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Objectives/hypothesis: Chronic rhinosinusitis (CRS) may be triggered by

environmental insults. We hypothesized that CRS results from epigenetic

modifications of host DNA from external insults, leading to downstream RNA/DNA

gene expression changes and immuno-mechanical disruptions. We therefore

performed a multi-omics study integrating epigenetic (DNA methylation),

transcriptomic (mRNA), and proteomic (cytokine) data of CRS sinonasal tissue to

visualize interactions amongst these modalities to study our hypothesis.

Methods: Sinonasal tissue was collected from 14 prospectively enrolled CRS and

control subjects. Cytokine, mRNA transcriptome, and DNAmethylome analysis were

performed.Multi-omics analysis via joint dimensional reduction (JDR)wasconducted.

Results: Multi-omics unsupervised clustering separated subjects into two

distinct groups: one cluster of 9 CRS subjects and another with 3 controls and

2 non-eosinophilic CRSsNP subjects. DNA methylation, followed by mRNA

expression, contributed most to cluster assignment. DNA methylation was the

most significant data modality contributing to total variance on JDR.

Cytokines critical in CRS (IL-5, IL-13, IL-10, IFNγ, IL-6) associated with

hundreds of differentially methylated regions (DMRs) and mRNA. On conjoint

analyses, common upstream DMRs and mRNAs were linked to cytokines IL-5

and IL-13, cytokines IL-10 and IFNγ, and cytokines IFNγ and IL-6, respectively.

Conclusions: Our results support the hypothesis that environmental insults may be

significant drivers of CRS pathogenesis through epigeneticmechanisms that result in

dysregulated mRNA transcription and cytokine expression. The most novel part of

this study is our multi-omics approach that used integration of epigenetic (DNA

methylation), transcriptomic (mRNA), and proteomic (cytokine) data to uncover

insights into CRS pathogenesis; this is the first of its kind in CRS etiopathogenesis.

The multi-omics analysis clearly separated clusters of control and CRS subjects,

demonstrating its validity in future research. The study also identified interactions

of methylated DNA, mRNA, and cytokines in CRS pathogenesis, highlighting novel

molecules and pathways that may be potential therapeutic targets.
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1 Introduction

A complex interaction of unfavorable environmental insults in

the susceptible host has been postulated to disrupt normal
homeostatic mechanisms in chronic rhinosinusitis (CRS) (1).

Proposed external stressors (“the environment”) include
microbial pathogens, microbiome dysbiosis, exposure to allergens,

and air pollution (1). In addition, genetic susceptibility may be
one of several host factors that result in disease. Even though

familial clustering has long been reported, it is unclear whether
familial clustering results from shared genes or shared

environments, as identifiable monogenic alterations have not
been identified in most CRS patients (2–5). In a large

population-based study from Utah, U.S.A., 1,638 CRS with nasal
polyposis (CRSwNP) and 24,200 CRS sans NP (CRSsNP)

subjects were matched to random controls; 1st and 2nd-degree

relatives were found to have a 4.1-fold and 3.3-fold elevated risk
for CRSwNP, respectively. For CRSsNP, 1st and 2nd-degree

relatives had a 2.4-fold and 1.4-fold risk, respectively (2).
Interestingly, spouses of CRSsNP patients were also found to

have a 2-fold increased risk of CRSsNP (2). In Sweden, Bohman,
et al. (6) found that the prevalence of CRSwNP in relatives was

13.4% vs. 2.7% in controls; a relative risk of 4.9 in the first-
degree relatives. These studies generate questions about the

pathogenic roles of genes, shared environments, or both.
Epigenetics is the study of environmental influences on gene

expression. Epigenetic studies are particularly helpful in disease
states such as CRS, where multiple host or environmental factors

may influence disease pathogenesis (7). External impact is
modulated through mechanisms such as DNA methylation,
histone modifications, non-coding RNAs, and alternative

polyadenylation (APA) (8, 9). Epigenetic changes can notably

TABLE 1 Clinical characteristics of subjects.

Characteristic CRSa (n = 11)
N (%) or Mean (SDb)

Controls (n = 3)
N (%) or Mean (SDb)

Age 52.5 (13.0) 46.3 (20.8) p = 0.63

Gender (M/F) 2 (18.2%)/9 (81.8%) 2 (66.7%)/1 (33.3%) p = 0.17

Clinical diagnosis Non-CRS (pituitary adenoma)

• CRSwNPc 3 (27.2%)

• CRSsNPd 8 (72.7%)

SNOT-22e 34.5 (31.0); missing in one subject 6 (2)

Lund-Mackay score 12.1 (3.9) 0.7 (0.6)

Previous sinus surgery 7 (73.7%) 0

Absolute serum eosinophils (×109) 0.36 (0.15) 0.32 (0.13)

Tissue Eosinophil/HPFf

• <10 5 (45.5%) 3 (100%)

• 10–100 4 (36.4%)

• >100 2 (18.2%)

Asthma

• Positive 7 (73.7%) 0

• Negative 4 (36.3%) 3 (100%)

Allergic rhinitis

• Positive 9 (81.9%) 0

• Negative 2 (18.1%) 1 (33.3%)

• Not evaluated 0 2 (66.7%)

AERDg

• Possible 1 (9%) 0

• Negative 10 (91%) 3 (100%)

Smoking history

• Yes 0 (18.1%) 1 (33.3%)

• No 8 (72.7%) 2 (66.7%)

• Unknown 3 (27.2%) 0

Current nasal steroid spray

• Yes 2 (18.1%) 0

• No 5 (45.4%) 0

• Unknown 4 (36.3%) 0

aCRS: Chronic rhinosinusitis.
bSD: Standard deviation.
cCRSwNP: CRS with nasal polyposis.
dCRSsNP: CRS sans nasal polyposis.
eSNOT-22: 22-item sinonasal outcome test.
fHPF: high power field.
gAERD: Aspirin Exacerbated Respiratory Disease.
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persist and be passed to the progeny for 2–3 generations.
Epigenetics may help explain both familial clustering and the

increase in prevalence. Early studies on CRS epigenetics have
shown several differences in DNA methylation between CRS and

control tissue (10, 11). However, most of these are based in Asia,
with only two of our previous studies being conducted in the

United States. In this current study, our goal was to investigate
the association, if any, of epigenetic modifications and mRNA

transcriptomic and proteomic changes characterizing CRS.
Transcriptomics analyzes RNA molecules, such as messenger

RNA (mRNA), to understand gene expression (4, 12, 13) and
has helped identify mechanistic pathways. However, most CRS

transcriptomics studies have been conducted in Asia (14–17),
with three studies incorporating non-Asian subjects (18–20) this
is a relatively novel approach in North America, where

population genetics and the environment differ (21, 22). When
connecting transcriptomics with proteomics, studies have been

divergent, reporting a correlation between CRS mRNA
expression (transcriptome) and the proteome (17, 23, 24), as well

as discordance (21) highlighting the need for further research
using a multi-omics approach. Multiomics studies incorporate

multiple modalities with large data sets through bioinformatics
tools to help uncover complex relationships and interactions of

biological processes at various levels, and can also help identify
pathogenetic pathways that may not be apparent when studying

each “omics” field individually. However, multiomics analyses
involving the epigenome, transcriptome, and proteome (cytokine)

have previously not been studied in CRS.
We hypothesize that external insults cause epigenetic

modifications of host DNA, resulting in unfavorable DNA and

FIGURE 1

(A)Multiomics clustering of samples considering all three data modalities, (B) constituents of each cluster by diagnosis (control, CRSwNP, CRSsNP), (C)

constituents of each cluster by tissue eosinophil count, (D) significant pathways associated with cluster 1 and (E) cluster 2, (F) number of features from

each data modality contributing to cluster assignment.
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TABLE 2B Pathways Associated with Cluster 2 (All 3 control and 2 CRS <10 eos/hpf subjects)

Pathway Considerations Reference
Zymosterol biosynthesis Essential for membrane fluidity and function; important 2nd messenger lipids

involved in developmental signaling
Germann 2005
(A10)

Superpathway of cholesterol biosynthesis; Cholesterol I, II
(via 24,25-dihydrolanosterol); III (via desmosterol)

Cholesterol and cholesterol derivatives shape plasma membrane fluidity and lipid raft
dynamics, affecting the formation of the immunological synapse and its downstream
signalling events, modulating T-cell activation and function

Cardoso 2021
(A11)

Gustation pathway In subjects diagnosed with CRSwNP, downregulated genes were predominantly
enriched for gustatory sensory perception, tissue homeostasis, and muscle system
process

Wang 2022 (A12)

CREB signaling in neurons DNA-binding transcriptional regulator CREB is an intracellular protein that regulates
expression of genes important in dopaminergic neurons

Wang 2018 (A13)

Role of JAK2 in hormone-like cytokine signaling aJanus Kinase 2 (JAK2) protein has an N-terminal domain that is required for
erythropoietin receptor association, an SH2 domain that binds STAT transcription
factors, a pseudokinase domain and a C-terminal tyrosine kinase domain. Cytokine
binding induces autophosphorylation and activation of this kinase. This kinase then
recruits and phosphorylates signal transducer and activator of transcription (STAT)
proteins. Growth factors like TGF-beta 1 also induce phosphorylation and activation
of this kinase and translocation of downstream STAT proteins to the nucleus where
they influence gene transcription. Mutations in this gene are associated with numerous
inflammatory diseases and malignancies. This gene is a downstream target of the
pleiotropic cytokine IL6 that is produced by B cells, T cells, dendritic cells, and
macrophages to produce an immune response or inflammation. A nonsynonymous
mutation in the pseudokinase domain of this gene disrupts the domains inhibitory
effect and results in constitutive tyrosine phosphorylation activity and hypersensitivity
to cytokine signalling. This gene and the IL6/JAK2/STAT3 signalling pathway is a
therapeutic target for the treatment of excessive inflammatory responses to viral
infections.

Wang 2016 (A14)

Role of hypercytokinemia/hyperchemokinemia in the
pathogenesis of influenza

Hypercytokinemia/hyperchemokinemia precedes acute respiratory distress syndrome
(ARDS) during influenza infection

Wei 2022 (A15)

Interferon signaling Type I and II interferons and IL-27 inhibit ILC2 functions through the activation of
STAT1

Duer 2016 (A16)

aSources: National Institutes of Health National Library of Medicine, https://www.ncbi.nlm.nih.gov/gene National Human Genome Research Institute https://www.genome.gov/genetics-
glossary Last accessed August 16, 2024.

TABLE 2A Pathways associated with cluster 1 (9 CRS subjects).

Pathway Considerations Referencea

STAT3 aThe protein encoded by STAT3 gene is a member of the STAT protein family. In response to cytokines and
growth factors, STAT family members are phosphorylated by the receptor associated kinases, and then form
homo- or heterodimers that translocate to the cell nucleus where they function as transcription activators. STAT3
protein is activated through phosphorylation in response to various cytokines and growth factors including IFNs,
EGF, IL5, and IL6. This protein mediates expression of a variety of genes in response to cell stimuli, and thus
plays a key role in many cellular processes such as cell growth and apoptosis. PIAS3 protein is a specific inhibitor
of this protein. This gene also plays a role in regulating host response to viral and bacterial infections. Mutations
in this gene are associated with infantile-onset multisystem autoimmune disease and hyper-immunoglobulin
E syndrome. This gene participates in immune response or antiviral activity.

Liu 2021 (A1)

SNARE Signaling SNARE proteins are critical in granule fusion events Lacy 2011 (A2)

Phagosome maturation Phagosome maturation is the process by which bacteria and other ingested particles are degraded. This pathway
is regulated by p38 mitogen-activated protein kinase (MAPK), which is activated by toll-like receptors (TLRs).

Blander 2004 (A3)

Gustation In CRSwNP, downregulated genes were enriched for gustatory sensory perception and tissue homeostasis, Wang 2022 (A4)

GNRH signaling Preprogonadotropin-releasing hormone-like protein (GnRH) is overexpressed in COVID-19 convalescent
subjects

Huoman 2022 (A5)

Choline degradation I Toll-like receptor (TLR) activation enhances choline uptake by macrophages through induction of choline
transporter CTL1

Sanchez-Lopez
2019 (A6)

Cardiac B-adrenergic signaling Reactive oxygen species formation regulates beta2-adrenergic receptor signal transduction Michaeloudes
2022 (A7)

Cardiac hypertrophy signaling/
enhanced signaling

Cellular metabolism, proliferation, non-coding RNAs, immune responses, translational regulation, and epigenetic
modifications, positively or negatively regulate cardiac hypertrophy

Nakamura 2018 (A8)

CD27 Signaling in Lymphocytes Is a costimulatory molecule of tumor necrosis factor receptor (TNFR) family, strongly expressed on activated
CD4(+) and CD8(+) T lymphocytes

Behrendt 2010 (A9)

aSources: National Institutes of Health National Library of Medicine, https://www.ncbi.nlm.nih.gov/gene National Human Genome Research Institute https://www.genome.gov/genetics-
glossary Last accessed August 16, 2024.
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associated RNA and protein expressions, which result in immuno-
mechanical disruptions associated with CRS pathogenesis. We

tested our hypothesis by performing multi-omics analyses
integrating epigenetic (DNA methylation), transcriptomic

(mRNA), and proteomic (cytokine) data of CRS sinonasal tissue.
Our secondary goal was to visualize interactions amongst these

modalities to uncover novel molecules and pathways with
potential roles in CRS pathogenesis.

2 Methods

This study was conducted at a tertiary-level hospital in Arizona

after approval from the institutional review board (IRB ID:
16-008609). Subjects were classified into controls and CRS based

on nasal endoscopy and sinus CT according to 2015 consensus
guidelines from the American Academy of Otolaryngology-Head

and Neck Surgery (25). CRS subjects were further classified into
CRSwNP and CRSsNP. Patients on systemic corticosteroids,

biological therapy, and systemic or topical antibiotics in the last
4 weeks were excluded, so as not to affect the baseline cytokine

profile of sinonasal tissue. Control subjects were undergoing
transsphenoidal endoscopic resection of pituitary adenoma and

were negative on CT and endoscopy for sinusitis and had no
nasal history suggestive of allergic rhinitis. Prospective data was
collected on demographics, clinical diagnoses, and disease

severity [patient reported 22-item sinonasal outcome test
(SNOT-22) scores (26) and Lund Mackay (27) Sinus CT scores].

STATA BE/18.0 was used to assess any differences in age and sex
distribution between the cohorts. The Mann–Whitney U-test was

used to compare the difference in age distribution, and Fisher’s
exact test was used to compare the gender distribution between

the cohorts. A p-value of <0.05 was chosen as the criterion of
statistical significance. Sinonasal tissue samples for all multi-omics

analyses were obtained at a single time point under direct
endoscopic guidance for 11 CRS and 3 control subjects. Since

sinonasal mucosal samples were obtained during surgery, standard
surgical aseptic precautions were used. Specimens were stored at

−80°C until analysis. Samples were placed into sterile 7 ml
polycarbonate tubes (Sarstedt 71.9923.610) and frozen within

15 min in a −90°C bath of Novec-engineered fluid (3M HFE-
7000) cooled in a HistoChill freezing bath (SP Scientific HC80A0).

Ethmoidal tissue was used for DNA methylation and cytokine
studies. RNA sequencing was performed on ethmoidal tissue in

CRS patients and inferior turbinate tissue in controls per IRB
approval. A part of the ethmoidal tissue was sent in formalin at

the time of surgery for structured histopathology analysis as
described by Snidvongs et al. (28) Subjects with tissue eosinophils

≥10 eos/hpf were classified as eosinophilic CRS (eCRS) and those
with <10 eos/hpf as non-eosinophilic CRS (neCRS).

2.1 DNA methylation

DNA extraction was done using the QIAamp DNA Mini kit by
Qiagen (Reference no. 51306). Reduced Representation Bisulfite

TABLE 3A The Top 50 differentially methylated regions in DNA between
cluster 1 and 2.

Gene
name

Gene description Gene type

C8orf31 Chromosome 8 open reading frame 31 Non-coding RNA

EDN2 Endothelin 2 protein-coding

MIR320E MicroRNA 320e Non-coding RNA

SP6 Sp6 transcription factor protein-coding

NANS N-acetylneuraminate synthase protein-coding

COG1 Component of oligomeric Golgi complex 1 protein-coding

HEYL HES related family bHLH transcription factor
with YRPW motif like

protein-coding

ST3GAL4 ST3 beta-galactoside alpha-
2,3-sialyltransferase 4

protein-coding

EXT1 Exostosin glycosyltransferase 1 protein-coding

SMAD3 SMAD family member 3 protein-coding

C1QTNF5 C1q and TNF related 5 protein-coding

MYCL MYCL proto-oncogene, bHLH transcription
factor

protein-coding

DNAJB6 DNA heat shock protein family (Hsp40)
member B6

protein-coding

TULP1 TUB like protein 1 protein-coding

SLC44A2.2 Solute carrier family 44, member 2 protein-coding

SOX15 SRY-box transcription factor 15 protein-coding

SLC44A2 Solute carrier family 44, member 2 protein-coding

ZBTB16 Zinc finger and BTB domain containing 16 protein-coding

SEMA6C semaphorin 6C protein-coding

PEBP4 Phosphatidylethanolamine binding protein 4 protein-coding

EPHB3 EPH receptor B3 protein-coding

SPAG6 Sperm associated antigen 6 protein-coding

LINC00963 Long intergenic non-protein coding RNA 963 Non-coding RNA

SLC44A2.1 Solute carrier family 44, member 2 protein-coding

QRFP Pyroglutamylated RFamide peptide protein-coding

LINC00265 Long intergenic non-protein coding RNA 265 Non-coding RNA

SHISAL1 Shisa like 1 protein-coding

CACNA1H Calcium voltage-gated channel subunit alpha1
H

protein-coding

PTPN21 Protein tyrosine phosphatase non-receptor
type 21

protein-coding

GADD45B Growth arrest and DNA damage inducible
beta

protein-coding

FBLN1 Fibulin 1 protein-coding

ANKRD65 Ankyrin repeat domain 65 protein-coding

OSBPL5 Oxysterol binding protein like 5 protein-coding

KLK5 Kallikrein related peptidase 5 protein-coding

TFDP1 Transcription factor Dp-1 protein-coding

AGAP2-AS1 AGAP2 antisense RNA 1 Non-coding RNA

WFIKKN2 WAP, follistatin, immunoglobulin, kunitz,
netrin domain containing 2

protein-coding

LINC01338 Long intergenic non-protein coding RNA
1338

Non-coding RNA

STMND1 Stathmin domain containing 1 protein-coding

SHANK2 SH3 and multiple ankyrin repeat domains 2 protein-coding

CD37 CD37 molecule protein-coding

PRR25 Proline rich 25 protein-coding

SLURP2 Secreted LY6/PLAUR domain containing 2 protein-coding

CACNA1C-
IT3

CACNA1C intronic transcript 3 Non-coding RNA

LINC01814 Long intergenic non-protein coding RNA
1814

Non-coding RNA

IL31RA Interleukin 31 receptor A protein-coding

FBLN7 Fibulin 7 protein-coding

FAM78A Family with sequence similarity 78 member A protein-coding

(Continued)
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Sequencing (RRBS) Library prep and Sequencing were done on

Illumina’s HiSeq4000. RRBS data were analyzed using a streamlined
analysis and annotation pipeline (SAAP) for RRBS, SAAP-RRBS

(29). Cytosine followed by a guanine nucleotide (CpG) loci were
called differentially methylated CpGs (DMCs) when p≤ 0.05 and

the mean methylation difference for the CpG loci between groups
was at least 5% (delta ≥5%). A requirement of having at least four

CpG loci within a candidate differentially methylated region (DMR)
was set. Further details are included in the Supplementary Section.

2.2 RNA-Sequencing

RNA samples underwent library prep using Illumina TruSeq®

RNA Exome Library Prep kit (San Diego, CA). Libraries were

sequenced in 2 pools per lane on an Illumina HiSeq 4,000 (100 × 2
paired-end reads) and base-calling using Illumina’s RTA v2.7.7.

Paired-end RNA sequencing reads were processed through the
RNA-Seq bioinformatics pipeline, MAP-RSeq v3.1.4 (30).

Differentially expressed genes (DEG) were identified from raw gene
counts using edgeR 2.6.2 (31). DEGs were reported with log2 fold

change and False Discovery Rate (FDR <5%). Canonical pathway
analysis using Ingenuity Pathway Analysis (IPA) software

(Ingenuity® Systems) identified significant pathways (p-value <5%).
Further details are included in the Supplementary Section.

2.3 Cytokine analysis

Frozen specimens were weighed, thawed, mixed with phosphate-

buffered saline (PBS) and protease inhibitors (Millipore Sigma,
Burlington, MA), and homogenized. Supernatants were collected

after centrifugation. Cytokine and chemokine levels (48-plex) were

TABLE 3A Continued

Gene
name

Gene description Gene type

PRMT7 Protein arginine methyltransferase 7 protein-coding

PLA2G4C Phospholipase A2 group IVC protein-coding

Sources: National Institutes of Health National Library of Medicine, https://www.ncbi.nlm.
nih.gov/gene National Human Genome Research Institute https://www.genome.gov/
genetics-glossary Last accessed August 16, 2024.

TABLE 3B The Top 50 Differentially Expressed mRNA between Clusters 1
and 2

Gene

name

Gene description Gene type

ATP2A3 ATP2A3 (ATPase Sarcoplasmic/
Endoplasmic Reticulum Ca2+
Transporting 3) also known as SERCA3

Protein coding

PNCK Pregnancy Up-Regulated Nonubiquitous
CaM Kinase

Protein coding

CCDC88B CCDC88B coiled-coil domain containing
88B [Homo sapiens (human)]

Protein coding

CST4 cystatin S Protein coding

ARHGAP40 Rho GTPase activating protein 40 Protein coding

CST1 cystatin SN Protein coding

LDLRAD2 low density lipoprotein receptor class
A domain containing 2

Protein coding

PRB1 proline rich protein BstNI subfamily 1 Protein coding

CCDC183 coiled-coil domain containing 183 Protein coding

RILP Rab interacting lysosomal protein Protein coding

MAPK8IP3 mitogen-activated protein kinase 8
interacting protein 3

Protein Coding

PLXNB3 plexin B3 Protein Coding

SRPK3 SRSF protein kinase 3 Protein coding

ARHGF16 Rho guanine nucleotide exchange factor 16 Protein coding

CARD14 caspase recruitment domain family
member 14

Protein coding

CHDH choline dehydrogenase Protein coding

JSRP1 junctional sarcoplasmic reticulum
protein 1

Protein coding

PTPRH protein tyrosine phosphatase receptor
type H

Protein coding

ATP10B ATPase phospholipid transporting 10B Protein coding

FUT3 Also known as CD174/fucosyltransferase
3 (Lewis blood group)

Protein coding

EGLN3 egl-9 family hypoxia inducible factor 3 Protein coding

TMEM200A transmembrane protein 200A Protein coding

HBA2 hemoglobin subunit alpha 2 Protein coding

PRLR prolactin receptor Protein coding

LRFN5 leucine rich repeat and fibronectin type
III domain containing 5

Protein coding

FRMD6 FERM domain containing 6 Protein coding

LUM lumican Protein coding

JAM2 junctional adhesion molecule 2 Protein coding

CNTN1 Contactin 1 Protein coding

SNHG14 Small nucleolar RNA host gene 14 Noncoding
RNA

STAC SH3 and cysteine rich domain Protein coding

WNT5A Wnt family member 5A Protein coding

NELL2 Neural EGFL like 2 Protein coding

HMGN1P36 High mobility group nucleosome binding
domain 1 pseudogene 36

Pseudogene

PTN Pleiotrophin Protein coding

(Continued)

TABLE 3B Continued

Gene

name

Gene description Gene type

SCN2B Sodium voltage-gated channel beta
subunit 2

Protein coding

AR Androgen receptor Protein coding

SNORD116-18 Small Nucleolar RNA, C/D Box 116-18 snoRNA

SNORD 116-25 Small Nucleolar RNA, C/D Box 116-25 snoRNA

TCP1 T-complex 1 Protein coding

SNORD62A Small nucleolar RNA, C/D box 62A snoRNA

SNORD62B Small nucleolar RNA, C/D box 62B snoRNA

GPC3 Glypican 3 Protein coding

CCDC36 Coiled-coil domain containing 36 Protein coding

CSMD3 CUB and Sushi multiple domains 3 Protein coding

SLIT2 Slit guidance ligand 2 Protein coding

ZNF660 Zinc finger protein 660 Protein coding

DPP6 Dipeptidyl peptidase like 6 Protein coding

NPNT Nephronectin Protein coding

snoRNA: Small nucleolar RNAs (snoRNAs), a class of small RNA molecules that primarily
guide chemical modifications of other RNAs. Sources: National Institutes of Health National
Library of Medicine, https://www.ncbi.nlm.nih.gov/gene National Human Genome Research
Institute https://www.genome.gov/genetics-glossary Last accessed August 16, 2024.
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measured using a Millipore multiplex kit (Billerica, MA) on a Bio-Rad
MAGPIX multiplex reader (Hercules, CA). The concentrations of

cytokines were normalized to the concentration of total protein in
each sample. Total protein was analyzed by using a BCA Protein

Assay Kit (Thermo Fisher Scientific). The values of cytokines were
divided by the values of total protein. Samples below the minimum

detectable concentration (MinDC) were assigned half the MinDC,
and values above the standard curve limit were assigned the highest

standard. Cytokines and chemokines detected in <10% of samples
(17) were excluded. Eosinophil peroxidase (EPX) levels were assessed

using an in-house sandwich enzyme-linked immunosorbent assay
(ELISA), like that described by Ochkur et al. (32).

FIGURE 2

Filtering and transformation strategy for each data modality through volcano plots and histogram representations. Data value distributions were

transformed to be as close to Gaussian as possible.
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FIGURE 3

Total variance contribution from each data modality (methylation, RNA, cytokines) is shown: (A) total number of data points for each modality, (B) joint

dimension reduction resulted in five dimensions of variation (“Factors”). The darker the color, the more the contribution to the individual factor from

the modality (methylation, RNA, cytokine), (C) Modality contributing to the total variance.

TABLE 4 Significant pathways associated with each of the five factors shown in figure 2B.

Pathways—factor Considerations Reference

Pathways associated with Factor 1

Transcriptional regulatory network in embryonic stem cells Specifies gene expression and imparts distinct cellular phenotypes Chan 2011 (A17)

Signaling by Rho family GTPases Precise regulation of actin cytoskeletal dynamics as well as other immunological
functions of leukocytes

Dipankar 2021 (A18)

Role of JAK1 and JAK3 in gamma-c cytokine signaling Janus kinases are associated with intracellular domains of IL-2, IL-4, IL-7, IL-9, IL-15,
and IL-21 receptors; JAK3 binds to γ chain and JAK1 to the other chain

Haan 2011 (A19)

RHOA signaling Ras homolog family member A (RHOA) is a molecular switch that is activated in
response to binding of chemokines, cytokines, and growth factors, and regulates
activation of cytoskeletal proteins and other factors

Bros 2019 (A20)

Myelination signaling Signaling of Wnt/β-catenin, PI3K/AKT/mTOR, and ERK/MAPK oligodendrocyte
precursor cell differentiation and myelination/remyelination regulation

Gaesser 2016 (A21)

Mouse embryonic stem cell pluripotency Noncoding RNAs and regulation of chromatin packing dynamics by histone
modifications and DNA methylation play a vital role in pluripotency maintenance

Chen 2016 (A22)

Human embryonic stem cell pluripotency Combination of intrinsic and extrinsic signaling pathways that regulates self-renewal
of human embryonic stem cell

Mohammadi 2020
(A23)

Chronic myeloid leukemia signaling Proliferation, self-renewal, and survival of normal and malignant stem cells Moradi 2019 (A24)

Caudal-related homeobox transcription (CDX)
gastrointestinal cancer signaling

Intestine-specific nuclear transcription factor, strongly implicated in multiple
tumorigenesis

Yu 2019 (A25)

Axonal guidance signaling Axonal guidance signaling-associated pathways (including NGF and semaphorin 3A)
are suppressed in CRSwNP

Wu 2018 (A26)

Pathways associated with Factor 2

Role of JAK2 in hormone-like cytokine signaling JAK2 is essential for signaling through hormone-like cytokines and growth factors
such as interleukin-3 (IL-3), IL-5, granulocyte macrophage-colony stimulating factor
(GM-CSF), erythropoietin (EPO), and thrombopoietin

Wang 2016 (A27)

Osteoarthritis Related to pathological signaling pathways, such as Wnt/β-catenin, NF-κB, focal
adhesion, hypoxia inducible factor (HIFs), TGFβ, and other pathways and the key
regulators AMPK, mTOR, and RUNX2

Yao 2023 (A28)

Myelination signaling Signaling of Wnt/β-catenin, PI3K/AKT/mTOR regulators, and ERK/MAPK Gaesser 2016 (A29)

Human embryonic stem cell pluripotency Intrinsic and extrinsic signaling pathways that regulate self-renewal of human
embryonic stem cell

Mohammadi 2020
(A30)

Hepatic fibrosis/Hepatic stellate cell activation IL-17 directly induces production of collagen type I in hepatic stellate cells by
activating signal transducer and activator of transcription 3 (STAT3) signaling
pathway

Meng 2012 (A31)

Gustation In CRSwNP, downregulated genes are predominantly enriched for gustatory sensory
perception, tissue homeostasis, and muscle system process

Wang 2022 (A32)

Cardiac hypertrophy signaling (enhanced) Cellular metabolism, proliferation, non-coding RNAs, immune responses,
translational regulation, and epigenetic modifications, regulating cardiac hypertrophy

Nakamura 2018 (A33)

(Continued)
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TABLE 4 Continued

Pathways—factor Considerations Reference

CREB signaling in neurons Intracellular protein that regulates the expression of genes that are important in
dopaminergic neurons

Wang 2018 (A34)

CMP-N-acetyl-neuraminate biosynthesis I CMP-N-acetylneuraminate synthetase (CMAS) is a key enzyme in sialic acid
incorporation pathway, and is crucial in the virulence and survival of several
pathogenic bacteria

Bose 2019 (A35)

Androgen biosynthesis Hyperandrogenism can activate mononuclear cells (MNC) in the fasting state,
increasing MNC sensitivity to glucose

Gonzalez 2011 (A36)

Pathways associated with Factor 3

TREM1 signaling Triggering receptor expressed on myeloid cells- 1 (TREM1). Neutrophil Activation
Pathway is suppressed in eosinophilic nasal polyps

Wu 2018 (A37)

Superpathway of cholesterol biosynthesis; Cholesterol I, II
(via 24,25-dihydrolanosterol); III (via desmosterol)

Cholesterol and cholesterol derivatives shape plasma membrane fluidity and lipid raft
dynamics, affecting the formation of the immunological synapse and its downstream
signalling events, modulating T-cell activation and function

Cardoso 2021 (A38)

Role of cytokines in mediating communication between
immune cells

In Th2-polarized environment of allergic asthma, high IL-4 levels produced by locally
infiltrating innate lymphoid cells and helper T cells promote an alternatively activated
M2a phenotype in macrophages, affecting local immune response and airway
structure

Ewan 2021 (A39)

Intrinsic prothrombin activation pathway; Extrinsic
prothrombin activation pathway; Coagulation system

Activation of the coagulation pathway, including increased thrombin-antithrombin
and D-dimer, has been demonstrated in chronic urticaria

Kim 2015 (A40)

Airway inflammation asthma Type 2 inflammation pathways link the pathogenesis of asthma and CRSwNP Laidlaw 2020 (A41)

Pathways associated with Factor 4

Wound healing signaling pathway Involvement of JAK/STAT signaling in chronic wounds Jere 2017 (A42)

Role of osteoclasts in rheumatoid arthritis signaling pathway IL-1β, IL-6, TNF-α, IL-17 and hypoxia-inducible factor-1α (HIF-1α) are produced
that could mediate bone loss

Hu 2022 (A43)

Phagosome maturation Regulated by p38 mitogen-activated protein kinase (MAPK), which is activated by
TLRs

Blander 2004
(A44)

Mineralocorticoid biosynthesis Mineralocorticoid receptor activation result in increased tissue oxidative stress and
vascular inflammation

Young 2008 (A45)

Microautophagy signaling pathway During lysosomal inhibition, MyD88 is accumulated, and overabundant MyD88
autoactivates downstream signaling or enhance TLR/IL-1R-mediated signaling

Into 2017 (A46)

Huntington disease signaling RhoA regulation and downstream cellular functions, and signaling in
neurodegenerative diseases

Schmidt 2022 (A47)

Hepatic fibrosis/Hepatic stellate cell activation IL-17 directly induced production of collagen type I in hepatic stellate cells by
activating the signal transducer and activator of transcription 3 (STAT3) signaling
pathway

Meng 2012 (A48)

Glucocorticoid biosynthesis Elevated IL-17A level promotes pyroptosis in hNECs through the ERK-NLRP3/
caspase-1 signaling pathway and contributes to glucocorticoid resistance by affecting
glucocorticoid receptor homeostasis in CRSwNP

Li 2022 (A49)

CSDE1 signaling pathway Cold shock domain-containing E1 is an RNA-binding protein that can directly
interrupt transcription and translation of proteins and has been shown to prevent
neurogenesis in human embryonic stem cells

Lee 2017 (A50)

Assembly of RNA polymerase I complex RNA polymerase I and RNAPIII are protein complexes specializing in transcription of
highly abundant non-coding RNAs, such as ribosomal RNA and transfer RNA

Turowski 2021 (A51)

Pathways associated with Factor 5

Wound healing signaling pathway JAK/STAT signaling and PBM in chronic wounds Jere 2017 (A52)

Role of osteoclasts in rheumatoid arthritis (RA) signaling
path

IL-1β, IL-6, TNF-α, IL-17 and hypoxia-inducible factor-1α (HIF-1α) are produced
that could mediate bone loss

Hu 2022 (A53)

Role of osteoblasts in RA signaling pathway Involves proinflammatory cytokines Tumor Necrosis factor-α, Interleukin-1 Hu 2022 (A53)

Pulmonary fibrosis idiopathic signaling pathway Primary human fibroblast cultures signaling leads to IL-6R overexpression. The IL-6/
STAT3/Smad3 axis facilitates cellular responses and fibrotic disease

Shochet 2020 (A54)

Pathogen induced cytokine storm signaling pathway Toll-like receptor-4 (TLR4) signaling activates diverse transcription factors and
induces proinflammatory cytokine expression

Kobayashi 2013 (A55)

Neutrophil extracellular trap signaling pathway Triggered by innate immune receptors through downstream intracellular signaling,
which activate myeloperoxidase, neutrophil elastase, and protein-arginine deiminase
type 4 to promote chromatin decondensation

Papayannopoulos 2018
(A56)

Microautophagy signaling pathway During lysosomal inhibition, MyD88 is accumulated, and overabundant MyD88
autoactivates downstream signaling or enhance TLR/IL-1R-mediated signaling

Into 2017 (A57)

Iron homeostasis signaling pathway IL-33 is associated with erythrocytes and heme to promote the generation of mature
splenic red pulp macrophages through activation of the MyD88 adaptor protein and
ERK1/2 kinases downstream of IL-33 receptor, IL1RL1

Lu 2020 (A58)

Hepatic fibrosis/Hepatic stellate cell activation IL-17 directly induced production of collagen type I in hepatic stellate cells by
activating the signal transducer and activator of transcription 3 (STAT3) signaling
pathway

Meng 2012 (A59)

GP6 signaling pathway GP6 is a collagen and fibrin receptor for tissue repair, wound healing, general
inflammation, and innate immunity

Nurden 2019 (A60)
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2.4 Multi-omics analysis

2.4.1 Preprocessing
Batch effects were corrected using ComBat (33). Modality-

specific normalization was followed by transformation and filtering
to facilitate an equal contribution to the JDR model. Normalized-

FPKM RNA-seq counts were log10 + 1e−4 transformed to achieve a
Gaussian distribution. To balance feature counts across modalities,

cytokines (with the fewest features) were filtered along with
methylation and RNA features, which were significantly different

between CRS and controls (FDR <5%).

2.4.2 Modeling

Joint dimensionality reduction (JDR) was performed using the
multi-omics factor analysis (MOFA) methodology to integrate data

modalities and extract variability dimensions, called factors (34).
The contribution of each modality to the variance explained

by each factor was quantified. To determine the number of
viable factors, a randomized dataset was used, and factors where

this dataset contributed the most variation were disregarded.
Default settings were used, with modifications to remove scaling

between data modalities and to pre-scale the value ranges to
ensure a more accurate comparison of feature loading weights

between modalities.

2.4.3 Analysis
Hierarchical all-against-all (HAllA) clustering was used to link

quantitative and categorical clinical variables to factors, identifying
features driving factor-sample distributions. Joint pathway analysis

or kinase enrichment inference was used to analyze contributing
modalities and features after identifying the associating factor to

the clinical variable of interest.

3 Results

Table 1 details the clinical characteristics of the subjects. No

statistically significant differences were found in the age and sex
distributions between CRS cases and control subjects.

3.1 The multi-omics approach was
successful in separating CRS subjects from
controls

Multi-omics unsupervised clustering separated CRS from

Controls; DNA methylation modality most contributed to cluster
assignment, followed by RNA transcripts.

Multi-omics unsupervised clustering revealed two distinct
groups with clear separation (Figure 1A). Figure 1B depicts the

clinical diagnosis of cluster constituents. Cluster 1 was found
to be entirely constituted by CRS subjects (3 CRSwNP, 6

CRSsNP), and Cluster 2 included all 3 controls and 2 non-
eosinophilic CRSsNP subjects. Figure 1C depicts cluster
constituents based on tissue eosinophil status. Where all Cluster

2 constituents had <10 eos/hpf, 6 CRS subjects in Cluster 1 had
high tissue eosinophilia (2 with >100 eos/hpf, and 4 with tissue

eosinophils between 10 and 100 eos/hpf), and 2 had non-
eosinophilic tissue. Next, we examined each cluster to identify

associated pathways (Figure 1D, E). The known functions of the
top pathways associated with Cluster 1 and Cluster 2 are

depicted in Tables 2A, B, respectively. The modality that
most contributed to cluster assignment was DNA methylation,

followed by RNA transcripts (Figure 1F). DMRs and DE
RNAs associated with both clusters were identified, the top

50 of which are listed in Tables 3A, B, respectively.
Supplementary Tables S1A and S1B present the known functions

of these genes.

FIGURE 4

Hierarchical-all-against-all clustering used to represent the

correlation between factor distribution and clinical metrics of

samples. Similarly, behaving factors and clinical metrics are binned

into clusters. Correlation is shown from high (blue) to low (beige).
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3.2 DNA methylation was the most
significant data modality contributing to
total variance

Tissue samples from 14 subjects demonstrated several unique
features across DNA methylation, transcriptomic, and cytokine

data. Figure 2 depicts the filtering and transformation strategy
for each data modality. DNA Methylation was the most

significant data modality contributing to Total Variance.

JDR resulted in five dimensions of variation (“factors”),

which captured the most significant patterns of information
(Figure 3B). Methylation was the most significant data modality
contributing to total variance (Figure 3C). Factor 1 is mostly driven

by methylation. Factors 4 and 5 have similar contributions from
methylation and RNA expression. Factor 3 is mostly correlated with

methylation and less with RNA expression. Factor 2’s important
contribution comes from cytokines; however, it was also moderately

correlated to DNA methylation, and weakly to RNA expression
(Figure 3B). Table 4 details significant pathways associated with each

factor as referenced by studies of inflammatory mechanisms.

3.3 Correlation of factor variation with
clinical features

The five factors of variation were correlated with clinical features

using HAllA (Figure 4). Significant correlations for Factor 1 were
with allergic rhinitis, absolute blood eosinophil count, tissue

eosinophil counts, and clinical diagnosis. For Factor 2, the most
significant correlations were allergic rhinitis and immune deficiency.

Factor 3’s correlations were tissue eosinophil counts, smoking,
allergic rhinitis, and gender. Factor 4’s most significant correlations

were tissue eosinophil counts, allergic rhinitis, and clinical diagnosis.

Factor 5’s most significant correlations were allergic rhinitis, clinical
diagnosis, tissue eosinophil counts, and pre-operative SNOT-22.

Tissue eosinophil counts mostly correlated with Factors 4 and 3, and
absolute blood eosinophil counts only significantly correlated with

Factor 1. Allergic rhinitis strongly correlated with Factors 1, 2, 4, and
5, and moderately correlated with Factor 3. Age, previous sinus

surgery, asthma history, total IgE, CT score, steroid nasal spray use,
and AERD presented with weak correlations.

3.4 Examination of sample distribution
across factors: tissue eosinophilia was able
to better cluster subjects in two distinct
groups compared to phenotypic status

We examined sample distribution across all five factors identified

with JDR. Figure 5 (A, B, C) shows the sample distribution colored
by diagnosis, tissue eosinophils/hpf, and SNOT-22 scores,

respectively. Whereas SNOT-22 seemed to lead to a random
distribution, both clinical diagnosis (CRSwNP, CRSsNP vs. control)

and tissue eosinophils were able to better cluster subjects in two
distinct groups. This was especially evident for factor 4, where all 3

controls were separated from CRSwNP and/or CRS ≥10 eos/hpf.

3.5 DNA methylation and mRNA heatmaps
failed to cluster CRSwNP and CRSsNP
separately

The association of each cytokine with DNA methylation and

mRNA expression in each subject was examined. DNA methylation
(Figure 6A) and mRNA heatmaps (Figure 6B) showed all 3 control

samples clustered together. There was no clear clustering observed for

FIGURE 5

Sample distribution across all five factors colored by (A) diagnosis/polyp status, (B) tissue eosinophil numbers/hpf, and (C) SNOT-22 scores.
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phenotypical subtypes of CRS by methylation and mRNA expression
status, likely exposing the limitations of classifying only by polyp status.

3.6 Correlation between DNA, RNA, and
cytokine expression: Two distinct clusters of
cytokines were noted, with opposed positive,
neutral, andnegativecorrelations forcytokines

Next, we investigated the correlation between DNA, RNA, and

cytokine expression and identified two distinct clusters with opposed
positive, neutral, and negative correlations for the cytokine-

methylation analysis (Figure 7A). The first cluster included MCSF,
FLT3l, GROa, RANTES, VEGFa, FGF2, EGF, sCD40l, PDGFAA,

IP10, MIG, IL-18, MCP1, and IL-12p40. The second cluster included
IL-4, IL-13, IL-5, IL-1RA, IL-8, IL-10, INFγ, IL-6, G-CSF, Eotaxin,

MIP-1b, MIP-1a, Fractalkine, MDC, EPX, MCP3, and TGFα. Two

distinct clusters of cytokines were noted with opposed positive,
neutral, and negative correlations for cytokines-RNA expression

analysis as well (Figure 7B). The first cluster included MCP3, MIP-
1a, IP10, IL-18, TGFα, GROa, RANTES, FGF2, VEGFa, sCD40l, and

PDGFAA. The second cluster included EGF, IL-4, IL-1RA, MDC,
EPX, IL-5, IL-13, MIG, Fractalkine, MCP1, IL-12p40, MCSF, FLT3l,

Eotaxin, IL-8, IL-6, GCSF, MIP-1b, IFNγ, and IL-10.

3.7 Associations of individual cytokines with
upstream DNA methylation and RNA
expression were found

Isolated cytokine analysis was used next to study associations

between cytokine, DNA, and RNA. The analysis revealed that IL-5
was associated with 720 differentially expressed (DE) RNAs and 172

differentially methylated regions (DMRs) on the DNA. IL-13

FIGURE 6

Heatmaps of the association between each subject (x-axis) with (A) DNA methylation and (B) RNA expression on the y-axis. Color key for Subjects:

CRSwNP is orange, CRSsNP is purple, and Controls are green. Within the heatmap, red represents higher hypermethylation and mRNA expression.
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associated with 49 DE-RNAs and 180 DMRs, IL-10 to 54 DE-RNAs
and 82 DMRs, IFNγ to 71 DE-RNAs and 123 DMRs, and IL-6 to

236 DE-RNAs and 178 DMRs. IL-4 and TGF did not significantly
correlate with the other data modalities. Figures 8A,B illustrate the

top 50 differentially methylated genes and differentially expressed
mRNAs, respectively, for each of the 30 cytokines. Table 5 presents

the top 10 DMRs and the differentially expressed mRNA identified
in our study as related to many of these cytokines.

3.8 Conjoint cytokine analyses identified
common upstream DNA methylation and
RNA expression for some cytokines

Next, conjoint cytokine analysis was performed (Figure 9) to

identify commonly shared genes. The conjoint analysis showed that

cytokines IL-5 and IL-13 were similarly correlated with RNA
expression of TMEM74B and CPNE7, and with DNA methylation

of DICER1 and SHISAL1. IL-10 and IFNγ were correlated to RNA
expression of CYP27C1 and SOX18, and with DNA methylation of

CASZ1, SYNRG, SNORD149, NTF4, and CTBP2. IFNγ and IL-6
were similarly correlated to RNA expression of CD79B and GFBP3,

and with DNA methylation of EGFL7, HOXA2, PEBP4, WNT7B,
CTBP2, and INTS1 (Figure 9). Table 6 enlists the function of genes

identified on conjoint cytokine analysis.

4 Discussion

The results of our study support our hypothesis that

environmental insults may be significant in CRS pathogenesis

FIGURE 7

Heatmapof (A) differential DNAmethylation and (B) differential RNA expression to showcorrelations to cytokines. The y-axis represents the genes associated

with the DMRs/ mRNAs, and the x-axis represents individual cytokines. Red: strong correlation; blue: weak correlation; white: no correlation.
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FIGURE 8

Heatmap correlating each cytokine (x-axis) with their top 50 genes with (A) differential DNA methylation & (B) differentially expressed RNA (y-axis).
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TABLE 5 Top 10 differentially methylated DNA as well as differentially expressed mRNA molecules.

Cytokines Differentially methylated DNA Differentially expressed mRNA

IL-1RA SHANK2, STMND1, CD37, ANKRD65, EXT1, DNAJB6, SOX15, PRR25,
TULP1, C1QTNF5

FUT3, ATP10B, PTPRH, ATP2A3, CHDH, PLXNB3, PRB1, LDLRAD2,
EGLN3, SRPK3

IL-4 OSBPL5, TFDP1, AGAP2-AS1, ANKRD65, SHISAL1, LINC00265 CD37,
STMND1, EXT1, QRFP

CST4, ARHGAP40, ARHGEF16, CARD14, FUT3, EGLN3, PLXNB3,
PTPRH, ATP10B, CST1

IL-5 CD37, CACNA1H, LINC00265 SHISAL1, PTPN21, LINC00963, GADD45B,
SLC44A2.1, QRFP, OSBPL5

PRB1, CARD14, RILP, ARHGEF16, CHDH, CCDC183, MAPK8IP3,
SRPK3, ARHGAP40, PNCK

IL-6 SHANK2, STMND1, TULP1, SLC44A2.2, C1QTNF5, ANKRD65, FBLN1,
ZBTB16, MIR320E, EPHB3

JSRP1, PTPRH, ATP10B, FUT3, EGLN3, FRMD6, LFRN5, ATP2A3, PNCK,
CCDC88B

IL-8 PEBP4, EPHB3, SOX15, TULP1, QRFP, STMND1, GADD45B, PTPN21,
LINC00265, SPAG6

ATP10B, EGLN3, PTPRH, FUT13, PRLR, CHDH, JSRP1, SRPK3,
ARHGAP40, PNCK

IL-10 C8ORF31, EDN2, MIR320E, LINC01338, KLK5, FBLN1, ZBTB16, COG1,
SOX15, HEYL

JSRP1, PTPRH, EGLN3, ATP10B, ATP2A3, PNCK, CCDC88B, CST4,
ARHGAP40, CST1

IL-12p40 PEBP4, PRR25, EPHB3, SPAG6, SLC44A2.1, QRFP, LINC00265, C8ORF31,
MIR320E, CD37

EGLN3, FUT3, CHDH, MAPK8IP3, CCSC183, LDLRAD2, CST1,
ARHGEF16, PNCK, CCDC88B

IL-13 OSBPL5, SHISAL1, DNAJB6, CD37, SMAD3, ST3GAL4, WFIKKN2, TFDP1,
QRFP, AGAP2-AS1

CARD14, ARHGEF16, RILP, PRB1, ARHGAP40, ATP2A3, CST4, CST1,
SRPK3, CHDH

EPX CD37, SHISAL1, SLC44A2.1, SPAG6, LINC00963, CACNA1H, PTPN21,
GADD45B, WFIKKN2, AGAP2-AS1

CCDC88B, PNCK, PRB1, SRPK3, CHDH, CARD14, CST4, RILP,
CCDC183, CST1

INF-γ TULP1, SLC44A2.2, SOX15, SLC44A2, ZBTB16, SEMA6C, PEBP4, MIR320E,
EPHB3, NANS

JSRP1, PTPRH, ATP10B, FUT3, EGLN3, LRFN5, JAM2, PRLR, HBA2,
FRMD6

TGF-alpha FAM78A, IL31RA, ANKRD65, EXT1, SOX15, SP6, DNAJB6, CACNA1C-IT3,
SHANK2, SLC44A2

HBA2, NELL2, HMGN1P36, SNORD116-18, TCP1, SNORD116-25,
ATP10B, PTPRH, FUT3, SNORD62A

FIGURE 9

Summary map relating cytokine to RNA expression, and RNA expression to DNA methylation.
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through epigenetic mechanisms that result in dysregulated mRNA
transcription and cytokine production downstream. Chronic

dysregulated immune responses may continue long past the
initial external insult through the induction of epigenetic

changes, as seen in CRS (5).
Although the changes that occur at the histopathological and

cytokine/protein levels have recently become better characterized
in subjects with CRS (35–37), the genetic mechanism associated

with such changes has not been fully characterized (3). In a sparse
area of research, this study provides the first multi-omics analysis

of CRS tissue from the United States, validating the association of
epigenetic changes with transcriptomic and proteomic signatures

seen in CRS. Furthermore, multi-omics analysis using DNA
methylation, mRNA expression, and cytokine expression datasets
successfully separated clusters of control and CRS subjects,

demonstrating the utility of multi-omics analysis as a valuable tool

in studying CRS. Our study is novel in using a multi-omics
integration of DNA, RNA, and cytokine data to study CRS. Only

two prior multi-omics studies have investigated CRS, but neither
studied DNA data, and both were conducted outside of North

America (18, 38). Miyata et al. (38), isolated eosinophils from six
nasal polyp patients and performed multi-omics analysis using

lipidomics, proteomics, and transcriptomics. Hoggard et al. (18),
investigated temporal changes in polyp tissue in CRS in response

to systemic corticosteroids in three males with CRSwNP subjects
who underwent surgery, assessing natural variability over time and

local response to systemic corticosteroid therapy. The authors
found that the most highly abundant transcripts and proteins were

associated with pathways involved in inflammation, FAS, cadherin,
integrin, Wnt, apoptosis, cytoskeletal signaling, coagulation, and B-
and T-cell activation. Given that DNA methylation was the most

significant data modality contributing to the total variance

TABLE 6 Function of genes identified on conjoint cytokine analysis.

Gene Name Function Cytokine

Differentially Methylated Genes

DICER1 Dicer 1,
ribonuclease III

The encoded protein functions as a ribonuclease, and is a strong antiviral agent active against
RNA viruses, including Zika and SARS-CoV-2 viruses

IL-5 and IL-13

SHISAL1 Shisa like 1 Predicted to be integral component of membrane IL-5 and IL-13

NTF4 Neurotrophin factor 4 Neurotrophins control survival and differentiation of mammalian neurons IL-10 and IFNγ

CTBP2 C-terminal binding protein 2 This gene can encode two distinct proteins: one isoform is a transcriptional repressor, while the
other is a component of specialized synapses known as synaptic ribbons. Both proteins contain a
NAD + binding domain similar to NAD + -dependent 2-hydroxyacid dehydrogenases.

IL-10 and IFNγ
as well as IFNγ
and IL-6

CASZ1 Castor zinc finger 1 The protein encoded by this gene is a zinc finger transcription factor and may function as a tumor
suppressor

IL-10 and IFNγ

SYNRG Synergin gamma Encodes a protein that interacts with the gamma subunit of AP1 clathrin-adaptor complex IL-10 and IFNγ

SNORD
149

Small Nucleolar RNA, 149 *snoRNA (non-protein-coding); Small nucleolar RNAs (snoRNAs) are a class of small RNA that
assist in chemical modifications of other RNAs, such as ribosomal RNAs

IL-10 and IFNγ

WNT7B Wnt family member 7b Member of the WNT gene family, which consists of structurally related genes encoding secreted
signaling proteins regulating cell fate and patterning

IFNγ and IL-6

INTS1 Integrator complex subunit 1 Is a subunit of the Integrator complex, which associates with the RNA polymerase II large subunit
and mediates processing of small nuclear RNAs U1 and U2.

IFNγ and IL-6

EGFL7 Epidermal Growth Factor like domain
multiple 7

Encodes a secreted endothelial cell protein that contains two epidermal growth factor-like
domains. The encoded protein may play a role in regulating vasculogenesis, and growth and
proliferation of tumor cells.

IFNγ and IL-6

HOXA2 Homeobox A2 Encodes a DNA-binding transcription factor regulating gene expression, morphogenesis, and
differentiation

IFNγ and IL-6

PEBP4 Phosphatidylethanolamine binding
protein 4

Phosphatidylethanolamine (PE)-binding proteins, including PEBP4, are an evolutionarily
conserved family of proteins with pivotal biologic functions, such as lipid binding and inhibition
of serine proteases

IFNγ and IL-6

Differentially Expressed mRNA

TMEM74B Transmembrane protein 74B Predicted to be integral component of membrane. IL-5 and IL-13

CPNE7 Castor zinc finger 1 Encodes a zinc finger transcription factor. The encoded protein may function as a tumor
suppressor gene.

IL-5 and IL-13

CYP27C1 Cytochrome P450 family 27 subfamily
C member 1

Encodes a member of the cytochrome P450 superfamily of enzymes which are monooxygenases
catalyzing many reactions involved in drug metabolism and synthesis of cholesterol, steroids, and
other lipids.

IL-5 and IL-13

SOX18 SRY-box transcription factor 18 This gene encodes a member of the SOX (SRY-related HMG-box) family of transcription factors.
The encoded protein may function as a transcriptional regulator and play a role in blood vessel
and lymphatic vessel development.

IL-10 and IFNγ

CD79B CD79b molecule Gene encodes Ig-beta protein of B-cell antigen component. It associates with Ig-alpha and Ig-beta,
necessary for expression and function of B-cell antigen receptor

IFNγ and IL-6

IGFBP3 Insulin-like growth factor binding protein 3; this gene is a member of the IGFBP family. It
prolongs half-life of IGFs and alters their interaction with cell surface receptors.

IFNγ and IL-6

Sources: National Institutes of Health National Library of Medicine, National Center for Biotechnology Information https://www.ncbi.nlm.nih.gov/gene National Human Genome Research
Institute https://www.genome.gov/genetics-glossary/Pseudogene Last accessed August 16, 2024.
*snoRNA: small nucleolar RNA.
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between CRS and control subjects, epigenetic modifications are
critical for further study in CRS for mechanistic and therapeutic

targets. In addition, epigenetic mechanisms help explain shifts in
the dominant CRS inflammatory pattern from non-type 2 to type

2, as is being noted in Asian regions as they undergo
industrialization (36, 37, 39).

Our study further identified several known and potential
mechanistic pathways and proteins involved in immunity and

structural integrity, which may have roles in CRS pathogenesis.
These are related to cytokine signal transduction, granule fusion

events, phagosome maturation, toll-like receptors (TLRs)
activation, reactive oxygen species formation, cellular metabolism,

translational regulation, etc. The identification of JAK signaling
also highlights the potential therapeutic role of JAK inhibitors in
recalcitrant CRS, like current trials for asthma therapy (40).

Many novel DMRs and DE mRNA (Tables 4A, B) were
identified, including genes involved in membrane stability,

homeostasis, as well as the gustation pathway, which are targets
for further research (Supplementary Table S1).

Novel findings on conjoint cytokine analysis (Figure 9) showed
that the cytokines IL-5 and IL-13 shared genes with RNA

expression of TMEM74B and CPNE7, and with DNA
methylation of DICER1 and SHISAL1. We also similarly noted

shared genes for IL-10 and IFNγ, as well as IFNγ and IL-6.
Table 6 details the functions of these genes. Both IL-5 and IL-13

are well recognized for their roles in the type-2 inflammatory
process predominantly associated with CRSwNP, and hence, their

association in differentially regulated upstream DNAs and RNAs
is understandable, further reinforcing the utility of the

multiomics approach. IFNγ is detected at lower levels in CRS
tissue, reducing the antiviral immune response, which could

result in or exacerbate the CRS following a viral infection (41).
The role of IL-10 and IL-6 is reported in the literature (42, 43),

and their association with IFNγ is interesting. DMRs and DE
RNAs identified in association with key inflammatory cytokines

involved in CRS pathogenesis, like IL-5, IL-13, IL-10, IFNγ, and
IL-6 (Table 5), could be potentially important future

therapeutic targets.

4.1 Limitations

This is a small study, albeit with the largest number of subjects

published for CRS multiomics. While the multiomics approach
distinguished two clusters, one of which was composed entirely

of CRS patients, the other grouped three controls and two non-
eosinophilic CRSsNP subjects, and perhaps these may have been

clustered differently in a larger sample size. Genomic assays and
multiomics analysis are prohibitively expensive, complex, and

require technical expertise in integration, statistics, and systems
biology. However, we hope that with reduced cost of genomic

assays and multiomics analysis and support from extramural
funding, larger prospective sampling can be performed for

future studies.
Prospective, longitudinal studies with sample collection at

multiple time points are needed to study CRS disease evolution.

RNA expression is transient and may not correlate with protein
level unless analyzed concurrently, which was mitigated by

collecting tissue for histopathology, DNA methylation, and
cytokine assay simultaneously in this study.

The multi-omics approach may also allow for focused
upstream gene profiling of targeted cytokines of interest, such as

IL-4, IL-5, IL-13, and others, in addition to an unsupervised
approach that was used in this study. We anticipate that the use

of single-cell RNA sequencing may be necessary for this
approach rather than the bulk tissue sample that was used for

this study.
Technical limitations in the study include bulk tissue RNA

sequencing, which can only provide an average gene expression
profile for the entire sample, but is cheaper than single-cell RNA
sequencing (scRNA-seq) while identifying global differences

in gene expression between disease and control states.
Additionally, of the multiplex assay performed for cytokines,

only 30 could be included per study methodology for multiomics
analysis. Quantifying tissue eosinophilia with histopathology

is imperfect, as degranulated eosinophils are difficult to
measure. More sensitive novel assays, such as those from

NanoString Technology (https://nanostring.com/), are planned
for future study.

5 Conclusions

The study supports the hypothesis that environmental insults

may be significant drivers of CRS pathogenesis through
epigenetic mechanisms that result in dysregulated mRNA

transcription and cytokine expression. The most novel part of
this study is the integration of epigenetic (DNA methylation),

transcriptomic (mRNA), and proteomic (cytokine) data to
uncover novel insights into the pathogenesis of CRS. This multi-
omics approach is the first of its kind to study environment-host

interactions in CRS etiopathogenesis. The multi-omics analysis
clearly separated clusters of control and CRS subjects,

demonstrating its validity in future research. DNA methylation
also contributed most to total variance, underscoring the role of

environmental factors in CRS. Key cytokines like IL-5, IL-13, IL-
10, IFNγ, and IL-6 were associated with hundreds of

differentially methylated regions (DMRs) and differentially
expressed mRNAs, providing future targets for study. IL-5 and

IL-13, IL-10 and IFNγ, and IFNγ and IL-6 were associated with
common upstream genes. The study further identified

interactions of methylated DNA, mRNA, and cytokines in CRS
pathogenesis, highlighting novel molecules and pathways that

may be potential therapeutic targets.
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