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Regulation of eosinophil
recruitment and heterogeneity
during allergic airway
inflammation
Lisa-Marie Graf, Daniel Radtke and David Voehringer*

Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University
Erlangen-Nuremberg (FAU), Erlangen, Germany
Eosinophils represent a granulocyte cell type that is strongly associated with type
2 inflammatory conditions. During steady state conditions few eosinophils are
found in lung tissue, though they may contribute to homeostasis. In allergic
airway inflammation, eosinophils are strongly increased and associated to
disease severity. The underlying type 2 immune response tightly regulates
eosinophil development, recruitment, survival, and heterogeneity. Inflammatory
eosinophils in the lung are unfavourable, as they can cause tissue damage,
amplify type 2 immunity and induce bronchial obstruction by expelling granular
proteins and cytokines. In this review we provide an overview about
mechanisms regulating development of eosinophils in the bone marrow and
their extravasation into the lung including recent findings on induction and
diversity of eosinophilia in allergic airway inflammation.
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Introduction

Eosinophils were firstly described in 1879 by Paul Ehrlich, who named them

“eosinophils” because they appeared as granulated cells with an affinity for eosin

staining (1). The granules of eosinophils contain various potent defensive proteins like

major basic protein (MBP, PRG2), eosinophil cationic protein (ECP, RNASE3),

eosinophil peroxidase (EPO, EPX), and eosinophil-derived neurotoxin (EDN, RNASE2),

which can be toxic to helminths, viruses and bacteria, but can also damage host cells

(2). Eosinophils are highly conserved cells across many vertebrate species (3). Human

and mouse eosinophils both have been well characterized and they share various

similarities but also harbour differences. One example are surface markers, which are

frequently used to define eosinophils in flow cytometric or immunohistologic analyses.

They share the expression of CCR3 and CD11b (ITGAM, human and mouse), show

expression of the functional paralogues SIGLEC-8 (human) and SIGLEC-F (mouse) and

express the orthologue proteins EMR1 (ADGRE1, human) and F4/80 (Adgre1, mouse).

They differ in the expression of the IgE-receptor FcϵRI, which is only present on

human eosinophils (4, 5). Murine and human eosinophils are comparable in size and

occur in a similar frequency in the blood, however, human eosinophils display greater

granularity (6).

In healthy individuals, eosinophils make up less than 5% of leukocytes in peripheral

blood and occur in the lung only in low numbers. They are short lived as they survive

only about 8–12 h in blood circulation and up to 12 days in some tissues (7). Despite
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the low frequency of eosinophils in the homeostatic lung,

eosinophils were shown to play a role in lung homeostasis. As

such, they were described to inhibit the maturation of dendritic

cells (DCs) and the type 2 helper T-cell (Th2) response in allergy

(8). In eosinophil-associated diseases eosinophil counts in the

blood increase, also termed as eosinophilia. Eosinophilia can

occur especially during parasitic infections, in allergic diseases

and certain autoimmune diseases (9). The incidence of allergic

diseases and asthma is increasing worldwide and constitutes a

major health concern (10). Depending on the eosinophil counts

in blood, allergic asthma is classified either as eosinophilic or

non-eosinophilic. The latter is rather characterized by the

absence of blood ILC2s and a mixed granulocytic or

paucigranulocytic phenotype including neutrophils (11). In

eosinophilic asthma, eosinophil counts in the blood of asthma

patients correlated with severity of asthma and exacerbation rates

(12). Moreover, eosinophilic asthma can be subdivided into

atopic (allergic) and non-atopic (non-allergic) asthma. Atopic

asthma is classified by the contribution of type 2T-helper cells

(Th2) cells, whereas in non-atopic asthma primarily type 2

innate lymphoid cells (ILC2) are responsible for eosinophilia

(13). The determination of such asthma endotypes is crucial for

selection of the appropriate treatment options. Severe asthma is

commonly treated with glucocorticoids, corticosteroids, long-

acting beta-adrenergic receptor agonists and leukotriene receptor

antagonists. However, as eosinophils contribute to asthma

severity and exacerbations, reduction of eosinophil numbers is

another treatment option in eosinophilic asthma. One target of

treatment is IL-5, which drives eosinophil differentiation and

survival. Therefore, IL-5 neutralizing antibodies like Reslizumab

and Mepolizumab and the IL-5 receptor antagonist Benralizumab

are used to treat eosinophilic asthma and can reduce

exacerbations by approximately 50%. As IL-4 and IL-13

cytokines are considered to be crucial for eosinophil recruitment,

inhibition of these cytokines or the IL-4 receptor alpha chain is

another treatment option to reduce eosinophils, although with

rather inconsistent effects on exacerbation rates (14).

As eosinophils are a hallmark of eosinophilic asthma and

contribute to severity of asthma, it is of great interest to

understand how eosinophils develop in the bone marrow and

how recruitment and migration of eosinophils to the lung

is regulated.
Eosinophil development in the bone
marrow

It is long known, that eosinophils develop in the bone marrow

from a CD34+ progenitor population. Further development from

this progenitor into eosinophils is dependent on various

transcription factors like c/EBPα, c/EBPϵ, PU.1, IRF8, Gata-1

and Gata-2 (15). Especially Gata-1 is important for eosinophil

development, as impaired expression of Gata-1 in the ΔdblGATA

mouse strain selectively depletes all eosinophils (16) and

constitutive expression of Gata-1 in human progenitors enforces

eosinophil fate (17). Drissen et al. (18) propose a new model of
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haematopoiesis in which a megakaryocyte and an eosinophil-

mast cell progenitor (EoMP) population arise separately from the

macrophage/neutrophil lineage in a Gata-1-dependent manner.

This EoMP gives rise to eosinophils, mast cells, and basophils

(18). The lineage commitment between basophils and eosinophils

depends on the sequence of transcription factor activation.

c/EBPα expression prior to Gata-2 seems to commit progenitors

to become eosinophils, the reverse sequence of expression rather

induces basophils (19). c/EBPα is essential in eosinophil

development as it binds to promoters of eosinophil-determining

genes and inhibits friend of Gata (Fog) expression, which at

some point inhibits expression of eosinophil-determining genes

(20). Recently, Jorssen et al. confirmed the aforementioned Gata-

1 dependent lineage fate by using combined scRNA sequencing

and transcriptomic analysis (21). Their approach also identified

four distinct stages of eosinophil development. One important

step in eosinophil development is the upregulation of the

chemokine receptor CCR3, which is critical for chemotaxis of

eosinophils towards inflamed tissues (22).

IL-5 is a prominent cytokine in eosinophil development and

IL-5 overexpressing mice show a massive eosinophilia (23). In

line, the IL-5 receptor alpha chain (also named CD125) is

expressed by early eosinophil progenitors (21, 23). However, IL-5

is not essential for basal eosinophil development as IL-5 blocking

antibodies reduce eosinophil counts in eosinophilic diseases

drastically, but not completely (24). Further, IL-5 knock-out

(k.o.) mice still harbour a low number of eosinophils in

homoeostasis (25). The mechanism of how eosinophils develop

in the absence of IL-5 still needs to be investigated. The IL-5, IL-

3 and GM-CSF receptors share the common beta chain (βc),

which is known to activate various signalling pathways, including

the MAPK pathway by a βc-Shc-Grb2 cascade (26). Our group

showed that Grb2 plays an important role for eosinophil

development (27). Moreover, it was reported that Grb2 binds to

the phosphatase PTPN11 (SHP-2) in IL-5 stimulated eosinophils

(28). SHP-2, which also can be induced by IL-3, IL-5, and GM-

CSF, was described as essential factor for eosinophil bone

marrow development and as an inducer of c/EBPα expression

(29–31). These studies provide hints on how cytokines might

regulate eosinophil development. However, a direct link between

receptor signalling and eosinophil-lineage inducing transcription

factors is missing.

Eosinophil development was further shown to depend on IL-

33. IL-33 is a member of the IL-1 cytokine family and signalling

is mediated via the IL-33 receptor ST2 (IL1RL1) (32). IL-33 is

mainly produced by epithelial cells and released in case of

epithelial damage, which is also occurring in allergic airway

inflammation and mainly stimulates ILC2s and Th2 cells. In

mice that lack IL-33 or the Il-33 receptor ST2, eosinophils could

not develop properly, and eosinophil numbers in blood and

periphery were strongly reduced (33). Mature eosinophils were

shown to be ST2 positive, but whether eosinophil precursors in

the bone marrow express ST2 on the surface is controversial in

literature. Whereas Tsuzuki et al. found ST2 expression on

eosinophil progenitors (34), other data could not confirm this

finding (33). Interestingly, Drissen et al. found Il1rl1 (the gene
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encoding ST2) expression in Gata1-EGFP positive progenitors,

however, they could not confirm ST2 expression on the surface

of the respective cells (18). This raises the question whether the

effect of IL-33 on eosinophil development is direct or indirect via

other cells responsive to IL-33. Our group has performed

analysis on mixed bone marrow chimeras, reconstituted with a

50:50 mix of Il1rl1−/− and WT bone marrow. In this setup,

Il1rl1−/− and WT eosinophils share the same environment so

that alterations in the ratio of Il1rl1−/− and WT eosinophils

indicate cell-intrinsic effects of Il1rl1 deficiency. As Il1rl1−/−

eosinophils accumulated in the lung with similar numbers as WT

eosinophils after allergen challenge, the effect of IL-33 on

eosinophil development appears to be non-intrinsic and rather

indirect most likely by activation of ILC2s (35).

Despite substantial knowledge about transcription factor

regulation in eosinophils development, it is not fully elucidated

how extracellular factors induce the shift toward

eosinophil commitment.
Chemotactic migration of eosinophils
towards the inflamed lung

After eosinophils have matured in the bone marrow, they will

enter the blood circulation and stay there for 8–12 h. In case of

airway inflammation, chemokines are released, which attract

eosinophils to the lung (Figure 1). The major chemokines for

eosinophil attraction are eotaxin-1 (CCL11), -2 (CCL24), and -3

(CCL26), which primarily interact with the C-C-chemokine

receptor 3 (CCR3). Hence, CCR3-deficient mice show reduced

eosinophil infiltration into allergen-challenged lungs, in line with

a prominent role of CCR3 for eosinophil attraction to the lung

tissue (36). A comparison of ovalbumin (OVA)-induced asthma in

eotaxin-deficient mice showed that CCL24 seems to have a greater

impact on eosinophil recruitment into the bronchoalveolar lavage

(BAL) than CCL11 (37). Besides CCL11 and CCL24, CCL26 was

described as a third eotaxin, which can be induced by IL-4 in an

endothelial cell line (38). CCL26 could also be detected in

asthmatic patients and was even suggested to be more effective in

eosinophil recruitment as compared to CCL11 and CCL24 (39,

40). A further parameter for regulation of immune cell migration

is protein modification by sialylation, which affects various

chemokine-chemokine receptor interactions. Recently it was

shown, that sialylation by the sialyltransferase ST3Gal-IV is

necessary for binding of CCL11 to CCR3. Therefore, ST3Gal-IV

knockout mice show decreased BAL eosinophils upon lung

allergen challenge (41). Whether sialylation is also necessary for

binding of CCL24 and CCL26 to CCR3 is currently unknown.

Moreover, besides eotaxins, CCR3 can bind CCL5, CCL7,

CCL13, and CCL15 (42, 43). Of these, CCL7 was suggested to be

relevant for eosinophil recruitment to the lung in type 2

immunity (44, 45). Additionally, CCL5 and CCL13 were

suggested to induce eosinophil migration (46, 47). Whether these

effects are mediated via CCR3 on eosinophils or other

chemokine-receptors still has to be determined.
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Because knock-out of CCR3 does not fully blunt eosinophil lung

recruitment in mouse studies, it seems that CCR3-independent

mechanisms for eosinophil recruitment exist. Indeed, several

studies suggested that eosinophils could express other chemokine

receptors like CCR1, CCR4, and CXCR4 (48, 49). However, the

latter seemed to have no function in eosinophil migration to

inflammatory sites (50). CCR1 is important for eosinophils to be

responsive to the ligand CCL3 (Macrophage inflammatory protein

1a) (49). Moreover, by using CCL6-deficient mice, it was suggested

that in asthmatic mice eosinophil-derived CCL6 can bind to CCR1

and thus induces chemotaxis of eosinophils (51). Another study

suggests, that dendritic cell derived CCL17 and CCL22 drives early

eosinophil recruitment via eosinophil-expressed CCR4 (52).

Beside chemokines, other factors have been investigated in the

course of eosinophil chemotaxis. Prostaglandin D2 induced shape

changes, which seem to mobilize eosinophils from the bone

marrow and prime them for chemotaxis (53, 54). Interestingly

eosinophils migrated towards nematodes in a leukotriene B4

(LTB4)-dependent manner, which is rather known as a chemo-

attractive factor for neutrophils (55, 56). Of note, LTB4 was also

shown to be increased in asthmatic individuals (57). Therefore,

there might be a link between LTB4 and eosinophil chemotaxis

in asthma. Moreover, it was shown that mast cells and platelets

can be a source for the serotonin metabolite 5-hydroxyindoleacetic

acid (5-HIAA), which induces eosinophil-recruitment via the

G-protein coupled receptor (GPCR) GPR35 into Cryptococcus

neoformans infected lungs (58).

While different factors are long known in eosinophil

chemotaxis to the inflamed lung, a comprehensive understanding

of their combined action in vivo is necessary to envision future

treatment options that are precise and safe.
Transmigration of eosinophils across
endothelial cells

After eosinophils got attracted to the lung, they cross the lung

endothelial cell layer to enter the lung tissue. Therefore, eosinophils

undergo rolling, adhesion and subsequently transmigration

through the endothelial layer.

Interaction of P-selectin glycoprotein ligand-1 (PSGL-1) on

eosinophils with P-selectin seems to be important for the

transmigration process. P-selectin is expressed on endothelial

cells, but also on platelets. Interestingly, platelets were reported

to be recruited to the endothelium in murine allergic asthma

models and platelets are also found in the lung of asthmatic

patients (59). Platelet-deficient mice showed reduced eosinophilia

in an allergic model and it is proposed that the missing PSGL-

1-P-selectin interaction is responsible for this phenotype (60).

Other studies suggested that the P-selectin mediated interaction

of platelets with eosinophils, upregulates and activates integrin β1
on eosinophils, which might be relevant for transmigration (61,

62). Moreover, as mentioned before platelets were described as

source for 5-HIAA, which promoted eosinophil attraction to

lung tissue (58). This indicates that platelets in proximity to

endothelial cells play a major role for eosinophil transmigration.
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FIGURE 1

Regulation of allergen-induced lung eosinophilia. Allergens that reach the lung can damage the epithelium, leading to the secretion of alarmins, which
then elicit a type 2 immune response. Type 2 cytokines induce eosinophil-chemotactic factors (pink arrows) and prime the endothelium to allow
eosinophil transmigration. Thus, inflammatory eosinophils are recruited to the lung, undergo adhesion, rolling, and transmigration through the
endothelial layer. In the lung tissue eosinophil survival is enhanced by paracrine and autocrine GM-CSF as well as T cell-derived IL-3 or IL-5 from
Th2 cells or ILC2s. Inflammatory eosinophils execute various functions, like damaging the epithelium, activating nerves and inducing further
activation of type 2 immune cells. Inflammatory factors, released by lung cells feedback to the bone marrow to increase eosinophil development,
mainly driven by IL-5. Eosinophil development in the bone marrow can be divided into four stages and depends on combined action of
transcription factors. Created in BioRender. Pollock, J. (2025) https://BioRender.com/m48o078.

Graf et al. 10.3389/falgy.2025.1585142
Furthermore, attachment to endothelial cells is important in

eosinophil transmigration. Whether eosinophils attach also to

P-selectin on endothelial cells in vivo is not firmly proven, as

administration of anti-P-selectin antibodies blocked P-selectin on

both endothelial cells and platelets. However, endothelial cells

express additional selective adhesion proteins, like VCAM-1 and

ICAM-1, which are important for eosinophil attachment via

integrin heterodimer interaction. Eosinophils express the integrin

heterodimers α4β1 (VLA-1) and α4β7, which can interact with

VCAM-1 as well as the integrin dimer αMβ2 which is able to

interact with ICAM-1 (63). Blocking of different integrins

expressed on eosinophils, suggested a prominent role for integrin

α4 for eosinophil adhesion (64). Integrin α4β7 also interacts with

MAdCAM-1 (65), but there is no evidence whether this is

necessary for eosinophil transmigration to lung tissue. In vitro

data suggests that eosinophils role more efficiently on VCAM-1-

as compared to MAdCAM-1-expressing endothelial cells (66).

Noteworthy, airway eosinophils from allergen-challenged patients

displayed increased integrin αMβ2 expression and enhanced

attachment to VCAM-1 and ICAM-1 (67).

VCAM-1 expression on endothelial cells is mainly induced by

TNF-α and IL-1β. However, the type 2 immune cytokines, IL-4 and

IL-13 were also shown to affect VCAM-1 expression on endothelial
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cells. One study suggested that IL-4 induced STAT6 can bind to the

Vcam-1 promotor (68). In the skin, basophil-derived IL-4 could

upregulate VCAM-1 on endothelial cells, which was necessary

for eosinophil transmigration (69). Similar results were observed

in house dust mite (HDM)-challenged mice, were basophil-

deficient animals did not show increased levels of VCAM-1 (70).

These studies indicate that VCAM-1 expression is enhanced by

type 2 cytokines and facilitates eosinophil recruitment to the lung.

After attachment to adhesion molecules, eosinophils must

actively migrate through the endothelial cell layer. A recent study

showed that IL-13 downregulates miR-1 in endothelial cells,

thereby activating various eosinophil trafficking genes (71). One

of them is thrombopoietin (Mgl), which seems to alter P-selectin

on platelets and might support eosinophil transmigration as

mentioned before (72). The serotonin precursor 5-HTP was

found to inhibit eosinophil transmigration via binding to the

respective receptor in endothelial cells in vitro. Nucleotide

polymorphisms in the gene encoding this receptor were found to

be associated with asthma (73, 74). However, the mechanism

how this receptor-activation inhibits eosinophil transmigration

was not investigated so far.

Besides some basic understanding of how eosinophils attach to

endothelial cells, their trans-endothelial migration is hardly
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studied. In contrast, the transmigration process of neutrophils is

better understood and the integrin heterodimer αMβ2 appears to

play a crucial role in this process (75). Eosinophils also express

this dimer and a similar function in eosinophils is further

suggested by β2-deficient mice that show reduced eosinophil

migration to lung tissue (76). Additionally, it was suggested that

this integrin mediates migration of eosinophils via binding to

periostin, an extracellular matrix protein expressed by epithelial

and endothelial cells, and secreted by IL-4- and IL-13-stimulated

fibroblasts (77–79).

Overall, these studies indicate that rolling, adhesion and actual

transmigration of eosinophils in the lung is tightly regulated and

enhanced by type 2 immune responses.
Effects of type 2 immune cells on
pulmonary eosinophilia

The type 2 immune cytokines IL-4 and IL-13 are essential for

eosinophil recruitment to the allergic lung, as depletion of both

cytokines abolishes eosinophilia (80). IL-4 and IL-13 are closely

related and share various functions, however, also differences are

observed. Whereas IL-4 can bind to the IL-4 receptor type I (IL-

4RI), both cytokines can activate the IL-4RII which consists of

an IL-4Rα and IL-13Rα1 subunit. Binding of IL-4/IL-13 to these

receptors leads to activation of STAT6, which can induce a great

variety of STAT6-dependent genes (81). In humans, STAT6 is

associated with asthma and other allergic diseases, as patients

with a gain of function mutation in Stat6 showed a variety of

allergic diseases, including asthma (82). In contrast, loss-of-

function variants of STAT6 rather protect individuals from

allergic asthma (83).

Th2 cells are main producers of IL-4 and IL-13 and were

thought to be the crucial driver of eosinophilia. However, in

Rag1-deficient mice which lack T and B cells or Th2-deficient

mice, eosinophilia is only abrogated in some asthma models.

More precisely, in Rag1-deficient mice eosinophilia is absent in

models of HDM-induced asthma, allergic bronchopulmonary

aspergillosis or OVA-induced asthma (84–87). In a more

mechanistic approach, using mice that only lack IL-4/IL-13 in

T cells, our group showed that cytokines of Th2 cells are

responsible for induction of eosinophilia in OVA-induced asthma

as well as in an ABPA mouse model (80, 88). Therefore, HDM-

induced asthma, allergic bronchopulmonary aspergillosis or

OVA-induced asthma represent Th2-dependent asthma subtypes

[reviewed in (89)]. Besides Th2 cells, ILC2s are a major source of

IL-13, but also produce IL-4 to a minor extent. Interestingly,

mice which lack ILC2s showed reduced eosinophilia in an HDM

model, despite the fact that Th2 cells are induced normally (90).

Therefore, ILC2s might also contribute to eosinophilia in OVA-

induced asthma or ABPA, which was not investigated. In

contrast to the Th2-dependent asthma models, the models using

papain extract or Alternaria-induced asthma still elicit

eosinophilia in Rag1-deficient mice (91, 92). However, when

using ILC2-deficient mice, eosinophilia is abrogated in both

asthma models, indicating a major role for ILC2s in eosinophil
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recruitment (90). In line, in human asthma ILC2s and a strong

Th2 signature are associated with eosinophilia (93, 94).

Lung epithelial cells and fibroblast express the IL-4RI and can

be induced by IL-4/IL-13 signalling. Indeed, chimeric mouse

experiments demonstrated that STAT6 in non-hematopoietic

cells is necessary for eotaxin induction and eosinophil

recruitment (95). Recently, it was demonstrated that mainly IL-

13 induces CCL11 and CCL24 in fibroblasts and monocytes,

which was required for eosinophil attraction in HDM-induced

murine asthma (96). In addition, murine and human endothelial

cells respond to IL-4 and IL-13, which can induce CCL26 (38,

71). Beside secretion of eotoxins, epithelial cells also release IL-33

which has been shown to induce NF-κB signalling in

eosinophils, thus activate them (97).

Besides the response of structural lung cells to IL-4/IL-13,

macrophages are also responsive to type 2 cytokines. Especially

alveolar macrophages (AMs) reside in lung tissue during

homeostasis. Chlodronate-based depletion of AMs, led to

increased eosinophils in lung tissue and indicates a dampening

role of AMs against eosinophilia in steady state (98). However,

during allergic lung inflammation macrophages get polarised into

M2 macrophages, dependent on STAT6 signalling. Inhibition

of this conversion reduced eosinophilia in a mouse model of

allergic lung inflammation (99). Despite, stimulation of

macrophages with IL-4 also directly induces CCL24 expression

(100), no direct effect of macrophages on eosinophil recruitment

during allergic lung inflammation could be demonstrated so far.

Basophils are another relevant source of IL-4/IL-13. Whether

they contribute to eosinophilia in allergic airway inflammation is

controversial in the literature. Our group has established a

basophil-deficient mouse (Mcpt8Cre) line, in which OVA still

induced eosinophilia in the lung (101). Other groups depleted

basophils via treatment with either, anti-FcϵR1α or anti-

CD200R3 antibodies and observed reduced eosinophilia in

murine OVA or HDM asthma models (102, 103). Recently,

basophils were shown to regulate the entry of Th2 cells into the

lung during HDM-induced asthma, thus eosinophilia was

reduced in Mcpt8Cre mice (70). Another study, which used the

papain model showed that basophils could induce cytokine

production in ILC2s and thereby promoted lung eosinophilia

(104). Whether basophil-derived cytokines have direct impact on

eotaxin production has not been reported, but it seems that

basophils can indirectly induce eosinophilia via Th2 cells

and ILC2s.

It is known that various type 2 immune cells have impact on

eosinophilia, however, the complex mechanism of the cascade

how type 2 cytokines regulate eosinophils could enhance our

understanding of asthma pathology.
Eosinophil heterogeneity and survival
in inflamed lung tissue

The function of eosinophils in the lung differs between steady

state and inflammatory conditions and the phenotype of murine

resident (Siglec-Flo/int, CD101lo) and inflammatory eosinophils
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(Siglec-Fhi, CD101hi) is well defined. The resident eosinophils are

established in the lung early in live, around postnatal days 3–14

(105). They show an immune regulatory and homeostatic

phenotype and seem to inhibit Th2 cells (8, 106). Therefore, they

are considered to play a crucial role in lung homeostasis

[reviewed in (107, 108)]. Inflammatory eosinophils display higher

integrin expression, which indicates an infiltrating phenotype

(106, 109, 110). Notably, these eosinophils are increased in OVA-

or HDM-induced asthma models and asthmatic patients

correspondingly display an elevated CD101+ eosinophil level

(111, 112). Furthermore, CD101 positive and negative

eosinophils differ in their airway localisation after

Nippostrongylus brasiliensis infection and in an HDM asthma

model. CD101− eosinophils were located rather in the

vasculature, whereas CD101+ ones were primarily found in the

extravascular lung space (111, 113). In vitro, IL-4 stimulation of

mouse eosinophils strongly upregulates the expression of Cd101

(114), suggesting a role in eosinophil activation. Siglec-F

upregulation on inflammatory eosinophils might also directly

modulate their behaviour as signalling via Siglec F has been

associated with apoptosis, but also with context-dependent

enhancement of cytokine and chemokine secretion in vitro (35,

115, 116). Both characteristics are also described for Siglec-8, the

human paralog of Siglec-F, but in vivo confirmation beyond

apoptosis induction is missing (35, 117). Interestingly, it was

shown that the eosinophils, which migrated through an

endothelial cell layer upregulated CD69 and CD35 expression

(118). This indicates that infiltrating eosinophils in allergic

lung inflammation not only have a distinct localisation in the

lung but also display a different phenotype compared to

resting eosinophils.

In steady state, there are almost no eosinophils located in the

BAL fluid. However, in allergic lung inflammation, inflammatory

eosinophils, but not resting eosinophils, accumulate in the BAL

fluid (106). Flow cytometric analysis of eosinophils, indicated

that murine BAL fluid eosinophils and inflammatory lung

tissue eosinophils slightly differ in their integrin expression,

whereas they show similar CD101 levels (119). Noteworthy, a

similar effect on activated integrin status was also observed for

human BAL eosinophils (120). Recently, it was shown that IL-

33 activated ILC2s secrete lipid droplets which could recruit

neutrophils, but not eosinophils, to the BAL fluid in a

CXCR2-dependent manner (121). Whether eosinophils are

recruited actively to the BAL fluid via a similar mechanism has

not been investigated. However, loss of epithelial barrier

integrity, which is a key feature of asthma, could also lead to a

rather passive accumulation of eosinophils in the BAL fluid.

Asthma-inducing allergens often comprise proteases, which are

able to digest junction proteins important for epithelial

integrity (122). Similarly, IL-13 was shown to downregulate

tight junction proteins, thus also damage barrier function

(123, 124). If these effects on barrier integrity are important for

eosinophil accumulation in the BAL fluid has not been

extensively studied.

In contrast to resting eosinophils, some inflammatory

eosinophils also showed expression of Trem-1, which correlated
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with an enhanced apoptosis-related gene signature (119).

Understanding eosinophil survival during allergic lung

inflammation is important, as reduced apoptosis of eosinophils

correlates with asthma severity in humans (125). Interestingly,

enhanced adhesion to fibroblasts correlated with the survival of

eosinophils (126). Thus, localization in lung tissue might be

beneficial for their survival. However, other mechanisms have

been identified which enhance eosinophil survival, especially, the

factors GM-CSF, IL-3 and IL-5 (127). Our group provided

evidence that these factors inhibit eosinophil apoptosis by NF-κB

mediated upregulation of Bcl-xL (128). Epithelial cells and

fibroblast can be a source of GM-CSF, which reduces the

eosinophil apoptosis rate ex vivo (129, 130). Interestingly, IL-33

can induce GM-CSF release from eosinophils, which prevented

apoptosis in an autocrine manner (116). Furthermore, a recent

study investigated the effect of Th2-derived extracellular vesicles

and found a beneficial role of these EVs for eosinophil survival

in an IL-3 dependent manner (131).

Further research in the field of tension between effector

function, survival and resolution is mandatory to unravel the

relevance of observed eosinophil heterogeneity.
Contribution of eosinophils to allergic
lung inflammation

Whereas lung resident eosinophils seem to supress type 2

driven immunity via dendritic cells (8), inflammatory eosinophils

have a more pro-inflammatory phenotype. In patients, high

eosinophilia correlates with asthma severity and depletion of

eosinophils has a beneficial effect in some settings, thus it is of

interest to understand the function of eosinophils in allergic

lung inflammation.

Gleich and colleagues discussed in their review the biological

consequences of eosinophil deficiency (132). They pointed out

the fact that patients lacking eosinophils, still can develop severe

asthma. However, it has been shown that the number of

eosinophils correlates with asthma severity and anti-IL-5 or anti-

IL-5 receptor treatment showed beneficial effects in asthma

patients (12, 133, 134). Thus, it seems that eosinophils have an

unfavourable role during allergic lung inflammation. Eosinophils

are able to produce various granular proteins and cytokines.

Especially the granule protein major basic protein 1 (MBP-1)

was shown to induce damage in bronchial epithelial cells (135).

Recently, two publications provided mechanistic insights on how

MBP-1 affects lung epithelial cells. On the one hand, MBP-1 is

suggested to induce ferroptosis in the epithelium via activation of

the mTORC1 signalling pathway (136). On the other hand,

MBP-1 was shown to induce formation of small pores in lipid

bilayers, indicating that MBP-1 might damage the membrane of

human bronchial epithelial cells (137).

Besides affecting epithelial cells, eosinophil granular proteins

can also modulate nerves, which is critical for

bronchoconstriction. Recently, a close proximity between

eosinophils and nerve bundles was observed to be increased in

lungs from patients with fatal asthma (138). It was shown that
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activated eosinophils can bind to VCAM-1 and ICAM-1 expressed

on nerves, which additionally induced their degranulation (139).

Thereby, eosinophils release MBP-1, which is an antagonist of

the muscarinic M2 receptor. Inhibition of this receptor leads to

increased acetylcholine release by parasympathic nerves, which

induces smooth muscle contraction [reviewed in (140)].

Moreover, in mice and asthmatic humans, eosinophils correlated

with increased sensory nerve density, which elevated airway

hyperresponsiveness (141). These studies indicate a role for

eosinophil-nerve interaction leading to bronchial obstruction in

allergic asthma.

Another interesting process that was described in asthma is the

release of DNA-containing eosinophil extracellular traps (EET).

The ability of eosinophils to form EETs was higher in patients

with severe asthma compared to non-severe asthma. The EETs

derived from asthmatic patient’s eosinophils, induced

disconnection of epithelial cells and pro-inflammatory cytokine

release by epithelial cells in vitro (142). Similar results could be

observed in mouse experiments, where intranasal treatment of

mice with EETs induced cytokine upregulation in epithelial cells.

Additionally, ILC2 activation and eosinophil recruitment were

induced in these mice (143). These studies indicate that EETs

might contribute to the pathological role of eosinophils in asthma.

Eosinophils also produce the cytokines IL-4 and IL-13

(144–146). Experiments with eosinophil-deficient mice

demonstrated that eosinophils are required for T cell recruitment

into OVA-challenged lungs and high Th2 cytokine level (147).

We observed similar effects in a mouse ABPA model, where

eosinophils were required for a strong Th2 response, type-2

cytokine production and IgE induction (88). Besides the effect of

eosinophils on Th2 cells, a recent report also describes an effect

on ILC2s. Eosinophil-deficient (iPHIL) mice and mice lacking

IL-4/IL-13 producing eosinophils displayed a reduced ILC2

response in HDM- and OVA-induced asthma models. Moreover,

effects of eosinophils on ILC2 proliferation, recruitment and

activation in an in vitro setting were proposed (148). These data

suggest a positive feedback-loop, in which eosinophils induce

Th2 cells and ILC2s, which are in turn important for

eosinophil recruitment.

In contrast to the effects observed in acute inflammation,

eosinophils are also discussed to contribute to resolution of

inflammation. Indeed, eosinophil-deficient PHIL mice showed

reduced resolution of airway inflammation, because of reduction

in IL-10 producing eosinophils (149). Resolution of inflammation

requires efficient removal of apoptotic cells, which would

otherwise trigger further inflammation and is a mainly

macrophage-dependent process. In lymph nodes, eosinophils

were shown to induce CXCL13 expressing macrophages

which contributed to the resolution of inflammation (150).

Moreover, eosinophils themselves have been reported to

take up apoptotic cells which then induced an anti-

inflammatory gene expression signature in eosinophils, related

to wound healing responses (151).

According to these recent studies on eosinophil functions, it

becomes more evident that eosinophils indeed play a major role

during allergic airway inflammation.
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Conclusion

Impaired lung function can drastically impair the quality of life

and increased numbers of eosinophils in the lung correlate with

severity and exacerbations in asthma. Despite the availability of

modern drugs that efficiently reduce eosinophilia, our

understanding of eosinophil development, tissue recruitment,

effector functions and survival remains incomplete and requires

further investigations.

Eosinophilia in allergic lung inflammation is tightly regulated.

De novo production of eosinophils in the bone marrow is increased

via IL-5 release from Th2 cells and ILC2s. As published data

indicates that eosinophilia is not completely abolished in IL-5 ko

mice, further investigation on how eosinophil development is

promoted by type 2 immunity is needed. From the bone marrow,

eosinophils are recruited into the lung mainly in a chemotactic

manner. The newly recruited eosinophils appear to have an

inflammatory phenotype. Knowledge about the eosinophil

transmigration process into the lung is limited and requires

further investigation. In addition, it remains unclear how

positioning within the tissue environment influences the effector

functions of inflammatory and resting eosinophils. To further

study the complex biology of different eosinophil subtypes,

single-cell sequencing was used to describe distinct eosinophil

subtypes in the intestine (152). This approach has not been used

to study lung eosinophils so far, but could give insights into

various lung eosinophil subtypes. Another study failed to gain

single cell RNA-sequencing data from bone marrow eosinophils,

most probably because eosinophils express large quantities of

RNAses (21). Therefore, proteomic approaches might be better

suited to study differences between eosinophil subtypes.

Despite the fact that many studies examined eosinophilia in

allergic lung inflammation, the greater context still lacks

functional understanding. Moreover, distinct eosinophil subtypes

may execute specific functions in the context of type 2 immune

responses. A better understanding of eosinophil subset features

and functional importance is crucial to develop new therapeutic

approaches to interfere with eosinophil associated pathology.
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