nucleotide sugar are crucial for the pathophysiology of

asthma ( ).

3.3 PPI network analysis of asthma
related DEGs

To create a PPI network, thirteen primary DEGs associated
with asthma were imported, examined, and visualized using SVG
in the STING database. The total gene scores are shown as the
number and colour of lines connecting the nodes. Fifteen
proteins combined with CPA3 and 19 proteins combined with
TPSABI, reflecting the core connectivity of CPA3 and TPSABI
(Tryptase alpha/beta-1) in these proteins (
POSTN, CLCA1l (Calcium-activated

). Among

these, chloride channel
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regulator 1), CPA3, and TPSAB2 (Tryptase alpha/beta-2) existed
some co-expression possibility.

3.4 Validation of the external dataset’'s main
genes

Our findings from the GSE63142 dataset showed 13 genes
differing in asthma. We further used a one-to-one format for
comparison and validated with the GSE63142 dataset The genes
CEACAMS5, PRR4, CPA3, POSTN, TCNI1, CST1 (Cystatin-SN),
CLCAI, TPSABI and NOS2 (Nitric oxide synthase 2) were highly
expressed in patients with asthma ( ). LOC100132287,
LYPD2, SCGB3AI and C7orf26 (Chromosome 7 open reading
frame 26) had low expression in asthma patients ( ).
The validity of these gene transcription patterns as diagnostic
markers for asthma was supported by the consistency of the
genome data. Further research is required to fully elucidate the
underlying molecular pathways. LOCI100132287 gene did not
present in GSE158752 dataset. PRR4, TCNI1, CST1, CLCA1, and
NOS2 were also highly expressed in patients with asthma in
GSE158752 dataset ( ). LYPD2 and
C70rf26 were also lowly expressed in patients with asthma in
GSE158752 dataset ( ).

3.5 Analysis of diagnostic indicators using
ROC curves

Using the AUC of the ROC curve, we verified the performance
of the 13 asthma-associated genes in the training set and GSE63142
dataset. We created an ROC curve drawing of the diagnostic markers
in RStudio to determine their diagnostic utility. The AUC ranged
from 70.8% to 80.4% in the training set ( ). The AUC
values showed that the GSE63142 dataset performed satisfactorily
overall, which suggests that these thirteen genes contributed
significantly to the diagnostic utility of disease classification.
Greater accuracy in differentiating between healthy individuals and
asthma sufferers was indicated by the higher AUC values. The
AUC ranged from 54% to 83% in the test set. CLCAI reached an
AUC value of 0.83 and its predictive efficacy was even higher than
that of the training set ( ).

3.6 Differentiation of immune
characteristics and the immune cell
correlation analysis

The proportion of immune cells in each sample was obtained by
immune cell infiltration analysis. plasma cells, T cell CD4 naive, T cell
gamma delta, monocytes, macrophages MO, activated dendritic cells
and Neutrophils were differential between healthy controls and
asthma patients ( ,B). The findings of our investigation
into the relationship between DEGs and immune cells are displayed
in lollipop charts ( ). The genes CEACAM5, PRR4, CPA3,

POSTN, LYPD2, CLCAI, and CSTI were significantly associated
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with plasma cells and resting mast cells. The genes LOC100132287,
TCN1, and C7orf26 were significantly associated with naive B cells.
The genes SCGB3A1 were significantly associated with plasma
cells, neutrophils and active memory CD4 T cells. The genes
CEACAMS5, PRR4, CPA3, POSTN, CLCAI, and CSTI had positive
correlations with plasma cells and resting mast cells (p <0.05),
whereas PRR4 and CPA3 had negatively correlated with neutrophils
and active mast cells (p <0.05). The genes CPA3, POSTN, CLCAl,
CST1, and TPSABI were significantly associated with regulatory
T cells Tregs (p < 0.05).
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3.7 Genetic validation in an asthmatic
mouse model

To determine gene expression levels, we extracted RNA from
mouse lung tissues and performed high-throughput eukaryotic
sequencing analysis. These four murine homologous genes, cpa3,
postn, lypd2, and scgb3al, did not differ significantly between the
asthma group and the normal group. However, these findings
indicated that the mRNA expression of nos2 and clcal in the
asthma group was higher than that in the normal group, which
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FIGURE 3
Verification of the varying expression of diagnostic genes. The differential expression of the GSE63142 dataset. (A) The genes have high levels of
expression in patients with asthma. (B) The genes have low levels of expression in patients with asthma.
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FIGURE 5
Immune cell infiltration analysis between asthma and healthy subjects. (A) The proportion of immune cells in each sample. (B) Differential infiltration of
immune cells between healthy controls and asthma patients. Plasma cells, T cell CD4 naive, T cell gamma delta, monocytes, macrophages MO,
activated dendritic cells and neutrophils have significant differences between two groups.

was in line with the transcriptome observations made in asthmatic
patients in Figures 1A,B (Figure 7).

4 Discussion

Asthma, an prevailing pulmonary malaise, afflicts many
individuals across the world (24). Wheezing, shortness of breath,

Frontiers in Allergy

coughing, and tightness in the chest are some of the symptoms
that are caused by inflammation and constriction of the airways
(25). Currently, we know several pathogenetic mechanisms
contribute to the development and progression of asthma:
inflammation, airway hyperresponsiveness, airway remodelling,
immunological factors, genetic predisposition, environmental
factors, and neural control (26). Many pharmaceutical strategies
and self-management methods have been developed. However,
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FIGURE 6
Immune cell correlation analysis of diagnostic genes. The genes CEACAM5, PRR4, CPA3, POSTN, LYPD2, CLCA1, and CST1 were significantly
associated with plasma cells and resting mast cells (p < 0.05).

some patients with asthma cannot control their symptoms with
available treatment and management strategies, which highlights
the unmet medical needs of these patients, an incomplete
understanding of asthma pathogenesis, and the need for
continued exploration of the topic, such as by targeting the
specific genes that play cardinal roles in asthma evolution and
progression. In this context, machine learning and other
advanced techniques can be used to identify undiscovered genes
critical to asthma and further explore asthma pathogenesis.

To address knowledge gaps physiology and pathology of
asthma, we used two machine learning models to determine the
main genes responsible for the initiation and progression of
asthma. Preliminary exploration revealed marked disparities in
gene expression between patients with asthma patients vs. that in
healthy controls. We utilized KEGG, GO, GSEA, and PPI
network analyses to further confirm the correlation of differential
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gene expression and asthma. Merging the LASSO regression with
the SVM-RFE method enabled a model that not only showed a
consensus in identifying key asthma genes but also compensated
for performance deficiencies of the individual models in terms of
accuracy and prediction. This synthetic approach identified eight
pivotal asthma-related genes spanning the training set, test
cohorts, and experimental animal specimens.

We identified 8 key genes (LOC100132287, CEACAMS5, PRR4,
CPA3, POSTN, LYPD2, TCNI1, and SCGB3AI) associated with
asthma by combining the LASSO regression model and the
SVM-RFE method. Higher AUC values indicated a high
diagnostic value. The association of the five genes CEACAMS,
POSTN, TCN1, SCGB3Al, and CPA3 with asthma has been
extensively identified and validated, and these are the most
highly upregulated genes in patients with asthma (27-31), and
CEACAMS is associated with resting mast cells and eosinophils
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(32). The genes POSTN, TCN1, and CPA3 are associated with the
). The gene SCGB3Al1 is
highly expressed in sputum columnar cells in patients with

type 2 inflammatory response (26, 33,

severe asthma and associated with non-neutrophilic airway
inflammation (35). This is consistent with our findings.

Current reports indicate that PRR4 may impact the efficiency of
the submucosal glands, leading to pathological changes in the
). The role of the gene PRR4 in asthma
require further verification. To date, no study has demonstrated

respiratory tract (

an association between asthma and LYPD2. Some studies have
shown that LYPD2 is predicted to be a GPI-anchored Ly6
protein, enriches in non-classical monocytes (37, 38). However,
the gene LYPD2 had high AUC values, indicating that it has
good predictive efficacy, which requires further exploration of the
relationship with asthma.

The current study had several limitations. The foundation of our
investigation was the computational analysis of gene expression
samples, which provided estimated results and reflected our
reliance on computational data. Not all core genes were validated
in asthmatic mice, partly because some genes are only significantly
expressed in subjects with severe asthma, relatively small sample
size of the mouse experiments and not all genes are homologous
in humans and mice. In future studies, we will continue to
examine the association between the newly discovered diagnostic
genes and asthma. Meanwhile, we are continuing to confirm the
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efficiency of these genes in the diagnosis of asthma in
clinical applications.

In conclusion, our study validated several key genes potentially
associated with asthma (CEACAMS5, PRR4, CPA3, POSTN, TCNI,
and SCGB3A1l) and identified new asthma genetic marker, such
as LYPD2. We propose that the combination of the detection of
these genes and patient symptoms can lead to the prediction and
diagnosis of asthma. We hope that by detecting the proteins
expressed by these genes, we can determine the therapeutic effect
of asthma and achieve clinical management.

The GSE63142 and GSE158752 asthma datasets were obtained
from the GEO database at the National Center for Biotechnology
Information (NCBI) ( ).

Ethical approval was not required for the studies involving
humans because We obtained the GSE63142 and GSE158752
asthma datasets from the GEO database at the National Center for
Biotechnology Information (NCBI) (
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). The studies were conducted in accordance with the local
legislation and institutional requirements. Written informed
consent for participation was not required from the participants
or the participants’ legal guardians/next of kin in accordance
with the national legislation and institutional requirements
because We obtained the GSE63142 and GSE158752 asthma
datasets from the GEO database at the National Center for
Biotechnology Information (NCBI) (

). The animal study was approved by Wenzhou Medical
University Laboratory Animal Resource Center. The study was
accordance with the local legislation and

conducted in

institutional requirements.
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