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Antiviral roles of eosinophils
in asthma and respiratory
viral infection
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Koichi Fukunaga1,2

1Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National
Defense Medical College, Saitama, Japan, 2Division of Pulmonary Medicine, Department of Medicine,
Keio University School of Medicine, Tokyo, Japan
Eosinophils are immune cells that are crucial for the pathogenesis of allergic
diseases, such as asthma. These cells play multifunctional roles in various
situations, including infection. They are activated during viral infections and
exert antiviral activity. Pattern recognition receptors, toll-like receptor 7 and
retinoic acid inducible gene-I, are important for the recognition and capture
of RNA viruses. In addition, intracellular granule proteins (eosinophil cationic
protein and eosinophil-derived neurotoxin) and intracellular nitric oxide
production inactivate and/or degrade RNA viruses. Interestingly, eosinophil-
synthesizing specialized pro-resolving mediators possess antiviral properties
that inhibit viral replication. Thus, eosinophils may play a protective role
during respiratory virus infections. Notably, antiviral activities are impaired in
patients with asthma, and eosinophil activities are perturbed in proportion
with the severity of asthma. The exact roles of eosinophils in RNA virus
(rhinovirus, respiratory syncytial virus, and influenza virus)-induced type 2
inflammation-based asthma exacerbation remain unclear. Our research
demonstrates that interferons (IFN-α and IFN-γ) stimulate human eosinophils
to upregulate antiviral molecules, including guanylate-binding proteins and
tripartite motifs. Furthermore, IFN-γ specifically increases the expression of
IL5RA, ICAM-1, and FCGR1A, potentially enhancing cellular responsiveness to
IL-5, ICAM-1-mediated adhesion to rhinoviruses, and IgG-induced
inflammatory responses, respectively. In this review, we have summarized the
relationship between viral infections and asthma and the mechanisms
underlying the development of antiviral functions of human and mouse
eosinophils in vivo and in vitro.
KEYWORDS
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1 Introduction

Eosinophils are a type of granulocytes that contain abundant intracellular granule

proteins that can be stained using acidic aniline dyes (1). This cell type performs

various cellular functions, including degranulation, reactive oxygen species (ROS)

production, cytokine release, inflammatory lipid mediator synthesis, and EETs

(Eosinophil extra-cellular traps). Eosinophils play a central role in the pathogenesis of
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predominantly allergic disorders, as well as collagen vascular

diseases, neoplastic conditions, and infectious diseases, acting as

effector cells that mediate inflammatory responses in local tissues

(2–4). In contrast to pro-inflammatory eosinophils that promote

allergic inflammation, a subset known as tissue-resident

eosinophils has been identified, which contributes to maintaining

physiological homeostasis (5). This cell population is involved in

glucose metabolism; prevention of obesity; muscle regeneration;

immunoglobulin A production; induction of regulatory T cell

differentiation; and synthesis of specialized pro-resolving

mediators to suppress inflammatory responses and promote the

resolution of inflammation (6–9). Tissue-resident eosinophils

with these homeostatic cellular functions reside mainly in the

gastrointestinal tracts and substantially in respiratory and lower

urinary tracts (8, 9). Interestingly, eosinophils also participate in

the clearance of microorganisms in vivo and in vitro. They

respond to parasite invasion by degranulating (2, 10). In

addition, they exhibit phagocytic activity via their granule

proteins against microorganisms, including Staphylococcus

aureus and Escherichia coli (11–13). Recent studies have

demonstrated that eosinophil ETosis (EETosis) in which an

eosinophil lyses and releases their DNA components and

intracellular proteins is involved in bacteriostatic activity against

S. aureus and Aspergillus fumigatus (14, 15). Additionally,

previous reports have demonstrated the antiviral role of

eosinophils in humans and mice. Eosinophil cationic protein

(ECP) and eosinophil-derived neurotoxin (EDN), major granule

proteins of eosinophils, function as ribonucleases that degrade

RNA viruses (16). Human eosinophils can capture influenza

virus and respiratory syncytial virus (RSV) and inactivate them

(17). Interestingly, eosinophils isolated from asthma patients have

lower antiviral abilities than those isolated from healthy subjects

(17). In addition, asthma severity correlates with reduced

capacity of capturing viruses. Experimental viral infection models

using mice have shown eosinophil-mediated protection against

influenza virus, parainfluenza virus, and RSV (18–20). In

contrast, blood eosinophils from patients with severe asthma

have been reported to suppress IFN-α production from airway

epithelial cells and the functions of plasmacytoid dendritic cells

(pDC) cells, contributing to asthma exacerbation in viral

infections (21). Another study demonstrated that coculture of

eosinophils with BEAS-2B cells induced transforming growth

factor β secretion, which may suppress human rhinovirus

(HRV)-induced IFN expression (22). These findings highlight the

biological significance of the pro-viral or anti-viral roles

of eosinophils.

In this review, we have focused on the antiviral activity of

eosinophils. We have discussed the immunological mechanisms

underlying their antiviral activities that are mediated by specific
Abbreviations

ECP, eosinophil cationic protein; EDN, eosinophil derived neurotoxin; dsRNA,
double-stranded RNA; FCGR1A, Fc gamma receptor-1A; GBPs, guanylate
binding proteins; PCTR1, protectin conjugates in tissue regeneration 1; RIG-I,
retinoic acid-inducible gene-I; RSV, respiratory syncytial virus; SPM,
specialized pro-resolving mediators; ssRNA, single-stranded RNA; TLR7, toll
like receptor 7; TRIMs, tripartite motifs.
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molecules and their receptors. The relevance and involvement

of eosinophils in viral infections in asthma have also

been discussed.
2 Pathophysiological roles of
respiratory viral infection in asthma

2.1 Characteristics of eosinophilic
inflammation in asthma

Asthma is a chronic airway inflammation that causes

paroxysmal cough, dyspnea, wheezing, and chest discomfort (23).

Among patients with asthma, 50-70% patients present with type

2 inflammation characterized by eosinophil accumulation in the

airway (24). Type 2 cytokines include interleukin-4 (IL-4), IL-5,

and IL-13, which are optimal therapeutic targets to treat severe

eosinophilic asthma (25). From the perspective of viral infections,

elevated fractional exhaled nitric oxide levels and sputum

eosinophil counts are associated with an increased risk of future

virus-induced exacerbations (26). T helper type 2 (Th2) cells and

group 2 innate lymphoid cells (ILC2) mainly produce type 2

cytokines (27). IL-5 prolongs eosinophil survival and activates

eosinophil functions, including degranulation, superoxide

generation, and cytokine release, leading to airway epithelium

injury with increased airway hyper-responsiveness (AHR) (28).

Also, EETosis causes mucus plug formation and deposition of

Charcot-Leyden crystals (3, 29–31). The numbers of EET+

eosinophils and ILC2s were significantly elevated in severe

asthma, with a positive correlation between these cell

populations. Furthermore, mice injected with EETs exhibited a

significant increase in eosinophil and ILC2 counts (32).

Eosinophils isolated from patients with asthma have altered

expression patterns of surface antigens, including CD69,

indicative of their activated status (33). CD69 is a marker of

tissue-resident T cells involved in the production of type 2

cytokines (34), suggesting that CD69-high eosinophils may

contribute to the maintenance of tissue autonomy.

Approximately 5%–10% patients with asthma have severe disease,

with resistance to standard treatments and are on other

treatments such as inhalation of corticosteroids and add-on

agents. Blood eosinophils display EETosis more frequently in

patients with severe asthma than in those with mild to moderate

asthma (35). Airway eosinophils obtained from patients with

atopic asthma also induce EETosis (36). In addition, eosinophils

isolated from patients with severe asthma or eosinophilic chronic

rhinosinusitis, its comorbidity, showed dysregulated fatty acid

metabolism (37, 38). These findings are indicative of cellular

changes in eosinophils due to systemic and/or local inflammatory

milieu in severe asthma. Recently, biologics targeting type 2

cytokines have become available for the treatment of severe

asthma. IL-5, a strong activating cytokine for eosinophils, is

an optimal target for reducing eosinophilic inflammation.

Mepolizumab, an IL-5-neutralizing antibody, and benralizumab,

an IL-5 receptor α (IL-5Rα)-targeting antibody, dramatically

reduced the number of eosinophils in the blood and airways
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(39, 40). Anti-IL-5 treatment restores rhinovirus-induced IFN-α

secretion by pDCs in patients with asthma (21). Omalizumab, an

IgE-neutralizing antibody, also enhances IFN-α responses and

reduces FcϵRIα protein expression in pDC, providing evidence

that these effects are related (41). These biologics have been

shown to reduce asthma exacerbation, frequently caused by viral

infection, and spare the intake of oral corticosteroids with long-

term safety (42–49). These therapeutic effects indicate that

eosinophils play an important role in asthma as an inflammatory

immune cells.
2.2 Roles of viral infection in asthma

Viral infections account for 40%–80% cases of asthma

exacerbations (50, 51). Among these, rhinovirus, RSV, and

influenza virus account for most cases of asthma exacerbations.

Parainfluenza viruses, human metapneumoviruses, and

enteroviruses also induce asthma exacerbation at low frequencies

(50, 51). Rhinoviruses and respiratory syncytial virus (RSV)

suppress IFN production by airway epithelial cells and basal cells,

contributing to asthma exacerbations (52, 53). In murine models

of asthma, infections with these viruses and influenza viruses also

induce eosinophilic airway inflammation. Elevated levels of type

2 cytokines, eosinophil-derived granule proteins, and leukotrienes

have been detected in the airways of asthmatic patients infected

with these viruses (54–58). In the following sections, we will

discuss previous reports on the pathogenic relationship between

viral infections and asthma.
2.3 Rhinovirus

Rhinoviruses most frequently cause respiratory tract infections

and subsequent asthma exacerbations. Rhinovirus is correlated with

asthma exacerbations in school-aged children in age-stratified time-

series analysis (59). The ability to induce apoptosis for inhibiting

viral replication is reduced in airway epithelial cells of asthma

patients infected with rhinoviruses (52) in general, rhinovirus

infection causes the production of type 1 interferons (IFN), IFN-α

and IFN-β, and type 3 interferon, IFN-λ, in airway epithelial cells.

However, the levels of IFNs in airway epithelial cells of patients

with asthma were decreased compared with healthy subjects and

those levels correlate negatively with blood eosinophil count and

serum IL-4 concentration (52, 54). In contrast, human airway

epithelial cells infected with rhinoviruses secrete Regulated on

Activation Normal T Cell Expressed and Secreted (RANTES),

resulting in accumulation of eosinophils in the airway (60).

Rhinovirus infection induces pulmonary type 2 inflammation in

mice. Compared to that observed after rhinovirus type

A infections, rhinovirus type C infection increases the production

of IL-5, IL-13, IL-25, IL-33, and thymic stromal lymphopoietin

(TSLP), with abundant eosinophil infiltration in the airways (48).

Airway eosinophilic inflammation did not occur in Roraflox/flox

Il7r-Cre mice lacking ILC2, indicative of the importance of ILC2 in

this model (61). Compared to that observed in non-sensitized
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mice, infection with rhinovirus type 1B resulted in eosinophilic

inflammation with increased expression of IL-33 and IL-13 in a

house dust-sensitized asthma model (62). These results suggested

that rhinovirus infection induces type 2-high airway inflammation,

which is mainly dependent on ILC2 in mice. In bronchoalveolar

lavage fluid (BALF) from 11 rhinovirus-infected patients with

moderate asthma, the concentrations of IL-33 and IL-25 correlated

positively with those of IL-4, IL-5, and IL-13, suggesting the

involvement of innate immunity-related type 2 inflammation

(63, 64). ILC2 levels in BALF are predominantly higher in

rhinovirus-infected asthma patients than in healthy subjects (65).

In addition, the ILC2:ILC1 ratio increased in patients with asthma

and correlated positively with the clinical score of asthma

exacerbations and the concentration of type 2 cytokines in nasal

mucosal lining fluid (65). In total, these findings indicated that

rhinovirus infection in asthma diminishes type I IFN production

and involves ILC2-mediated type 2 inflammation in human.
2.4 RSV

RSV infection, the major cause of bronchiolitis in children, is

closely associated with the development of childhood-onset

asthma. Among children who were infected with RSV within the

first year of their lives, 30% of the children were diagnosed with

asthma and/or wheezing within 7 years after infection (66). Non-

structural protein 1 (NS1) of RSV inhibited IFN production with

impaired IFN-related signaling and reduced antiviral immunity

in A549 cells, a human epithelial cell line (53). In murine

experiments, NS1 increased serum levels of TSLP and OX40l,

inhibited the induction of regulatory T cells, and disrupted

immune tolerance mechanisms (55). In an ovalbumin (OVA)-

induced asthma model, RSV infection enhanced AHR, a

persistent mucus production, and subepithelial fibrosis (67). In

the RSV-infected asthma model, high levels of eosinophilic

extracellular DNA were detected in the BALF, which is indicative

of EETosis induction in the airway (68). Overall, these results

suggested that RS virus infection can exacerbate asthma in mice.

When stimulated with major basic protein (MBP), eosinophil

peroxidase (EPO), and eosinophil granule proteins, RSV-infected

human type II alveolar epithelial cells showed necrotic changes

due to their cytotoxicity (57). The concentrations of ECP and

EDN, other types of eosinophil granule proteins, and eosinophil

chemoattractants (MIP-1α and RANTES) in nasal secretions of

children with RSV-induced bronchiolitis were higher than those

in nasal secretions of normal subjects (69, 70). Also, high levels

of cysteinyl leukotrienes (cys-LTs) were detected in the sputum

of asthma patients with RSV infection (56). Thus, eosinophils in

patients with RSV infection can enhance airway inflammation

and contribute tissue damage in human.
2.5 Influenza virus

Influenza viruses are RNA viruses belonging to the

Orthomyxoviridae family that cause seasonal infections in
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humans (71). A previous report has shown that influenza A virus

was the most common cause for asthma exacerbation in 79

hospitalized patients with asthma, suggesting a close association

of this virus with asthma (72). Animal experiments using asthma

models have demonstrated an association between influenza virus

and asthma. The OVA-sensitized asthma model of mice with

influenza virus infection showed higher levels of OVA-specific

IgE and AHR with airway epithelial injury than uninfected mice

(73). House dust-sensitized mice infected with influenza virus

showed increased AHR due to airway epithelial cell-derived IL-

33-mediated responses (74). House dust-sensitized mice infected

with influenza virus (X31 H3N2) showed increase in the number

of ILC2 in the airway, along with high levels of IL-5 and IL-13

in BALF, especially upon virus clearance (58). Interestingly,

infection with influenza type A virus induced the production of

large amounts of IFN-γ in the lungs during the early phase of

infection and enhanced type 2 inflammatory responses in the late

phase (75). These findings emphasize the importance of

influenza virus infection as a cause of asthma exacerbation with

type 2 inflammation in mice. In human, among 34 children aged

2–11 years infected with H1N1 influenza A virus, 21 patients

with pneumonia had higher serum levels of IFN-γ and IL-5 than

patients without pneumonia. Also, patients with severe

pneumonia had significantly higher serum levels of IL-4, IL-5,

and IL-13 than those with mild pneumonia (76), indicative of

the role of influenza virus infection in airway type 2

inflammation. In contrast, lower rates of pneumonia, mechanical

ventilation, and mortality were observed in asthma patients

infected with H1N1 influenza virus than in non-asthmatics (77,

78), suggesting that type 2 inflammation in the airways might

provide protection from fatal H1N1 infection in human.
TABLE 1 Relationship between viral infection, asthma and type 2 inflammatio

Virus Animal Asthma type Tissues

Rhinovirus Human Moderate asthma BEC

Human Atopic asthma childlen BEC

Human Moderate asthma BALF

Human Mild or moderate asthma BALF

Human Moderate asthma BALF

Mouse House dust sensitized model BALF

Mouse House dust sensitized model BALF, Lung

RSV Mouse OVA sensitized model Serum, BALF

Mouse OVA sensitized model BALF

Mouse OVA sensitized model BALF

Influenza virus Mouse OVA sensitized model BALF

Mouse House dust sensitized model BCC, Type II alveolar
cells

Mouse House dust sensitized model BALF

Parainfluenza
virus

Human Mild asthma BALF

Mouse Parainfluenza virus infection
model

Lung

BALF, bronchoalveolar lavage fluid; BCC, bronchial ciliated cells; BEC, bronchial epithelial cells; C

5, interleukin-5; IL-10, interleukin-10; IL-13, interleukin-13; IL-25, interleukin-25; IL-33, interleuk

TNF-α, tumor necrosis factor-α; TSLP, thymic stromal lymphopoietin; ND, no data.
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2.6 Parainfluenza virus

Parainfluenza virus is a single-stranded RNA virus belonging to

the paramyxovirus family. The concentrations of cysLTs in the

sputum of patients infected with parainfluenza during mild

asthma exacerbations were higher than those in the sputum of

patients with non-viral asthma exacerbations (79). ILC2 remains

in the lungs of mice infected with parainfluenza virus after the

virus has cleared and may be associated with the development of

asthma (80). Studies evaluating the relationship between viral

infection, asthma, and type 2 inflammation are summarized

in Table 1.
3 Eosinophils in patients with
COVID-19 and asthma

3.1 Relationship between COVID-19
and asthma

Coronavirus disease 2019 (COVID-19) is an emerging

infection caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) that has become a global threat

since its outbreak in Wuhan in December 2019. Coronaviruses,

including SARS-CoV-2, are RNA viruses that cause mild to

severe respiratory failure. Although some studies have reported

their involvement in asthma exacerbations, the frequency of

asthma patients with SARS-CoV-2 infection is lower than that of

asthma patients with rhinovirus infection (81). Chronic

obstructive pulmonary disease (82) and patients with asthma
n.

Type 1
inflammation

Type 2 inflammation Reference

IFN-β↓ ND (52)

IFN-β↓, IFN-λ↓ IL-4↑, IgE↑ (54)

ND IL-4↑, IL-5↑, IL-13↑, IL-25↑,
IL-33↑

(63)

ND IL-4↑, IL-5↑, IL-13↑, IL-33↑ (64)

ND ILC2↑ (65)

ND IL-5↑, IL-13↑, IL-25↑, IL-33↑,
TSLP↑

(61)

ND IL-13↑, IL-33↑ (62)

IFN-γ↓, IL-10↓ IL-4↑, IL-5↑, TSLP↑ (55)

IFN-γ↑, TNF-α↑ IL-5↑ (67)

IFN-γ↓ ND (68)

ND IgE↑ (73)

IFN-β↓ IL-33↑ (74)

ND IL-5↑, IL-13↑ (58)

ND Cys-LTs (79)

ND ILC2↑ (80)

ys-LTs, cysteinyl leukotrienes; IFN, interferon; IgE, immunogloblin E; IL-4, interleukin-4; IL-

in-33; ILC2, group 2 innate lymphoid cells; OVA, ovalbumin; RSV, respiratory syncytial virus;
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prescribed high-dose ICS were associated with an increased risk of

death (83). Also, patients with nonallergic asthma had worse

clinical outcomes that patients with allergic asthma (84). Type 2

cytokines decreased the mRNA level of angiotensin converting

enzyme 2 (ACE2), a receptor for SARS-CoV-2, in epithelial cells,

which may reduce the risk of infection (85). In addition, ICS

decreased the expression of ACE2 in alveolar epithelial cells (86).

Furthermore, the use of ICS was associated with low expression

of ACE2 (87). However, patients with asthma who were

prescribed high-dose ICS were at an increased risk of death. This

finding indicates that high-dose ICS is possibly associated with

high risk of COVID-19-related death (83), although severity of

asthma may influence the outcome of COVID-19 infection.

A recent study demonstrated that biological therapeutics for

severe asthma can be used safely, with low risk of developing

severe COVID-19 (88, 89). Another report showed that patients

with severe asthma treated with anti-IL-5 receptor antibody may

be at low risk of developing severe COVID-19 (90, 91). Thus,

therapeutics should be used to obtain better control of the

disease symptoms in patients with severe asthma during the

COVID-19 pandemic.
3.2 Role of eosinophils in COVID-19

Some clinical studies have indicated that blood eosinophil

count (BEC) is a potential prognostic biomarker for

COVID-19. In 140 patients hospitalized with COVID-19, more

than half presented with eosinopenia during the early stage of

infection (90, 92). A comparison of BEC between survivors and

non-survivors during the disease course of COVID-19 showed

that survivors had higher BEC than non-survivors during the

recovery period (93). Among patients with asthma, eosinophils

were not detected in the blood of 85% patients with COVID-19

on admission, and a BEC lower than 150/µl predicted a higher

mortality rate during the disease course of COVID-19 (94).

Autopsy of cases with severe COVID-19 demonstrated the

absence of eosinophilic infiltration in the inflamed lung (95).

Some studies have shown the activated status of blood

eosinophils in COVID-19 patients. The number of blood

eosinophils with high expression of CD62l increased on days

2‒6 of hospitalization. IFN-γ is suggested to be an activator of

eosinophils during SARs-CoV-2 infection (96). Another report

also demonstrated that CD62l-high eosinophils in severe

COVID-19 cases expressed high levels of CXC chemokine

receptor 4 (CXCR4) and programmed cell death 1-ligand 1

(PD-L1) (97). Interestingly, ECP and EDN concentrations in

the sputum and BALF of patients with severe COVID-19 were

higher in the first 10 days of severe infection than those in

patients with a mild case (98). A case of suspected vasculitis, in

which eosinophils accumulated around blood vessels in lung

tissue with increased BEC, has been reported in COVID-19

(99). These findings suggest that eosinophils may play a

protective role in COVID-19. Further studies are needed to

confirm the role of eosinophils in the pathogenesis and

progression of COVID-19.
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4 Antiviral functions of eosinophils in
viral infection

IFNs are produced as antiviral molecules during viral infection

in the body. Among the IFNs, IFN-γ, a type 2 interferon, is a potent

activator of eosinophils. Viruses are recognized by toll-like

receptors (TLRs) 3/7/8/9 and specific types of pattern recognition

receptors (PRRs) expressed on immune cells that recognize

microorganisms. Retinoic acid inducible gene-I (RIG-I) and

melanoma differentiation-associated protein 5 are RIG-I-like

receptors (RLRs) that are also virus-associated molecules. Among

these receptors of human eosinophils, TLR7 and RIG-I play

major roles in the cellular response to viruses (100–102).

Previous studies have shown that human and murine eosinophils

are capable of capturing and inactivating viruses (17). Activated

eosinophils release ECP and EDN, which possess ribonuclease

activity. The ribonuclease activities of these granule proteins

contribute to their antiviral effects on RNA viruses. Furthermore,

eosinophils can synthesize fatty acid metabolites with antiviral

activity. However, the significance of eosinophils in vivo as

antiviral effector cells has not been completely elucidated. In the

following sections, we discuss the eosinophil-related factors

associated with antiviral activity.
4.1 IFN-γ

IFNs are proteins with virus-interfering effects that are

categorized into type 1 (IFN-α and IFN-β), type 2 (IFN-γ), and

type 3 IFNs (IFN-λ); type 1 IFNs show the strongest antiviral

activity. In contrast, IFN-γ robustly enhances inflammatory

responses and is mainly produced by Th1 cells, CD8+ T cells,

macrophages, and natural killer (NK) cells. IFN-γ receptors,

IFN-γR1 and IFN-γR2, mediate downstream signaling via the

Janus kinase-signal transducer and activator of transcription 1

(JAK-STAT1) pathway (103). IFN-γ induces interferon-

stimulated gene expression. Protein kinase R and adenosine

deaminases acting on RNA (ADARs) function as antiviral

proteins (104). Guanylate-binding proteins (GBPs) and

tripartite motifs (TRIMs) with antiviral properties against RNA

viruses, influenza virus and RSV, are also induced by IFNs

(105–109). Eosinophils express functional IFN receptors,

especially for IFN-γ. IFN-γ prolongs eosinophil survival more

strongly than type 1 IFNs do (110–112). Blood eosinophils

express CD69, an activation marker, via JAK2 upon IFN-γ

stimulation (110). IFN-γ stimulation activates eosinophils that

function as effector cells (113). IFN-γ stimulation induces ROS

production and degranulation of eosinophils via mitogen-

activated protein kinase (MAPK) (114, 115). Notably,

eosinophil-derived IFN-γ enhances AHR in a murine model of

asthma and stimulates the release of ECP from eosinophils

(116). IFN-γ-induced antiviral activity of eosinophils has not

yet been completely elucidated. IFN-γ-stimulated eosinophils

exert antiviral activity via intracellular nitric oxide (NO)

production (18). This promotes virus elimination in mouse
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models of parainfluenza infection. In addition, eosinophils bind

to RV via intercellular adhesion molecule-1 (ICAM-1) and

present viral antigens to RV-specific T cells to induce their

IFN-γ production (117). Adhesion of eosinophils to ICAM-1

can further activate the functions of eosinophils including ROS

production (118). Our research groups identified that

eosinophils stimulated with IFN-α and IFN-γ upregulate the

antiviral molecules GBPs and TRIMs. IFN-γ-stimulated

eosinophils specifically upregulate expression of ICAM-1 and

Fc gamma receptor-1A (FCGR1A) which may result in

enhanced ICAM-1-mediated adhesion to rhinoviruses and

enhanced inflammatory functions in response to virus with IgG

cross linking (119). C-X-C motif chemokine ligand 10

(CXCL10), a ligand for CXCR3, is associated with IFN-γ.

CXCL10 production induced by IFN-γ has been identified as a

biomarker for rhinovirus-induced asthma exacerbations.

CXCL10 stimulation increases ICAM-1 expression and reactive

oxygen species (ROS) production in eosinophils, underscoring

the pro-inflammatory role of IFN-γ in eosinophils (120, 121).

However, further studies are required to elucidate the

detailed mechanism.
4.2 TLR7

TLRs are a type of PRR that recognize pathogen-associated

molecular patterns. TLRs are type I transmembrane proteins with

external, transmembrane, and intracytoplasmic regions. TLRs of

the intracytoplasmic region activates downstream signaling

pathways, including nuclear factor-kappa B (NF-κB), MAPK, and

interferon regulatory factors (IRF)-3, to induce the expression of

cytokines and chemokines, including IFNs (122). TLR3, TLR7,

and TLR8 are localized intracellularly and recognize RNA

viruses. TLR3 recognizes dsRNA, while TLR7 and TLR8

recognize single-stranded RNA (ssRNA), respectively (123).

Among TLRs, eosinophils highly express TLR7. Stimulation with

TLR7 ligand changes the adhesion molecule expression, ROS

generation, cytokine production, and prosurvival pathways

(100, 124). TLR7 expression in eosinophils was upregulated upon

stimulation with IFN-γ but not with IL-4 and IL-5 (100). TLR7

signaling is mediated by p38-MAPK, phosphoinositide 3-kinase,

extracellular signal-regulated kinase, and NF-κB (124). In mouse

models infected with RSV and parainfluenza virus, activated

eosinophils thorough TLR7 eliminate these viruses via IRF-

7-mediated induction of intracellular NO and eosinophil-

associated ribonucleases (EAR)-1 and EAR-2, which possess

ribonuclease activity (18, 19). Interestingly, TLR7 expression in

immune cells is reduced in patients with asthma (125). In

murine asthma models, administration of the TLR7 ligand

suppressed allergic airway inflammation (126, 127). TLR7

governs IFN-related responses to rhinovirus and its expression is

suppressed by IL-5-induced lung eosinophilia (128). These results

suggested that eosinophil-expressing TLR7 exerts antiviral and/or

anti-allergic effects that might be impaired in asthma.
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4.3 RIG-I

RIG-I is a cytoplasmic RNA helicase that is a retinoic acid-

induced RLR. RIG-I recognizes double-stranded viral RNA. RIG-

I signals are transmitted by NF-κB and IRF-3 to produce type 1

IFNs (129). RIG-I is expressed in virus-infected cells, including

airway epithelial cells and macrophages. Human airway epithelial

cells infected with rhinovirus express RIG-I via TLR3 (130).

Eosinophils also express RIG-I and exert an RIG-I-dependent

antiviral effect. In human eosinophils, α2–6 and α2–3-linked

sialic acids reduce titers of the H1N1 influenza type A virus and

express RIG-I mRNA while these precise mechanisms are not

fully uncovered (20). In a murine model of fungus-sensitized

asthma, exposure to a novel influenza virus (A/California/04/

2009) increases intracellular RIG-I expression in bone marrow-

derived eosinophils, leading to CD8+ T cell expansion (102).

However, the mechanism underlying the RIG-I-mediated

antiviral effect in eosinophils is unclear.
4.4 EDN and ECP

Eosinophils harbor abundant intracellular granule proteins,

including MBP, EDN, ECP, and EPO (131). EDN and ECP exert

antiviral effects on RNA viruses due to their ribonuclease activity

(16). Sequences orthologous to human EDN and ECP have been

identified in higher primate genomes. EDN/RNase2 and its

divergent ortholog, mouse eosinophil-associated RNases (mEars),

are prominent secretory proteins of eosinophils within the RNase

A-type ribonuclease family (132). A previous study has revealed

that the antiviral activity of EDN was higher than that of ECP

(133). As mentioned above, murine eosinophils recognize the

RSV via the TLR7-Myd88 system, express the genes encoding

granule proteins (EAR1 and EAR2), and release ECP (19). Also,

recombinant human eosinophil-derived neurotoxin/RNase 2

functions as an effective antiviral agent against RSV (134)

However, the importance of granule proteins in RNA virus

clearance in human remains unclear.
4.5 Specialized pro-resolving mediator
(SPM)

Eosinophils can synthesize fatty acid-derived bioactive mediators

(135). During allergic inflammation, eosinophils produce large

amounts of cys-LTs that are converted from arachidonic acid

released from nuclear membranes. Our research revealed that

human eosinophils stimulated with IL-5 produce LTD4, a ligand

with high affinity to CysLT1 and CysLT2, and the combined

stimulation with IL-5 and IL-4 further augments its production

(136). Cys-LTs induce airway constriction, increase vascular

permeability, and enhance mucus production and accumulation of

inflammatory cells (137). On the other hands, eosinophils can

synthesize SPMs via the fatty acid metabolizing enzyme,
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FIGURE 1

Antiviral activities of eosinophils. Eosinophils recognize RNA viruses via TLR-7 and RIG-I. The expression of ICAM-1, FCGR1A, and TLR-7 is upregulated
by IFN-γ. Eosinophils produce ribonucleases (ECP and EDN), intracellular NO, SPMs, GBPs, and TRIMs. These mediators are believed to degrade
viruses and inhibit viral replication and transport.
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15-lipoxygenase (15-LOX), which inhibits allergic airway

inflammation and promotes the resolution of inflammation (138,

139). In murine tissue, tissue-resident eosinophils specifically

express this enzyme, which possibly contributes to the

maintenance of homeostasis (140, 141). Previous studies have

shown that SPMs also play important roles in infection (142). The

production of a docosahexaenoic acid (DHA)-derived SPM,

protectin D1 (PD1), decreased following lethal influenza virus

infection (143, 144). In a murine model of influenza virus

infection, PD1 prevented fatal infection by inhibiting viral

replication in airway epithelial cells (144). Results of an in vitro

lipid screening assay demonstrated that 15-LOX-derived

metabolites, including PD1, exerted similar inhibitory effects on

viral replication (144). A recent study also showed that PD1 and

another SPM, protectin conjugates in tissue regeneration 1

(PCTR1), induced the production of IFN-λ from airway epithelial

cells and inhibited RSV replication (145). These results indicated

that SPMs may function as antiviral molecules in vivo. Our study

showed that human eosinophils are capable of synthesizing

sufficient amounts of PD1 (37, 146). Interestingly, blood

eosinophils isolated from patients with severe asthma have

reduced capacity of producing PD1 and other 15-LOX-derived

metabolites (37). Reduced PD-1 production may result from

impaired DHA utilization in eosinophils and defective 15-LOX

metabolic synthesis, although no change in 15-LOX was observed

in eosinophils stimulated with IL-4 or IL-4 plus IL-5 compared to

non-stimulated cells (136). These findings suggest that antiviral

activity via 15-LOX metabolism in eosinophils may be reduced in

refractory eosinophilic diseases, and further investigation is

required to elucidate the balance between the pro-inflammatory

and anti-inflammatory roles of eosinophils. The antiviral activities

of eosinophils have been summarized in Figure 1.
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5 Conclusion

Eosinophils accumulate in the airways of patients with asthma

due to type 2 cytokine-dependent inflammation and enhance type

2 inflammation with tissue injury. Eosinophils can also be activated

by IFN-γ and can recognize RNA viruses via TLR7 and RIG-I

(18, 20). They can clear viruses via ECP and EDN granule

proteins and intracellular NO (16, 18). Interestingly, non-

eosinophilic exacerbations triggered by viral or bacterial

infections were observed in patients treated with mepolizumab

(147), an anti-IL-5 antibody, suggesting that removal of

eosinophils may cause expansion of virus and/or bacteria.

However, patients with asthma have reduced capacity of

producing IFNs and are vulnerable to viral infections (52, 54). In

addition, the antiviral activity of eosinophils is impaired in

asthma patients, especially in patients with severe asthma (17).

Our study also reported that the expression of antiviral molecules

up-regulated by IFN-γ in human eosinophils was attenuated by

co-stimulation with IFN-γ and IL-5 (119). Further investigations

are required to better understand the role of eosinophils in viral

infection. Additionally, novel therapeutic strategies for severe

asthma are required to suppress allergic inflammation and

enhance antiviral defense.
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