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Background: Ovalbumin (OVA) and house dust mite (HDM) are widely used

allergenic proteins in murine models of allergic asthma. In our previous

studies, shrimp tropomyosin (ST) was shown to induce type I hypersensitivity,

including asthma-like responses. Here, we compared airway eosinophilic

inflammation models induced by OVA, HDM, or ST using a protocol of three

intraperitoneal (i.p.) sensitizations followed by a single intratracheal (i.t.)

allergen challenge.

Methods: C57BL/6J mice were sensitized via three i.p. injections of OVA, HDM,

or ST mixed with Al(OH)3, followed by a single i.t. challenge with the respective

allergen. Lung transcriptomic analysis, plasma IgE levels, bronchoalveolar lavage

(BAL) fluid cell counts, cytokine and chemokine mRNA levels, and

histopathological assessments were performed to evaluate airway inflammation.

Results: A single i.t. challenge with ST or HDM significantly increased the lung-

to-body weight ratio, eosinophil infiltration, and mucus hypersecretion,

accompanied by elevated mRNA levels of Th2 cytokines (Il-4, Il-5, Il-13) and

increased the total cell count and eosinophil count in the BAL fluid. In

contrast, OVA induced only mild eosinophilic inflammation, suggesting that

repeated exposures may be required to elicit a robust allergic response. RNA

sequencing and qRT-PCR further identified key chemokines associated with

eosinophil recruitment (Ccl-11, Ccl-24), Th2 polarization (Ccl-17), and

neutrophil activation (Cxcl-1).

Conclusion: A single i.t. challenge of ST, similar to HDM, exhibits a potent ability

to induce eosinophilic inflammation and Th2-type immune responses in a

murine model of allergic asthma, surpassing the effects of OVA.
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1 Introduction

Asthma, an allergic airway disease, is triggered by the inhalation

of allergens. These allergenic proteins include food allergens (1) and

environmental aeroallergens (2). Animal models should replicate key

features of human asthma, such as airway hyperresponsiveness,

inflammation, and airway remodeling, thereby providing valuable

insights into the pathophysiology of the disease. Allergic asthma

animal models are typically established through systemic

sensitization and airway challenge with ovalbumin (OVA) or

house dust mite (HDM). OVA is widely used in numerous

experiments due to its availability in large quantities at a relatively

low cost. Additionally, standard commercial OVA-specific

antibody testing kits and OVA-specific transgenic mice offer

reliable and convenient tools for research applications. However,

OVA has certain limitations, including its lack of relevance as an

aeroallergen in human asthma research and the requirement for

adjuvants to sensitize animals (3). Despite requiring complex

extraction processes, HDM models are widely regarded as the

most clinically representative experimental system for allergic

asthma research. Unlike OVA, HDM extracts contain a complex

mixture of allergenic proteins (e.g., Der p 1 and Der p 2) that can

sensitize animals through airway exposure without adjuvants (4).

By mimicking key pathological features of human allergic asthma

- including protease-mediated epithelial barrier disruption (5) and

TLR4-dependent innate immune activation (6), HDM models

have become indispensable for investigating asthma pathogenesis

and evaluating therapeutic interventions.

Shrimp, belonging to the eight big food allergens (cow’s milk,

egg, wheat, soy, peanut, tree nuts, fish and shellfish) (7), contains

tropomyosin as its predominant allergen. Tropomyosin is

involved in cross-reactivity among mites and crustacean (8, 9).

Critically, HDM allergens may serve as the initial sensitizing

agent for shrimp allergy through IgE cross-reactivity (10). This

bidirectional relationship is clinically significant: patients co-

sensitized to both tropomyosins (Pen a 1 and Der p 10) exhibit

exacerbated HDM-induced asthma (11). Thus, shrimp allergy is

not merely a food allergy but a potential comorbidity and

aggravating factor in aeroallergen-driven asthma, justifying its use

in modeling airway inflammation. In our previous study, shrimp

tropomyosin (ST) was used to induce asthma in mice through a

protocol involving three sensitization sessions followed by 4–7

challenge exposures (12–14). We demonstrated that shrimp

tropomyosin (ST) induces more robust allergic responses than

ovalbumin (OVA) in murine models, even without adjuvant use

during sensitization. This study revealed ST’s unique capacity to

bypass adjuvant requirements for Th2 sensitization—a critical

advantage over OVA, which strictly depends on adjuvants to

prime allergic responses (13). The current study shifts focus to

compare the acute inflammatory potency of three allergens—

OVA (a conventional food-derived model antigen), HDM

(a natural aeroallergen), and ST (a clinically relevant food

allergen with cross-reactive potential) under adjuvant-assisted

sensitization followed by a single intratracheal (i.t.) challenge.

This study aims to addresses whether ST retains its superior

immunogenicity over OVA under acute challenge conditions, and

whether a single i.t. allergen exposure suffices to elicit HDM-like

eosinophilic inflammation, bypassing the need for prolonged

challenge protocols.

2 Methods

2.1 Airway inflammation model induced by
different allergens

A total of 48 female C57BL/6J mice (6–8 weeks, 16–18 g) were

obtained from the Comparative Medicine Centre of Yangzhou

University. We prepared a 200 μg/ml antigen solution and used

the Chromogenic LAL Endotoxin Assay Kit (Beyotime

Biotechnology, Haimen, Jiangsu, China) to measure the

lipopolysaccharide (LPS) content. The LPS concentrations in the

ST, OVA, and HDM solutions were 1.064 EU/ml, 1.375 EU/ml,

and 1.541 EU/ml, respectively. Each mouse received an

intraperitoneal (i.p.) injection of 20 μg of antigen (in 100 μl).

Consequently, the single LPS exposure doses per animal in the ST,

OVA, and HDM groups were 0.1064 EU, 0.1375 EU, and

0.1541 EU, respectively. Mice were randomized into four groups:

Control, OVA, ST, and HDM (n = 12 per group). ST was prepared

according to our previous study (13). The OVA, ST, and HDM

groups were i.p. sensitized with a suspension containing 20 μg

OVA (Grade V, Sigma-Aldrich, St. Louis, MO), ST, or HDM

(Dermatophagoides pteronyssinus, Greer Labs, USA) mixed with

1.25 mg Al(OH)3 on days 0, 7, and 14. On day 21, mice were i.p.

anesthetized with 20 ml/kg Avertin (Najing Aibei Biotechnology

Co.,Ltd) and challenged with 40 μg OVA, ST, or HDM via direct

intratracheal (i.t.) injection. On day 23, six mice from each group

were sacrificed to collect blood and lung tissues for the following

analyses: lung weight/body weight ratio, plasma total IgE levels,

percentage of eosinophils in peripheral blood, Hematoxylin-Eosin

(HE) staining, Periodic acid–Schiff (PAS) staining, quantitative

real-time polymerase chain reaction (qRT-PCR) of lung tissues,

and transcriptomic analysis of lung tissues. Another six mice from

each group were used to collect blood, bronchoalveolar lavage

(BAL) fluid, and lung tissues for the following analyses: plasma

total IgE levels, percentage of eosinophils in peripheral blood, total

cell count and eosinophil count in BAL fluid, interleukin (IL)-5

levels in BAL fluid, and qRT-PCR of lung tissues. The animal

experimental protocol is illustrated in Figure 1 and was approved

by the Animal Ethics Committee of Yangzhou University Medical

College (YXYLL-2024-108).

2.2 Assessment of plasma IgE and the
percentage of eosinophils in peripheral
blood

On day 23, mice were anesthetized, and approximately 500 μl of

blood was collected via ocular bleeding into heparin-coated tubes.

The percentage of eosinophils in peripheral blood was determined

using a Mindray BC-5000 Vet hematology analyzer (Shenzhen

Mindray Animal Medical Technology Co., Ltd., China). After

Xu et al. 10.3389/falgy.2025.1594028

Frontiers in Allergy 02 frontiersin.org

https://doi.org/10.3389/falgy.2025.1594028
https://www.frontiersin.org/journals/allergy
https://www.frontiersin.org/


centrifugation, plasma IgE levels were quantified using an ELISA kit

(Elabscience Biotechnology Co., Ltd., Wuhan, China).

2.3 Assessment of BAL fluid cellularity and
IL-5 in BAL fluid

BAL was performed on six mice from each group using 0.8 ml of

sterile saline, as previously described (14). The total cell count was

measured using a CellDrop automatic cell counter (DeNovix,

USA). BAL fluid was centrifuged using a Cytospin (Thermo Fisher

Scientific, USA) at 500 × g for 5 min, and cell smears were

prepared for HE staining to observe cell morphology. IL-5 levels in

BAL fluid were determined using ELISA kits (BioLegend Co., USA).

2.4 Lung weight/body weight ratio and lung
transcriptomic analysis

Another six mice from each group were not subjected to BAL.

The lungs were dissected, weighed, and the lung weight/body

weight ratios were calculated. The left lungs from six mice in the

Control, ST, and HDM groups were collected for transcriptome

sequencing. Lung tissue samples were sent to Annoroad Gene

Tech. Co., Ltd. (Beijing, China). RNA was extracted, and the

quality of total RNA samples was assessed. The MGIEasy RNA

Library Preparation Kit was used for library construction. After

loading the DNA nanoballs onto the chip, sequencing was

performed using the DNBSEQ-T7 platform (MGI Tech Co., Ltd.,

Shenzhen, China). Genes with a fold change (FC) of less than

−1.5 or greater than 1.5 were defined as differentially expressed

and selected for further analysis. Gene set enrichment analysis

(GSEA) of the RNA sequencing data was performed using the

C5 ontology gene sets.

2.5 Histological observation of lung tissue

Paraffin-embedded lung tissues were sectioned and stained

with HE and PAS methods to assess lung inflammation and

mucus overproduction in the airways. Images were acquired

FIGURE 1

Experimental protocol. Mice were immunized intraperitoneally (i.p.) on days 0, 7, and 14 with 20 μg of allergen (OVA, ST, or HDM) plus alum and were

challenged intratracheally (i.t.) with 40 μg of allergen once. On day 23, mice were sacrificed to collect blood, bronchoalveolar lavage (BAL) fluid, and

lung tissues for the following analyses: lung weight/body weight ratio, plasma total IgE levels, percentage of eosinophils in peripheral blood, total cell

count and eosinophil count in BAL fluid, IL-5 levels in BAL fluid, Hematoxylin-Eosin (HE) staining, Periodic acid–Schiff (PAS) staining, quantitative real-

time polymerase chain reaction (qRT-PCR) of lung tissues, and transcriptomic analysis of lung tissues.
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using an Eclipse 80i microscope (Nikon, Japan). Inflammation was

scored as follows: 0 (no inflammation), 1 (a few cells), 2 (a single

layer of cells), 3 (2–4 layers of cells), 4 (focal inflammatory cell

infiltration), or 5 (intense inflammatory infiltration) on HE-

stained lung tissues, as previously described (13).

2.6 qRT-PCR

BAL-treated (lavaged) or non-BAL-treated (intact) lung tissues

were lysed using TRIzol reagent (Invitrogen, USA) following the

manufacturer’s protocol. Primer sequences were obtained from

PrimerBank (https://pga.mgh.harvard.edu/primerbank/) and are

listed in Supplementary Table S1. Specific primers were

synthesized by Shanghai Sangon Biotech Co. (Shanghai, China).

Reverse transcription and qRT-PCR were performed using the

HiScript III RT SuperMix Kit and ChamQ Universal SYBR

qPCR Master Mix Kit (Vazyme Biotech Co., Ltd., Nanjing,

Jiangsu, China), respectively. The relative expression of genes was

analyzed using the 2−ΔΔCt method and normalized to Gapdh.

2.7 Statistical analysis

Data are expressed as mean ± standard deviation and analyzed

using Prism 8.0 GraphPad Software. Data normality was assessed

using the Shapiro–Wilk test, while homogeneity of variances was

verified through Bartlett’s test. For datasets satisfying both

normality and equal variance assumptions, statistical differences

were determined by one-way ANOVA followed by Tukey’s

multiple comparisons test. Non-normally distributed data or

datasets with heterogeneous variances were analyzed using the

Kruskal–Wallis nonparametric test followed by Dunn’s multiple

comparisons test. For lung inflammation scores and Ccl-24 mRNA

level, nonparametric tests (Kruskal–Wallis test and Dunn’s test)

were used, and data are expressed as median ± range. Differences

were considered statistically significant at P < 0.05.

3 Results

3.1 ST and HDM increase lung-to-body
weight ratios and the percentage of
eosinophils in peripheral blood

Eosinophil activation and pulmonary infiltration are hallmark

features of allergic asthma. To evaluate allergen-induced

pulmonary inflammation, we assessed the lung-to-body weight

ratio. Mice immunized with ST and HDM exhibited a

significantly higher lung-to-body weight ratio compared to the

control group (Figure 2A). Asthma patients exhibiting elevated

blood eosinophil levels tend to have a higher frequency of

asthma attacks compared to those with lower eosinophil counts

(15). As showed in the Figure 2B, ST- and HDM-treated mice

showed a marked increase in the percentage of eosinophils in

peripheral blood, suggesting systemic eosinophil activation.

3.2 ST and HDM induce eosinophilic
inflammation in airways, elevate the total
cell count and eosinophil count in the
BAL fluid

Histopathological analysis of HE-stained lung tissues revealed

distinct airway inflammatory responses. Control mice displayed

normal lung morphology, while ST- and HDM-treated mice

exhibited pronounced eosinophil accumulation around bronchi

and blood vessels. In contrast, a single dose of OVA induced

only mild airway inflammation, indicating that repeated OVA

exposures may be necessary to elicit a robust inflammatory

response. Consistent with these findings, the lung inflammation

scores were significantly elevated in the lung tissues of ST- and

HDM-treated mice compared to the control and OVA groups

(Figures 2C,D).

BAL fluid analysis further corroborated these results.

Macrophages were the predominant cell type in BAL fluid

from the control group. A few eosinophils were detected in the

OVA group, and ST and HDM treatment significantly increased

total cell counts in BAL fluid, with a notable influx of

eosinophils (identified by characteristic red cytoplasmic

staining). Additionally, neutrophils were observed in the

HDM group (Figures 3A–C). These findings collectively

demonstrate that ST and HDM enhance eosinophil-driven

airway inflammation.

3.3 ST and HDM trigger mucus
hypersecretion and induce Muc5ac
upregulation

Mucus hypersecretion is considered a key pathological

characteristic of asthma, often linked to extensive mucus

plugging in the airways (16). There was a significant positive

correlation between sputum MUC5AC levels and the

proportion of eosinophils in steroid-untreated patients with

mild asthma (17). PAS staining revealed significant mucus

hypersecretion in the airways of ST- and HDM-treated mice,

with positive signals detected in both goblet cells and airway

lumens. In contrast, OVA treatment resulted in milder

mucus production in goblet cells. Consistent with these

observations, the expression of Muc5ac, a major airway mucin,

was significantly upregulated in all experimental groups,

with the highest levels observed in ST- and HDM-treated

mice (Figures 3D,E).

3.4 ST and HDM elevate plasma IgE and Th2
cytokines

IgE, a central mediator of allergic responses, was significantly

elevated in the plasma of OVA-, ST-, and HDM-treated mice

compared to controls (Figure 4A). IL-4 and IL-13, critical

cytokines for IgE production and Th2 polarization, were also
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FIGURE 2

ST and HDM induce airway inflammation. (A) Measurement of the lung weight/body weight ratio (n= 6). (B) Percentage of eosinophils in peripheral

blood (n= 12). (C) Lung inflammation scores (n= 6); data represent median ± range. (D) HE staining (4×, scale bar = 100 µm; 100×, scale bar = 100 µm;

400×, scale bar = 20 µm). Arrows indicate eosinophils. AI, airway; BV, blood vessel. Data represent mean ± SD. *P < 0.05, **P < 0.01.
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assessed. While a single OVA challenge did not significantly

increase IL-5 levels in BAL fluid or the mRNA expression of Il-4,

Il-5, and Il-13 in lung tissues, ST and HDM treatment markedly

upregulated these Th2 cytokines (Figures 4B–E, Supplementary

Figures S1A–C). These results highlight the potent Th2-skewing

capacity of ST and HDM.

3.5 RNA sequencing identifies differential
gene expression in HDM- and ST-treated
lungs

Given the relatively weak inflammatory and Th2 responses

induced by OVA, we only performed RNA sequencing on lung

FIGURE 3

ST and HDM induce increased the eosinophil count in BAL fluid and mucus hypersecretion in the lung tissues. (A) Total cell count in BAL fluid (n= 6).

(B) Eosinophil count in BAL fluid (n= 6). (C) BAL fluid cellularity (HE staining, 400×, scale bar = 20 µm). Arrows indicate eosinophils. (D) PAS staining

(200×, scale bar = 50 µm). (E) Muc5ac mRNA levels in lung tissues (n= 6). Data represent mean ± SD. *P < 0.05, **P < 0.01.
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tissues from control, ST-, and HDM-treated mice. The results,

visualized using heatmaps and volcano plots (Figures 5A,B),

revealed 2,563 differentially expressed genes (DEGs) in HDM-

treated mice (856 downregulated and 1,707 upregulated) and

1,952 DEGs in ST-treated mice (573 downregulated and 1,379

upregulated) (FC ≥1.5, P < 0.05).

SubsequentGSEAusing theC5 ontology gene sets highlighted key

pathways associated with the observed DEGs. In the ST group, GSEA

analysis of DEGs indicated significant enrichment in chemokine

activity, chemokine receptor binding, response to chemokines,

neutrophil chemotaxis, and neutrophil migration, based on the top

10 normalized enrichment scores (NES). Similarly, in HDM-treated

mice, enriched pathways included chemokine activity, chemokine

receptor binding, response to chemokines, neutrophil chemotaxis,

cytokine receptor binding, and cytokine activity (Figures 5C, 6A).

These findings suggest that ST and HDM induce pulmonary

inflammation through distinct but overlapping chemokine-related

pathways, with a prominent role for neutrophil and cytokine-

mediated mechanisms.

3.6 ST and HDM upregulate Cxcl-1, Cxcl-13,
Ccl-2, Ccl-11, Ccl-17, and Ccl-24

As shown in Figure 6B, the expression levels of chemokine-

related genes, including Ccl-2, Ccl-11, Ccl-17, Ccl-24, Cxcl-1,

Cxcl-10, were significantly higher in both ST- and HDM-treated

mice compared to the control group. These findings were

further validated by qRT-PCR analysis of mRNA extracted from

lung tissues. In the Figure 7 and Supplementary Figures S1D–J,

a single exposure of ST or HDM commonly upregulated the

expression of Cxcl-1 [neutrophil recruitment (18)], Cxcl-13

[B cell recruitment (19)], Ccl-2 [monocyte infiltration (20)],

Ccl-11, and Ccl-24 [eosinophil recruitment (21)], and Ccl-17

[Th2 polarization (22)]. Additionally, Cxcl-10 [a marker of

Th1 activation (23)] was upregulated across all three allergen

groups (ST, HDM, and OVA). Quantitative analysis of

inflammatory markers and chemokine profiles demonstrates

that ST and HDM trigger immune cell recruitment in this acute

challenge model.

FIGURE 4

ST and HDM elevate plasma IgE and Th2 cytokines. (A) Plasma IgE levels (n= 12). (B) IL-5 levels in BAL fluid (n= 6). (C) Il-4 mRNA levels in lung tissues

(n= 6). (D) Il-5 mRNA levels in lung tissues (n= 6). (E) Il-13 mRNA levels in lung tissues (n= 6). Data represent mean ± SD. *P < 0.05, **P < 0.01.
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FIGURE 5

RNA sequencing of lung tissues from ST- and HDM-treated mice. (A) Heatmaps showing differentially expressed genes (DEGs) in ST- and HDM-

treated mice compared to control mice (n= 6). (B) Volcano plots showing DEGs between ST- or HDM-treated mice and control mice (n= 6).

(C) Gene set enrichment analysis (GSEA) of RNA sequencing data.
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4 Discussion

In murine models of acute asthma, OVA is typically utilized

to induce systemic sensitization through intraperitoneal

administration over 2–3 weeks with aluminum hydroxide

adjuvant, followed by airway challenges via aerosolized OVA

inhalation (1%–5%) or intranasal OVA instillation for 3–7 days.

In contrast, HDM sensitization does not require adjuvants, and

the protocol duration is shorter (7–14 days) (3). Notably,

varying doses of HDM can elicit distinct asthma phenotypes,

including eosinophilic, mixed, and neutrophilic inflammation

(24). However, to establish a neutrophil-predominant asthma

model using OVA, concurrent administration of complete

Freund’s adjuvant (CFA) and LPS is required (25). Our

previous studies demonstrated that ST i.n. challenge induces

significantly stronger airway inflammation and Th2-polarized

immune responses compared to OVA, irrespective of adjuvant

use. Although intratracheal instillation is an invasive technique

FIGURE 6

GSEA analysis of RNA sequencing data. (A) GSEA analysis showing the top 20 pathways for Control vs. ST and the top 10 pathways for Control vs. HDM.

(B) DEGs in the “Response to chemokine” pathway.
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(generally administered as a single dose), it enables the accurate

and controlled delivery of an antigen quantity to the lungs.

This precision is particularly advantageous when comparing the

potency of different allergens. In this study, the protocol was

modified that mice were sensitized via three i.p. injections of

OVA, HDM, or ST mixed with alum adjuvant, followed by a

single intratracheal challenge with the respective allergen.

Results showed that the plasma IgE was elevated in all

FIGURE 7

Chemokine levels in OVA-, ST-, and HDM-treated mice. mRNA levels of Cxcl1 (A), Cxcl10 (B), Cxcl13 (C), Ccl2 (D), Ccl11 (E), Ccl17 (F), and Ccl24 (G) in

the non-BAL-treated (intact) lung tissues (n= 6). Data represent mean ± SD. For Ccl-24 mRNA level, data are expressed as median ± range. *P < 0.05,

**P < 0.01.
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allergen-immunized mice, indicating enough systemic sensitization

via three i.p. injections of allergens. However, both ST and HDM

challenge increased lung-to-body weight ratio, airway eosinophil

infiltration, the total cell count and eosinophil count in the

BAL fluid, after only once i.t. challenge, compared to those in

OVA-treated mice.

The potent inflammatory effects of HDM are largely attributed

to Der p 1, a major HDM allergen. Der p 1 disrupts epithelial tight

junctions (ZO-1 or occludin) (26) and activates protease-activated

receptor 2 (PAR2) (5), directly triggering the release of alarmins

such as TSLP and IL-33 from epithelial cells. These alarmins

play a pivotal role in driving the upregulation of Ccl-17 and

Ccl-22 (27), linking HDM exposure to Th2 polarization.

Additionally, HDM stimulates group 2 innate lymphoid cells,

leading to the production of IL-5 and IL-13, which further

amplify eosinophilic inflammation and Th2 responses (28).

Beyond epithelial cells, HDM also activates alveolar macrophages

through the TLR4/CD14 receptor complex, initiating pro-

inflammatory signaling pathways (6). HDM exploits TLR2 as a

central hub to drive nasal inflammation. β-glucans in HDM

activate TLR2 in nasal epithelial cells to promote allergic rhinitis

via DUOX2/ROS-mediated signaling (29). HDM allergens also

engage TLR2 in dendritic cells to upregulate c-kit and

costimulatory molecules (CD80/CD86), thereby polarizing Th2

responses and exacerbating asthma (30). Unlike HDM which

activates both TLR2 and TLR4 pathways, OVA lacks intrinsic

TLR-stimulating capacity and requires re-exposure to prime

immune responses. This fundamental difference likely explains

the weaker efficacy of OVA in single-exposure models compared

to HDM, which can robustly induce allergic inflammation

through multiple synergistic mechanisms.

In this study, ST or HDM challenge significantly upregulated

the mRNA levels of chemokines Ccl-11, Ccl-24, Ccl-17, Ccl-2, and

Cxcl-1, which are associated with eosinophil recruitment, Th2 cell

activation, monocyte infiltration and neutrophil activation. Cxcl-

13 was upregulated in the lung tissues of ST- or HDM-treated

mice. As a chemokine essential for germinal center formation

and B cell polarization (31), CXCL-13 may also contribute to

local IgE production in asthma. This chemokine synergy likely

contributes to the enhanced severity of ST- or HDM-induced

asthma compared to the OVA model. Notably, HDM induces

dual pro-inflammatory mechanisms: airway epithelial cells

produce CCL-17, and in vitro studies demonstrate that HDM

exposure primes macrophages to adopt an M2-like phenotype

with elevated CCL-17 production (32). Furthermore, human

CD11c+ dendritic cells derived from HDM-allergic patients

exhibited HDM-triggered CCL-17 release (33), initiating a

chemotactic cascade that recruits polarized Th2 cells and

subsequently promotes eosinophil infiltration. The neutrophilic

component of this inflammation is particularly clinically

relevant. Neutrophils, traditionally associated with steroid-

resistant asthma, demonstrate a positive correlation with

asthma severity (34). HDM enhances secretion of neutrophil

survival factors (IL-6, IL-8, CCL-2, GM-CSF) in both

physiological and allergic conditions and prolong neutrophil

survival via PAR2-mediated apoptosis inhibition (35). Critically,

the co-expression of Th2-polarizing CCL-17 and neutrophil-

recruiting CXCL-1 establishes a feedforward loop wherein Th2

cytokines further amplify chemokine production, deteriorating

airway inflammation.

Additionally, OVA, ST or HDM induced shared upregulation

of CXCL-10 (a Th1-associated chemokine). Early Th1 activation,

marked by CXCL-10 upregulation, may counteract type 2

immune responses. This is supported by studies showing that

low-dose LPS exposure attenuates OVA-induced airway

inflammation through enhanced Th1 cytokine production and

suppressed Th2 cytokine release (36). The C57BL/6 strain, which

is prone to a mixed Th1/Th2 phenotype, exhibited elevated levels

of CCL-11 and CCL-5 in the BAL fluid of OVA-induced mice

(37). Additionally, the antigen solution used in this study

contains LPS, a factor that could influence inflammatory

outcomes. While LPS contamination likely contributes to Cxcl-10

upregulation across all allergens, the ST/HDM-specific induction

of Ccl-2 and Cxcl-1 implies synergistic effects between LPS and

their intrinsic components (e.g., proteases, β-glucans), which may

activate epithelial-innate immune crosstalk to amplify

neutrophilic/monocytic inflammation. These findings imply that

Th1 activation could vary depending on the mouse strain or LPS

exposure levels.

Most ST studies focus on oral sensitization. ST’s allergenicity is

critically dependent on its conformational epitopes. Five dominant

IgE-binding regions have been identified in Pen a 1: residues 43–

57, 85–105, 133–148, 187–202, and 247–284 (38). These

conformational epitopes are highly sensitive to structural

perturbations: thermal processing partially unfolds ST, exposing

linear epitopes that maintain systemic anaphylaxis in mice

comparable to raw ST, while reverse-pressure sterilization

induces protein aggregation, masking heat/digestion-stable

epitopes (e.g., arginine kinase Glu59-Ser63; sarcoplasmic calcium-

binding protein Asn57-Phe67) and significantly reducing IgE

binding (39). Crucially, airway exposure to ST circumvents

gastrointestinal processing, allowing intact conformational

epitopes to directly engage lung dendritic cells—a mechanism

implicated in occupational shrimp allergy, where aerosolized ST

particles correlate with elevated respiratory symptoms and

asthma biomarkers in shrimp processing workers (40). While our

study demonstrates ST’s capacity to induce eosinophilic

inflammation comparable to HDM, key mechanistic differences

remain unexplored. Unlike HDM that directly disrupt epithelial

barriers via PAR2 activation, ST may employ alternative

pathways for immune priming.

5 Conclusion

These findings demonstrate that ST is a potent allergen for

modeling allergic asthma, characterized by robust eosinophilic

inflammation and elevated type 2 cytokines/chemokines, closely

resembling the effects of HDM.
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data are expressed as median ± range. *P < 0.05, **P < 0.01.
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