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screening of asthma biomarkers
and related immune infiltration
Xiaoying Zhong1,2,3†, Jingjing Song1,2†, Changyu Lei4†,
Xiaoming Wang1,2, Yufei Wang1,2, Jiahui Yu1,2, Wei Dai1,2, Xinyi Xu1,2,
Junwen Fan1,2, Xiaodong Xia1* and Weixi Zhang1,2*
1Allergy and Clinical Immunology Center, The Second Affiliated Hospital and Yuying Children’s Hospital
of Wenzhou Medical University, Wenzhou, Zhejiang, China, 2Department of Pediatric Allergy and
Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical
University, Wenzhou, Zhejiang, China, 3The 2nd Ward of Pediatrics, Jinhua Maternal and Child Health
Care Hospital, Jinhua, Zhejiang, China, 4Renji College, Wenzhou Medical University, Wenzhou,
Zhejiang, China

Introduction: Asthma has an annual increasing morbidity rate and imposes a
heavy social burden on public healthcare systems. The aim of this study was
to use machine learning to identify asthma-specific genes for the prediction
and diagnosis of asthma.
Methods: Differentially expressed genes (DEGs) related to asthma were identified
by examining public sequencing data from the Gene Expression Omnibus,
coupled with the support vector machine recursive feature elimination and
least absolute shrinkage and selection operator regression model. Gene
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene set
enrichment analysis and correlation analyses between gene and immune cell
levels were performed. An ovalbumin-induced asthma mouse model was
established, and eukaryotic reference transcriptome high-throughput
sequencing was performed to identify genes expressed in mouse lung tissues.
Results: Thirteen specific asthma genes were obtained from our dataset analysis
(LOC100132287, CEACAM5, PRR4, CPA3, POSTN, LYPD2, TCN1, SCGB3A1,
NOS2, CLCA1, TPSAB1, CST1, and C7orf26). The GO analysis demonstrated
that DEGs linked to asthma were primarily related to positive regulation of
guanylate cyclase activity, gpi anchor binding, peptidase activity and arginine
binding. The renin-angiotensin system, arginine biosynthesis and arginine and
proline metabolism were the key KEGG pathways of DEGs. Additionally, the
genes CEACAM5, PRR4, CPA3, POSTN, CLCA1, and CST1 expression levels
were positively associated with plasma cells and resting mast cells. The mouse
model revealed elevated nos2 and clca1 expression in the asthmatic mouse
group compared with that in normal mice, which was consistent with the
findings in asthmatic patients.
Discussion: This study identified new marker genes for the prediction and
diagnosis of asthma, which can be further validated and applied clinically
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1 Introduction

Asthma is a chronic respiratory illness marked by

inflammation and remodeling of the airways that is triggered by

complex genetic regulation and environmental exposure to

allergens (1). It is caused by swelling and increased mucus in the

airways (inflammation) and narrowing of the airways due to

muscle spasm (bronchospasm) leading to bronchial overreaction

and airway obstruction (2). Asthma affects 5%–10% of the

population in many developed countries. In China,

approximately 4.2% of adults over the age of 20 years and older

have asthma. There are more than 300 million people with

asthma worldwide, and its prevalence is increasing every year (3).

Asthma usually occurs in preschool years and causes reducing

quality of life and early death, which leads to a large public

health burden.

Many patients with asthma use self-care and pharmacological

therapies to control their symptoms. Recently, monoclonal

antibodies have been applied to benefit patients (4). However,

their efficacy differs owing to the diverse forms of asthma, and

some individuals do not respond to current asthma treatments

(5). In recognition of inadequacies in the current understanding

of asthma mechanisms, our research highlights the need of

having a thorough grasp of diagnosis and immunological

variability in asthma.

Asthma involves multiple inflammatory responses. The initial

barrier to resistance against microorganisms, gases, and allergens

is the bronchial epithelial cells, which is also the centre of the

inflammatory response (6). First, allergens can be eliminated by

airway epithelial cells via mucus (7). Second, by using pattern

recognition receptors, airway epithelial cells may identify

chemicals associated with pathogens or hazards, and release

cytokines and chemokines (such as IL25, TSLP, CCL5, and

CCL22), activate dendritic cells, connect innate and adaptive

immunity, and trigger local immune responses (8, 9). Third, they

function as antigen-presenting cells, which help trigger type II

immunological responses by causing naive T cells to differentiate

into CD4+ T cells (10). Therefore, we chose samples of bronchial

epithelial cells from public datasets for sequencing and analysis

in this study.

Machine learning is a collection of computational intelligence

techniques that allows a computer to learn a task autonomously,

improving its experience without being explicitly programmed.

This method can be used to analyze large amounts of data,

establish complex and nonlinear relationships, and identify

patterns and relationships between data and interesting

outcomes. Zhang et al. identified the immune infiltration-related

diagnostic genes SLC27A3 and STAU1 using machine learning in

patients with Chronic Obstructive Pulmonary Disease. The area

under the receiver operating characteristic (ROC) curve (AUC)

was up to 0.900 and 0.971, which demonstrated their high

diagnostic value (11). Potential biomarkers of idiopathic

pulmonary frailty were previously identified using the least

absolute shrinkage and selection operator (LASSO) regression
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model, random forest algorithms, and support vector machine

recursive feature elimination (SVM-RFE). These methods

were very helpful in enabling an early diagnosis and enhancing

prognosis (12). Research to date shows that machine learning

helps uncover the potential causal mechanisms of asthma

with good predictive efficacy and can generate new

hypotheses (13, 14).

Despite its significant impact on public health, the diagnosis

of asthma mostly depends on symptoms and accompanying

testing, which does not allow for prediction and treatment. Our

study explored differentially expressed genes (DEGs) in asthma

by analyzing the bronchial epithelial cell transcriptome of the

GSE63142 and GSE158752 databases from the Gene Expression

Omnibus (GEO) public sequencing data using machine

learning approaches. We evaluated the diagnostic utility of

these genes using the AUC after doing functional, pathway,

and gene set enrichment analyses of the DEGs. We hope to

contribute to the genetic diagnosis and prediction of asthma in

the future.
2 Methods

2.1 Microarray data processing and analysis

We obtained the GSE63142 and GSE158752 asthma datasets

from the GEO database of the National Center for Biotechnology

Information (NCBI) (https://www.ncbi.nlm.nih.gov/geo/). The

GSE63142 dataset (GPL6480 platform) (15) was uploaded in

2014 and included transcriptome studies of the bronchial

epithelial cells from 27 healthy participants and 128 patients with

asthma. In the GSE158752 dataset (GPL18573 platform) (16), 50

bronchial epithelial cell samples from patients with asthma and

17 normal samples were obtained. R software (version 4.2.2;

https://www.r-project.org/) and RStudio software (version 4.2.2;

https://www.r-project.org/) were used to process and analyze

the datasets.
2.2 Analysis of differentially expressed
genes

All profiles of the gene transcription microarray data were pre-

processed utilising the “SVA” package (version 3.46.0), which

included background correction and normalization. Gene

symbols were annotated based on the annotation data. To

execute advanced feature selection and visualization, we utilized

GSE63142 as a training set for the DEGs analysis and used

GSE158752 as a test set. We examined transcriptome samples

from healthy controls and asthma patients to support the

expression of the crucial genes identified. The GSE158752 dataset

was used for verifying the core gene differential expression.

Using the “limma” R package, we determined the DEGs between

samples from patients with asthma and healthy subjects using a
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conservative threshold (|log2FC| > 1.0, p < 0.05). We utilised the

“pheatmap” (version 1.0.12) and “ggplot2” packages (version

3.4.2) to generate a heatmap and volcano plot, respectively.
2.3 Function, pathway and gene set
enrichment analysis and protein–protein
interaction network analysis of DEGs

Gene Ontology (GO), Kyoto Encyclopedia of Genes Genomes

(KEGG) pathway enrichment analyses were used to identify the

characteristic biological, molecular, and cellular attributes and

reveal associated enriched pathways. Gene Set Enrichment

Analysis (GSEA) was employed to investigate the role of genes in

biology (17). Analyses using KEGG, GO, and GSEA were

performed using the R package “clusterProfiler” (version 3.14.3).

Significantly enriched biological processes, molecular functions,

cellular components, and pathways were chosen based on a

threshold of p-value < 0.05 and an false discovery rate

(FDR) < 0.05. The STRING database (https://cn.string-db.org/)

was used for the protein–protein interaction (PPI) network

analysis of DEGs related to asthma. It provides uniquely

comprehensive coverage, integration, and interactions obtained

through text mining (18).
2.4 Techniques for machine learning to find
diagnostic indicators

Using the training set, we applied two types of machine

learning algorithms to predict asthma disease-associated genes:

SVM-RFE and LASSO regression models. The LASSO regression

is a model for variable selection and complexity regularisation.

We used the “Venn” package to intersect the diagnostic markers

of asthma patients generated by the LASSO regression and the

techniques of SVM-RFE. To gauge the performance of these

models, we deployed the ROC curve and computed the AUC.

The AUC quantifies the capacity of these two models to

discriminate between healthy control and asthma samples, with

predictions based on the chosen features. In summary, we

implemented the LASSO regression and SVM-RFE techniques in

the training set to select and utilise the training and test sets to

then identify important DEGs for asthma diagnosis and evaluate

the models’ performance by employing the ROC curve and

AUC values.
2.5 Connection between immune cells and
core genes

We performed immunoinfiltration analysis using the

“CIBERSORT.R” package in the training cohort, used the

“corrplot” packages to analyze the differentiated infiltration of

immune cells between healthy people and patients with asthma,
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used the “preprocessCore” package to generate immunocyte

content, and analyzed the correlation of core gene expression

and immune cells by the “reshape2”, “ggpubr”, and “ggExtra”

packages. Data with p-values < 0.05 and q-values < 0.05 were

retained and volplot, barboplot, lollipop pictures were generated.
2.6 Animal experiments

Female wild-type C57BL/6 mice were obtained from the Beijing

Vital River Laboratory Animal Technology Co (Beijing, China).

Mice were provided unlimited access to water and standard food

and were raised under specific pathogen-free conditions

(22°C ± 1°C, 50% ± 5% humidity) with a light/dark cycle of 12 h/

12 h. One week before use, the mice were isolated and

acclimated. Ten mice were classified into two groups (n = 5

each): sham and ovalbumin (OVA). Mice in the OVA group

were given an intraperitoneal injection of sensitized OVA

(100 μg; Cat #: A5503, Sigma-Aldrich, USA) and aluminium

hydroxide (1 mg; Cat #:77161, Thermo Fisher Scientific, USA) on

days 1 and 13, while saline (100 μl) was injected into mice in the

Sham group. Mice in the OVA group were administered 2%

OVA in an aerosol form for over 30 min for seven consecutive

days, while mice in the sham group were administered saline. All

animals were sacrificed within 24 h of the last nebulization. The

Ethics Committee of the Wenzhou Medical University

Laboratory Animal Resource Center (Wenzhou, China) granted

consent for all studies to be conducted in accordance with the

ARRIVE criteria.
2.7 Transcriptome analysis

Library building for the high-throughput sequencing of the

eukaryotic reference transcriptome from the examined mouse

lung tissue samples was performed by LC-Bio Technology Co.,

Ltd. (Hangzhou, China). An Illumina HiSeq X Reagent Kit

(Illumina, San Diego, USA) was used as the sequencing platform.

The expression of each transcript was calculated using the

fragments per kilobase per million read technique to identify the

DEGs between samples.
2.8 Statistical analysis

For statistical analysis and visualisation, R version 4.2.2 was

employed, while GraphPad Prism 8.2.0 was used to statistically

analyze the images. Student’s t-tests were used to compare group

variables. Results were shown as the mean ± standard deviation.

At least three replicates were performed for each experiment.

Statistical significance was set at p < 0.05.
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FIGURE 1

DEGs of patients with asthma using the GSE63142 datasets. (A) Heatmap of the the GSE63142 datasets; gene upregulation is indicated by red and gene
downregulation is indicated by blue,highlighting the differences in gene expression between healthy controls and asthma patients. (B) Volcano plot of
the GSE63142 datasets; significant DEGs with a conservative threshold of |log2FC| > 1.0, p < 0.05; red represents gene upregulation and blue
represents gene downregulation. 13 genes were differentially expressed between healthy controls and patients with asthma (9 genes upregulated
and 4 genes downregulated). (C) The LASSO regression analysis to identify the most relevant genes for asthma diagnosis based on the differential
expression analysis results, which identified 8 diagnostic core genes. (D) The SVM-RFE menthod using the e1071, kernlab and caret package,
which identified 10 diagnostic core genes. (E) Venn plot depicting the identification of key genes for distinguishing between healthy and asthma
patients. The intersection of two machine learning algorithms—lasso regression and SVM-RFE method—reveals 8 pivotal genes (LOC100132287,
CEACAM5, PRR4, CPA3, POSTN, LYPD2, TCN1, and SCGB3A1) as robust and discriminative features. DEGs, differentially expressed genes; LASSO,
least absolute shrinkage and selection operator; SVM-RFE, support vector machine recursive feature elimination.
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3 Results

3.1 Machine learning model development
and identification of critical genes for
asthma discrimination

A total of 30,889 genes from 155 bronchial epithelial cell

samples obtained from 128 patients with asthma and 27 healthy

individuals were included in the training set from the GEO

dataset. The age range of subjects was 18–62 years, with an

average age of 37 years. We first divided the data into two

groups to examine the gene expression matrix of the training set:

healthy controls and patients with asthma. The subsequent DEG

analysis revealed a notable variation in gene expression between

the two groups, as demonstrated in the heatmap, highlighting the

distinct gene expression landscape of patients with asthma

(Figure 1A). A comparatively small number of DEGs were found

in this comparison, with a volcano plot displaying 9 upregulated
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and 4 downregulated genes with a conserved threshold of

|log2FC| > 1.0, p < 0.05 (Figure 1B).

We constructed the LASSO regression model for feature

selection, which identified 8 diagnostic core genes of asthma.

This approach reduced unimportant feature coefficients to zero.

The SVM-RFE is a learning algorithm used in nonlinear

classification, which constructs a hyperplane in the feature classes

with a maximum margin (19, 20). The SVM-RFE method is used

to identify the most critical diagnostic markers associated with

asthma progression. Using the SVM-RFE approach, 10 asthma

diagnostic genes were identified. Through the convergence of the

SVM-RFE approach and LASSO regression, eight important

genes were found to be discriminative characteristics that might

be used to separate asthma sufferers from healthy individuals

[LOC100132287, carcinoembryonic antigen-related cell adhesion

molecule 5 (CEACAM5); proline-rich 4 (PRR4); carboxypeptidase

A3 (CPA3); periostin (POSTN); LY6/PLAUR domain cintaining

2 (LYPD2); transcobalamin 1 (TCN1); and secretoglobin
frontiersin.org
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family 3A member 1 (SCGB3A1)], as shown in the Venn diagram

(Figures 1C–E).
3.2 Pathway enrichment analysis

Considering the significant variations in asthma gene

expression patterns, we continued with a more comprehensive

study focusing on the 13 DEGs. According to the results of the

GO enrichment analysis, 95 GO items comprised 19 molecular

functions (MF), 64 biological processes (BP), and 12 cellular

components (CC). Several processes were significantly enriched.

Notably, these included the response to oxygen levels and

positive regulation of guanylate cyclase activity for BP, collagen-

containing extracellular matrix, zymogen granule and anchoring

membrane component for CC, and gpi anchor binding, peptidase

activity, arginine binding and intracellular calcium activated

chloride channel activity regard to MF. These findings

underscore the importance of protein metabolism and enzyme

regulation in the pathogenesis of asthma (Figures 2A–C).

We performed the KEGG pathway analysis to explore the

higher levels of biological functions associated with asthma. This

approach focuses on how a collection of genes in the genome is

linked to gene products (enzymes) to create pathways that are

distinct in any particular organism (21, 22). According to the

KEGG pathway analysis, the DEGs were primarily linked to the

pancreatic secretion, arginine biosynthesis, renin-angiotensin

system and arginine and proline metabolism (Figure 2D). Nitric

oxide is a vasodilator with anti-inflammatory and bronchodilatory

properties. Since arginine stimulates the synthesis of nitric oxide, it

is possible that changes in the arginine metabolome contribute to

the pathophysiology of asthma (23). KEGG enrichment analysis

further emphasized that the DEGs were deeply intertwined with

the pathogenesis of asthma.

Based on the findings of the KEGG enrichment study, we

annotated KEGG using the GSEA approach. The results

highlighted significant enrichment of amino sugar and

nucleotide sugar metabolism, glycan biosynthesis, parkinsons

disease, protein export, steroid hormone biosynthesis. There

was significant enrichment of protein export and amino sugar

and nucleotide sugar metabolism. Thus, protein, amino sugar

and nucleotide sugar are crucial for the pathophysiology of

asthma (Figure 2E).
3.3 PPI network analysis of asthma
related DEGs

To create a PPI network, thirteen primary DEGs associated

with asthma were imported, examined, and visualized using SVG

in the STING database. The total gene scores are shown as the

number and colour of lines connecting the nodes. Fifteen

proteins combined with CPA3 and 19 proteins combined with

TPSAB1, reflecting the core connectivity of CPA3 and TPSAB1

(Tryptase alpha/beta-1) in these proteins (Figure 2F). Among

these, POSTN, CLCA1 (Calcium-activated chloride channel
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regulator 1), CPA3, and TPSAB2 (Tryptase alpha/beta-2) existed

some co-expression possibility.
3.4 Validation of the external dataset’s main
genes

Our findings from the GSE63142 dataset showed 13 genes

differing in asthma. We further used a one-to-one format for

comparison and validated with the GSE63142 dataset The genes

CEACAM5, PRR4, CPA3, POSTN, TCN1, CST1 (Cystatin-SN),

CLCA1, TPSAB1 and NOS2 (Nitric oxide synthase 2) were highly

expressed in patients with asthma (Figure 3A). LOC100132287,

LYPD2, SCGB3A1 and C7orf26 (Chromosome 7 open reading

frame 26) had low expression in asthma patients (Figure 3B).

The validity of these gene transcription patterns as diagnostic

markers for asthma was supported by the consistency of the

genome data. Further research is required to fully elucidate the

underlying molecular pathways. LOC100132287 gene did not

present in GSE158752 dataset. PRR4, TCN1, CST1, CLCA1, and

NOS2 were also highly expressed in patients with asthma in

GSE158752 dataset (Supplementary Figure S1A). LYPD2 and

C7orf26 were also lowly expressed in patients with asthma in

GSE158752 dataset (Supplementary Figure S1B).
3.5 Analysis of diagnostic indicators using
ROC curves

Using the AUC of the ROC curve, we verified the performance

of the 13 asthma-associated genes in the training set and GSE63142

dataset. We created an ROC curve drawing of the diagnostic markers

in RStudio to determine their diagnostic utility. The AUC ranged

from 70.8% to 80.4% in the training set (Figure 4). The AUC

values showed that the GSE63142 dataset performed satisfactorily

overall, which suggests that these thirteen genes contributed

significantly to the diagnostic utility of disease classification.

Greater accuracy in differentiating between healthy individuals and

asthma sufferers was indicated by the higher AUC values. The

AUC ranged from 54% to 83% in the test set. CLCA1 reached an

AUC value of 0.83 and its predictive efficacy was even higher than

that of the training set (Supplementary Figure S2).
3.6 Differentiation of immune
characteristics and the immune cell
correlation analysis

The proportion of immune cells in each sample was obtained by

immune cell infiltration analysis. plasma cells, T cell CD4 naive, T cell

gamma delta, monocytes, macrophages M0, activated dendritic cells

and Neutrophils were differential between healthy controls and

asthma patients (Figures 5A,B). The findings of our investigation

into the relationship between DEGs and immune cells are displayed

in lollipop charts (Figure 6). The genes CEACAM5, PRR4, CPA3,

POSTN, LYPD2, CLCA1, and CST1 were significantly associated
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FIGURE 2

Function, pathway of the DEG enrichment analysis. (A–C) GO analysis of DEGs. Enrichment analysis of DEGs, demonstrating a strong association with
response to oxygen levels and positive regulation of guanylate cyclase activity in BP, collagen-containing extracellular matrix, zymogen granule and
anchoring membrane component in CC, and gpi anchor binding, peptidase activity, arginine binding and intracellular calcium activated chloride
channel activity regard to MF. (D) KEGG pathway analysis of DEGs. The DEGs were linked to the pancreatic secretion, arginine biosynthesis, renin-
angiotensin system and arginine and proline metabolism using KEGG pathway analysis. (E) Annotated KEGG pathway analysis using the GSEA
approach. The results highlighted significant enrichment of amino sugar and nucleotide sugar metabolism, glycan biosynthesis, parkinsons disease,
protein export, steroid hormone biosynthesis. (F) Interaction network of the proteins regulated by the key genes. PPI network of 13 specific
asthma genes reflected the core connectivity of CPA3 and TPSAB1 in these proteins. DEGs, differentially expressed genes; GO, gene ontology;
KEGG, Kyoto encyclopedia of genes and genomes; PPI, protein–protein interaction; GSEA, gene set enrichment analysis.
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with plasma cells and resting mast cells. The genes LOC100132287,

TCN1, and C7orf26 were significantly associated with naive B cells.

The genes SCGB3A1 were significantly associated with plasma

cells, neutrophils and active memory CD4 T cells. The genes

CEACAM5, PRR4, CPA3, POSTN, CLCA1, and CST1 had positive

correlations with plasma cells and resting mast cells (p < 0.05),

whereas PRR4 and CPA3 had negatively correlated with neutrophils

and active mast cells (p < 0.05). The genes CPA3, POSTN, CLCA1,

CST1, and TPSAB1 were significantly associated with regulatory

T cells Tregs (p < 0.05).
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3.7 Genetic validation in an asthmatic
mouse model

To determine gene expression levels, we extracted RNA from

mouse lung tissues and performed high-throughput eukaryotic

sequencing analysis. These four murine homologous genes, cpa3,

postn, lypd2, and scgb3a1, did not differ significantly between the

asthma group and the normal group. However, these findings

indicated that the mRNA expression of nos2 and clca1 in the

asthma group was higher than that in the normal group, which
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FIGURE 3

Verification of the varying expression of diagnostic genes. The differential expression of the GSE63142 dataset. (A) The genes have high levels of
expression in patients with asthma. (B) The genes have low levels of expression in patients with asthma.

FIGURE 4

The AUC of diagnostic genes of the GSE63142 dataset. We used the ROC curve and calculated AUC to assess the performance of these models. The
AUC ranged from 70.8% to 80.4%. ROC, receiver operating characteristic; AUC, area under the receiver operating characteristic curve.

Zhong et al. 10.3389/falgy.2025.1506608
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FIGURE 5

Immune cell infiltration analysis between asthma and healthy subjects. (A) The proportion of immune cells in each sample. (B) Differential infiltration of
immune cells between healthy controls and asthma patients. Plasma cells, T cell CD4 naive, T cell gamma delta, monocytes, macrophages M0,
activated dendritic cells and neutrophils have significant differences between two groups.

Zhong et al. 10.3389/falgy.2025.1506608
was in line with the transcriptome observations made in asthmatic

patients in Figures 1A,B (Figure 7).
4 Discussion

Asthma, an prevailing pulmonary malaise, afflicts many

individuals across the world (24). Wheezing, shortness of breath,
Frontiers in Allergy 08
coughing, and tightness in the chest are some of the symptoms

that are caused by inflammation and constriction of the airways

(25). Currently, we know several pathogenetic mechanisms

contribute to the development and progression of asthma:

inflammation, airway hyperresponsiveness, airway remodelling,

immunological factors, genetic predisposition, environmental

factors, and neural control (26). Many pharmaceutical strategies

and self-management methods have been developed. However,
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FIGURE 6

Immune cell correlation analysis of diagnostic genes. The genes CEACAM5, PRR4, CPA3, POSTN, LYPD2, CLCA1, and CST1 were significantly
associated with plasma cells and resting mast cells (p < 0.05).
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some patients with asthma cannot control their symptoms with

available treatment and management strategies, which highlights

the unmet medical needs of these patients, an incomplete

understanding of asthma pathogenesis, and the need for

continued exploration of the topic, such as by targeting the

specific genes that play cardinal roles in asthma evolution and

progression. In this context, machine learning and other

advanced techniques can be used to identify undiscovered genes

critical to asthma and further explore asthma pathogenesis.

To address knowledge gaps physiology and pathology of

asthma, we used two machine learning models to determine the

main genes responsible for the initiation and progression of

asthma. Preliminary exploration revealed marked disparities in

gene expression between patients with asthma patients vs. that in

healthy controls. We utilized KEGG, GO, GSEA, and PPI

network analyses to further confirm the correlation of differential
Frontiers in Allergy 09
gene expression and asthma. Merging the LASSO regression with

the SVM-RFE method enabled a model that not only showed a

consensus in identifying key asthma genes but also compensated

for performance deficiencies of the individual models in terms of

accuracy and prediction. This synthetic approach identified eight

pivotal asthma-related genes spanning the training set, test

cohorts, and experimental animal specimens.

We identified 8 key genes (LOC100132287, CEACAM5, PRR4,

CPA3, POSTN, LYPD2, TCN1, and SCGB3A1) associated with

asthma by combining the LASSO regression model and the

SVM-RFE method. Higher AUC values indicated a high

diagnostic value. The association of the five genes CEACAM5,

POSTN, TCN1, SCGB3A1, and CPA3 with asthma has been

extensively identified and validated, and these are the most

highly upregulated genes in patients with asthma (27–31), and

CEACAM5 is associated with resting mast cells and eosinophils
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FIGURE 7

Animal experiments and sequencing analysis. (A) Schematic of the OVA asthma model construction; (B) Gene expression levels in mouse lung tissue.
Control: normal mice; Asthma: asthma model mice. OVA, ovalbumin. Transcript analysis of the gene mRNA expression levels of cpa3, lypd2, scgb3a1,
nos2, and clca1 in murine lung tissues, showing the gene nos2 and clca1 expression trends consistent with the transcriptomic data in patients with
asthma.

Zhong et al. 10.3389/falgy.2025.1506608
(32). The genes POSTN, TCN1, and CPA3 are associated with the

type 2 inflammatory response (26, 33, 34). The gene SCGB3A1 is

highly expressed in sputum columnar cells in patients with

severe asthma and associated with non-neutrophilic airway

inflammation (35). This is consistent with our findings.

Current reports indicate that PRR4may impact the efficiency of

the submucosal glands, leading to pathological changes in the

respiratory tract (36). The role of the gene PRR4 in asthma

require further verification. To date, no study has demonstrated

an association between asthma and LYPD2. Some studies have

shown that LYPD2 is predicted to be a GPI-anchored Ly6

protein, enriches in non-classical monocytes (37, 38). However,

the gene LYPD2 had high AUC values, indicating that it has

good predictive efficacy, which requires further exploration of the

relationship with asthma.

The current study had several limitations. The foundation of our

investigation was the computational analysis of gene expression

samples, which provided estimated results and reflected our

reliance on computational data. Not all core genes were validated

in asthmatic mice, partly because some genes are only significantly

expressed in subjects with severe asthma, relatively small sample

size of the mouse experiments and not all genes are homologous

in humans and mice. In future studies, we will continue to

examine the association between the newly discovered diagnostic

genes and asthma. Meanwhile, we are continuing to confirm the
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efficiency of these genes in the diagnosis of asthma in

clinical applications.

In conclusion, our study validated several key genes potentially

associated with asthma (CEACAM5, PRR4, CPA3, POSTN, TCN1,

and SCGB3A1) and identified new asthma genetic marker, such

as LYPD2. We propose that the combination of the detection of

these genes and patient symptoms can lead to the prediction and

diagnosis of asthma. We hope that by detecting the proteins

expressed by these genes, we can determine the therapeutic effect

of asthma and achieve clinical management.
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