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Primary atopic disorders (PADs) are monogenic conditions associated with

severe, early-onset atopic diseases. Clinically, they often overlap with

polygenic allergic conditions, making specialized laboratory testing necessary

to distinguish them from polygenic atopy. Multisystem involvement, such as

growth failure, recurrent infections, and autoimmunity, points towards PADs

warranting further investigations. PADs associated with immune dysregulation

can be broadly categorized into four mechanistic groups: those affecting the

regulation of cell cytoskeleton dynamics, T-cell receptor (TCR) signaling and

repertoire diversity, and function of regulatory T cell (Treg), and cytokine

signaling. In this review, we have examined the defects in cytokine signaling

pathways associated with PADs. Key cytokine signaling pathways implicated in

PADs include the STAT3, JAK1/STAT5b, and TGF-β pathways. Pathogenic

variants in these pathways result in complex clinical phenotypes but share a

common theme of Th2 polarization and severe atopic manifestations. Early

and accurate differentiation between polygenic atopy and PADs is crucial, as it

allows for timely, targeted immunological or genetic interventions that may

significantly improve patient outcomes.
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1 Introduction

Inborn errors of immunity (IEIs) are heritable disorders with a heterogenous

presentation due to variants in genes impairing the activity of the immune system (1).

Clinically, they may manifest as heightened susceptibility to infections,

autoinflammation, autoimmunity, atopy, and malignancies (2). A subset of these IEIs

features a distinct atopic phenotype marked by chronic Th2 skewing, aberrant mast cell

degranulation, eosinophilic inflammation, and elevated IgE levels (3). In 2018, Lyons

and Milner introduced the term primary atopic disorders (PADs) to categorize

monogenic conditions associated with early-onset atopic symptoms driven by immune

dysregulation (4). However, it is now recognized that PADs are not a strict subcategory

of IEIs. Only a subset of PADs are immune in origin and may be classified as IEI.

Many PADs result from non-immune mechanisms involving structural or barrier

defects. These PADs primarily disrupt epithelial integrity, leading to heightened allergen

penetration and subsequent atopic responses. Prototypic disorders of these PADs are
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attributed to variants in genes encoding epidermal barrier proteins

like FLG (filaggrin), protease inhibitors such as SPINK5, and

intercellular adhesion molecules CDSN, DSG1, and DSP (5–7).

IEIs with atopic manifestations exhibit overlapping clinical

and immunological phenotypes and have been grouped into key

syndromic categories. These are classified based on clinical

presentation and immunological profiling as Hyper-IgE syndromes,

immune dysregulation poly-endocrinopathy enteropathy X-linked

(IPEX) and IPEX-like conditions, Omenn syndrome, Wiskott–

Aldrich syndrome, CBM-opathies, and other atopy predominant

IEIs (8). Although clinical features of PADs often overlap with

polygenic allergic conditions, they are distinguished by early onset

and severe manifestations with complex comorbidities such as

growth failure, recurrent infections, and autoimmunity, to name a

few (9) (Figure 1).

Atopy is a genetic tendency to mount exaggerated IgE-

mediated immune responses to environmental allergens. These

patients often present with a constellation of clinical symptoms,

such as atopic dermatitis, food allergy, allergic rhinitis, and

asthma - collectively referred to as the ‘atopic march’ (10–13).

In PADs, these manifestations are often accompanied by

immune dysregulation due to Th2 polarization and

overproduction of IL-4, IL-5, and IL-13. These Th2 effector

cytokines drive downstream signaling cascades that recruit

eosinophils, mast cells, and other effector cells (11). While

allergic phenotypes are common in the general population, those

seen in IEIs are frequently more severe and are rooted in well-

defined genetic defects (9).

Diagnosing PADs begins with a thorough clinical evaluation,

including physical examination, family history, and

immunological investigations (14) (Figure 2). Family medical

history is important as PADs typically exhibit distinct inheritance

patterns, although de-novo variants may arise spontaneously as

well. Hallmark laboratory findings include eosinophilia, elevated

serum IgE, abnormal immunoglobulin profiles, and T-cell

subsets, which are typically assessed via flow cytometry (14).

Genetic testing plays a pivotal role in confirming the diagnosis

by identifying causal variants (15).

Key immune pathways involved include those regulating the

cellular cytoskeleton along with immune synapse formation,

T-cell receptor (TCR) signaling and repertoire diversity,

T regulatory cell (Treg) function, and innate immune cell

effector mechanisms (16). Among the molecular mechanisms

implicated in PADs, signaling pathways of cytokines have a

cardinal role. Disruption in cytokine signaling can severely

impair host immune response and tolerance, predisposing

FIGURE 1

Clinical characteristics for classical allergic disease and primary atopic disorder. IPEX, Immune dysregulation, polyendocrinopathy, enteropathy,

X-linked; WAS, Wiskott–Aldrich syndrome; CBMopathies, CBM complex—CARD11, BCL10 and MALT1. Figure was created using BioRender.
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individuals to infections, inflammation, and allergic diseases (17).

Specifically, alterations in STAT3, JAK1/STAT5, and TGF-β

pathways through molecular consequences, such as dominant-

negative (DN), loss or gain-of-function (LOF, GOF) mutations,

are closely associated with Th2 polarization and atopic

manifestations (14).

In this review, we focus on PADs arising from genetic defects

that disrupt cytokine signaling networks. We examine mutations

affecting transcription factors such as STAT1, STAT3, STAT5B,

STAT6, ZNF341, cell surface receptors including IL2RA, IL4RA,

IL6R, IL6ST, TGFBR1/2, and intracellular signaling mediators

such as JAK1 and ERBB2IP (18). Understanding these pathways

not only enhances our insight into the pathogenesis of PADs but

also provides a foundation for developing precision medicine.

The key primary atopic disorders resulting from cytokine

signaling defects have been summarised in Table 1.

2 Role of transcription factors in
altered cytokine signaling

2.1 STAT1 GOF

Autosomal dominant- GOF variants in STAT1 are among the

commonest monogenic defects linked to chronic mucocutaneous

candidiasis (CMC), with over 400 reported cases (19, 20). These

mutations prevent dephosphorylation of STAT1, leading to its

constitutive nuclear localization and enhanced type I/II

interferon signaling (21). Consequently, Th17 differentiation is

impaired, which directly impacts antifungal defenses, and

enhanced interferon signaling drives autoimmunity (e.g.,

hypothyroidism, cytopenias) that resemble IPEX-like phenotypes

(22). A novel N-terminal mutation (c.194A>C; p.D65A) has even

been tied to eosinophilic esophagitis, underscoring the link

between STAT1 hyperactivity and atopic inflammation (21, 23).

2.2 STAT3 DN

First described clinically as Job’s syndrome in 1966, autosomal

-dominant DN mutations in STAT3 are the molecular basis of

Hyper -IgE syndrome (HIES) (24–26). Patients exhibit severe

eczema, elevated IgE (>1,000 IU/ml), eosinophilia, and recurrent

staphylococcal skin and pulmonary infections (27, 28).

Dampened IL-6 and IL-10 signaling through STAT3 reduces

Th17 cell numbers and IL-17 production, heightening

susceptibility to Staphylococcus and Candida infections (27, 29).

Diagnostic criteria combine IgE quantification, Th17

enumeration, a clinical scoring system (>30 points), and genetic

confirmation of a STAT3 DN variant (30).

FIGURE 2

Diagnostic algorithm in patients with suspected primary atopic disorder. Figure was created using BioRender.
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2.3 STAT5B GOF

Somatic GOF variants in the SH2 or transactivation domains of

STAT5B enhance STAT5 signaling, driving clonal T-cell expansion

with a Th2 bias (31). Thus, STAT5B remains constitutively active

instead of responding appropriately to growth hormone signals

that regulate IGF-1–dependent growth but also skew T-cell

differentiation towards a Th2 phenotype. Clinically, affected

individuals present with treatment-refractory atopic dermatitis,

persistent urticaria, elevated numbers of eosinophilia, alopecia,

and angioedema (32).

2.4 STAT5B LOF

STAT5B loss-of-function leads to atopic dermatitis with

dwarfism, hyper IgE, autoimmunity and lymphocytic interstitial

pneumonitis (33, 34). STAT5B acts as a key mediator in growth

hormone signaling, and its deficiency results in growth hormone

insensitivity and growth failure (35). Additionally, STAT5B LOF

impairs IL-2-dependent signaling, leading to recurrent viral

infections associated with reduced function and even decreased

numbers of T regs (34). Atopic symptoms such as eczema are

prevalent and affected individuals may develop conditions

TABLE 1 Primary atopic disorders resulting from cytokine signaling defects.

S.No. Gene GOF/LOF
molecular

consequences

OMIM
genotype

no

OMIM
phenotype

Inheritance
pattern

Associated clinical
phenotype

Targeted therapy

1 STAT 1 GOF *600555 614162 AD CMC, autoimmunity, type

I interferonopathies, IPEX-like

syndrome

Ruxolitinib, (75, 76) HSCT

(77)

2 STAT3 DN *102582 147060 AD HIES, eczema, recurrent skin and

lung infections, eosinophilia,

candidiasis, skeletal and

connective tissue abnormalities

retained primary teeth,

characteristic facies, cerebral

aneurysms

Tocilizumab and JAK

inhibitors, (78) chaperone

modulators like HSF1A and

GGA, offering a promising

future treatment, HSCT

(78, 79)

3 STAT5B GOF *604260 AR-245590

AD-618985

Somatic Hypereosinophilic syndrome,

growth failure, immune

dysregulation, and

lymphoproliferation.

JAK inhibitors (Ruxolitinib

(80)

4 STAT5B LOF *604260 AD, AR Eczema, IPEX-like autoimmune

manifestations Autosomal

dominant form causes dermatitis

but without severe

immunodeficiency

Cyclosporine therapy (81)

5 STAT6 GOF *601512 620532 AD Severe and treatment-resistant

dermatitis, marked eosinophilic

gastrointestinal disease

Ruxolitinib Tofacitinib

Dupilumab (41)

6 ZNF341 LOF *618269 618282 AR Phenocopy of STAT3 DN Dupilumab (82)

7 IL2RA LOF *147730 606367 AR IPEX-like syndrome (e.g.,

enteropathy, endocrinopathies,

and failure to thrive)

Rapamycin (83)

8 IL4RA GOF *147781 AD Early-onset atopic dermatitis,

hyper IgE levels, food allergies,

asthma and autoimmunity

Dupilumab (51)

9 IL6ST

(Partial)

IL6ST

(Complete)

LOF *600694

*600694

619752

619751

AD

AR

Phenotypic overlap with AD-HIES

Stuve-Wiedemann-like syndrome

Supportive treatment (54)

10 IL6R LOF *147880 618944 AR Partially overlapping with AD-

HIES: No connective tissue

abnormalities

Immunoglobulin

replacement therapy (84),

HSCT (85)

11 TGFBR1

TGFBR 2

LOF *190181

*190182

609192

610168

AD Marfan-like syndrome;

phenotypic overlap with STAT3

pathway disorders

HSCT surgical interventions

(86)

12 JAK1 GOF *147795 618999 AD Hypereosinophilic syndrome JAK inhibitors like

ruxolitinib and tofacitinib

(65, 66)

13 ERBIN LOF *606944 AD Significant eosinophilic

esophagitis, cutaneous

mastocytosis, connective tissue

abnormalities

Dupilumab (87)

GOF, gain of function; LOF, loss of function; AD, autosomal dominant; AR, autosomal recessive; IPEX, immune dysregulation, polyendocrinopathy, enteropathy, X-linked; HSCT,

hematopoietic stem cell transplant; GGA, geranylgeranylacetone; JAK, janus kinases; EGID, eosinophilic gastrointestinal disease.
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resembling IPEX like syndrome (33). In addition to LOF variants,

the STAT5B deficiency can also result from the autosomal

dominant form of STAT5B, causing stunted growth and eczema,

but it does not lead to severe immunodeficiency (36).

2.5 STAT6 GOF

STAT6 is the major transcription factor activated by IL-4 and

IL-13. Upon activation, STAT6 dimerizes and translocates to the

nucleus. STAT6 promotes differentiation of naive CD4+ T cells

to Th2 cells along with class-switch from IgM to IgE on B-cells

(37). This process is initiated on binding of IL-4 and IL-13 to

the IL-4 receptor complex, triggering the phosphorylation of

tyrosine residues on the IL-4 receptor alpha (IL-4Rα) subunit

(38). This is mediated via Janus kinases (JAK) (39). Src

homology 2 (SH2) domains recruit STAT6, which bind to the

phosphorylated tyrosine residues on IL-4Rα (39). In STAT6

GOF, hyperphosphorylation of STAT6 intensifies IL-4 and IL-13

signaling. A STAT6 heterozygous misense variant (c.1129G>A;

p.Glu377Lys) linked to atopy was initially identified by

Suratannon et al. (40). Another missense variant in exon 22

(c.1114G>A; p.E372K) was identified in a patient with early-

onset eczema, food allergies, eosinophilia, and eosinophilic

esophagitis (41). Functional studies demonstrated heightened IL-

4/IL-13 responsiveness, reversed by JAK inhibition (ruxolitinib)

or IL-4Rα blockade, which normalized IgE levels and tissue

eosinophilia (41). To date, STAT6-GOF mutations have been

reported in 21 persons (42).

2.6 ZNF341 LOF

ZNF341 is a zinc-finger transcription factor that upregulates

both STAT1 and STAT3 expression (43). Autosomal-recessive

LOF mutations in ZNF341 phenocopy STAT3-HIES, causing

elevated IgE, eosinophilia, eczema, and recurrent bacterial and

fungal infections (43, 44). Till now, 20 patients with autosomal

recessive LOF ZNF341 have been reported (44). Unlike STAT3

DN, connective tissue defects tend to be milder, but the

underlying mechanism, diminished STAT3 transcription remains

the same.

3 Cell surface receptor defects in
altered cytokine signaling

3.1 IL-2Rα (CD25) LOF

The α-chain of the high-affinity IL-2 receptor is encoded by

IL2RA and is essential for regulatory T-cell development and

peripheral tolerance (45). Biallelic loss-of-function mutations in

IL2RA produce an IPEX-like syndrome characterized by severe

atopic dermatitis, eosinophilia, elevated IgE, autoimmunity,

and chronic infections (22, 46). Defective IL-2 signaling

impairs Treg homeostasis, which results in unchecked Th2 and

Th17 responses that drive both allergic and autoimmune

pathology (22).

3.2 IL-4RA GOF

Gain-of-function (GOF) variants in IL4RA, particularly the

R576 allele, are strongly associated with increased susceptibility

to atopic diseases (47). The Q576R variant in IL-4RA disrupts

the formation of the STAT3–ERBIN–SMAD2/3 complex (48).

Impaired STAT3 and ERBIN function intensifies Th2

polarization by reducing TGF-β signaling and increasing IL-4RA

expression on lymphocytes (49). These changes culminate in a

clinical phenotype characterised by early-onset atopic dermatitis,

elevated serum IgE, asthma, food allergies, and, in some cases,

autoimmune features (50). Importantly, dupilumab, an IL-4Rα

antagonist, has demonstrated clinical efficacy in treating patients

with variants in IL-4RA (51).

3.3 IL6ST LOF

IL6ST encodes GP130, the shared signal-transducing subunit

for all IL-6 family cytokines. The main cytokines of IL-6 family

include IL-6, IL-11, IL-27, IL-35, IL-39, and oncostatin M

(52, 53). Recessive LOF variants abolish JAK/STAT3 activation,

manifesting as an autosomal-recessive Hyper-IgE syndrome with

eczema, high IgE, eosinophilia, and recurrent bacterial infections

(54). Recently, dominant-negative IL6ST mutations (c.2261C>A,

p.Ser754Ter) have been linked to autosomal-dominant HIES

phenotypes (54, 55), and secondary glycosylation defects (e.g., in

PGM3 deficiency) can similarly impair GP130 surface expression

and STAT3 phosphorylation (56).

3.4 IL-6R LOF

One of the key functions of IL-6 signaling is to differentiate

activated Th cells into IL-17 and IL-22 secreting Th17 and Th22

cells (53).). On the other hand, IL-6 suppresses the

differentiation of CD4+ T regulatory cells, which regulate

inflammation. Individuals deficient in IL-6R develop atopic

dermatitis, eosinophilia, recurring pulmonary infections, skin

abscesses due to Staphylococcus sp., high IgE levels, but no

skeletal abnormalities (57, 58).

3.5 TGF-β receptor (TGFBR1/2) deficiency in
Loeys–Dietz syndrome

Heterozygous mutations in TGFBR1 or TGFBR2 cause Loeys–

Dietz syndrome (59). This is an autosomal-dominant connective-

tissue disorder marked by arterial aneurysms, craniofacial

abnormalities, and severe atopic features in the form of asthma,

food allergy, and eosinophilic gastrointestinal disease (60). The

TGFBR1/2 complex recognises TGF-β, and variants in the
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receptor may lead to dysregulated TGF-β signaling, which may

enhance SMAD2/3 phosphorylation (61). This results in

conversion of a tolerogenic pathway to a pro-allergic one by

producing dysfunctional Tregs and by enhancing transcription of

IL-9 and other pro-allergic mediators (62).

4 Key defects in intracellular signaling
components leading to altered
cytokine signaling defects

4.1 JAK1 GOF

Germline JAK1 GOF mutations lead to constitutive activation

of the Janus kinase 1 protein, leading to immune dysregulation

due to unchecked STAT phosphorylation (63). Mechanistically,

JAK1 hyperactivity skews CD4+ T-cell differentiation toward a

Th2 phenotype while suppressing Th1 responses (63). This

results in amplification of allergic inflammation (63). These

variants lead to novel monogenic immune dysregulation

syndrome, termed JAACD—JAK1-associated Autoimmunity,

Atopy, Colitis, and Dermatitis. Affected individuals exhibit a

syndromic phenotype characterized by early-onset atopic disease,

autoimmune features, severe dermatitis, and inflammatory bowel

manifestations such as colitis (64). Del Bel et al. described the

first germline GOF mutation in humans in JAK1, resulting in an

alanine to aspartate substitution at position 634 (65). Three more

variants were identified in JAK1, namely, S703I, H596D, and

C787F, from patients with a similar clinical phenotype (66–68).

Recently, Horesh et al. described 59 patients with JAACD

spectrum harbouring four JAK1-GOF variants (p.E139K,

p.R506C, p.S700N, and p.V985I). These patients share a

common phenotype of severe atopy with autoimmunity and

immune dysregulation (64).

4.2 ERBB2IP (ERBIN) LOF

ERBB2IP encodes ERBIN, a scaffold protein that links activated

STAT3 to SMAD2/3 complexes, sequestering them in the

cytoplasm and thereby restricting TGF-β signaling (49, 69).

Impaired STAT3 signaling can decrease ERBIN levels resulting in

disrupted regulation of TGF-β and consequent increase in Tregs.

Autosomal-recessive LOF variants in ERBB2IP disrupt this

regulatory axis, leading to excessive SMAD2/3 nuclear

translocation, enhanced Treg proliferation, and paradoxical Th2

polarization (49). Clinically, ERBIN-deficient patients exhibit

anomalies reminiscent of STAT3-HIES, despite a distinct

molecular etiology. Patients may present with severe atopic

dermatitis, eosinophilic gastrointestinal diseases, elevated IgE, and

connective-tissue disorders. Emerging biologic therapy, such as

IL-4Rα blockade with dupilumab has shown promise in reducing

Th2-driven inflammation in this disorder (70).

5 Future perspectives

Next-generation sequencing (NGS) is revolutionizing the

diagnosis of primary atopic disorders (PADs) by enabling rapid

identification of disease-causing variants. This technology is

especially valuable in patients with complex or treatment-

refractory presentations, where it can resolve long-standing

diagnostic challenges. However, as the use of NGS expands, a

growing number of variants of uncertain significance (VUS) or

cases lacking identifiable pathogenic variants are being reported.

These findings often complicate clinical decision-making and

may necessitate extensive additional testing.

Large-scale analyses of genetic testing across hereditary diseases

have underscored the growing burden of variants of uncertain

significance (VUS). In a study involving over 1.6 million

individuals, 41% had at least one VUS, and nearly one-third

received only VUS results (71). Despite efforts, only 7% of

unique VUSs were reclassified as pathogenic or likely pathogenic,

often taking over two years (71). These findings underscore the

broader systemic challenge posed by VUSs across rare disease

diagnostics and highlight the need for structured interpretive

frameworks that could also benefit the PAD diagnostic landscape.

Looking forward, decision-making around functional

validation of variants must be guided by integrated criteria,

including in silico prediction tools, family segregation analysis,

phenotypic concordance, and population frequency data (72).

While functional assays remain the gold standard for confirming

pathogenicity, they are resource-intensive and often inaccessible

in routine clinical settings.

Future diagnostic frameworks must prioritise variants with the

highest clinical relevance. Innovative tools such as multiplexed

assays of variant effect (MAVEs) offer a promising, high-

throughput approach to functional validation (73). Concurrently,

emerging efforts to harmonise the interpretation of single-

nucleotide variants (SNVs) and copy-number variants (CNVs)

are streamlining variant classification in rare diseases (74).

To fully realise the promise of precision medicine in PADs,

future efforts should focus on building standardised, scalable, and

integrative diagnostic pipelines. Such systems will be essential for

accelerating diagnosis, guiding targeted therapies, and ultimately

improving clinical outcomes for patients.

6 Conclusion

PADs represent a critical intersection between monogenic

immune dysregulation and severe allergic inflammation. Cytokine

signaling defects involving JAK-STAT and TGF-β pathways can

result in profound allergic phenotypes often misdiagnosed as

common atopy. Timely diagnosis of the pathogenetic defect

using advanced next-generation sequencing is essential to deliver

targeted, immune-based therapies. As our understanding of

PADs continues to expand, personalized approach will eventually

be the standard of care for affected individuals.
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