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Gut–lung axis in asthma and
obesity: role of the gut
microbiome

Hiroki Tashiro, Yuki Kuwahara and Koichiro Takahashi*

Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty

of Medicine, Saga University, Saga, Japan

Asthma is a heterogeneous disease whose severity is exacerbated by obesity.

Despite its clinical importance, targeted therapies for asthma in obese patients

remain limited. Recent evidence highlights the gut microbiome as a crucial

factor linking metabolic and immune pathways involved in both asthma and

obesity. This review explores the complex interplay between the gut

microbiome, immune responses, and the gut–lung axis, emphasizing how

microbial composition, diversity, and metabolites, such as short-chain fatty

acids (SCFAs), influence airway hyperresponsiveness (AHR) and airway

inflammation. Obesity alters the gut microbiome, contributing to systemic

inflammation and metabolic dysfunction. Furthermore, asthma phenotypes

related to obesity are associated with specific gut microbial profiles,

suggesting a causal relationship. Animal studies have demonstrated that

manipulation of the gut microbiome through diet, antibiotics, or microbial

transplantation can alter asthma outcomes, particularly in obesity models.

Given these findings, targeting the gut microbiome might be a promising

therapeutic strategy for asthma in obese individuals. Potential interventions

include probiotics, prebiotics and antibiotics, all of which have shown varying

degrees of effectiveness in modulating airway inflammation and reducing

asthma severity. This review provides a comprehensive overview of current

knowledge and proposes future directions for microbiome-targeted therapies

in managing severe asthma associated with obesity.
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Introduction

Asthma is a heterogeneous disease, and obesity is one of the important comorbidities

of asthma, which enhances disease severity by inducing excessive airway

hyperresponsiveness (AHR) and airway inflammation (1). Unfortunately, specific

treatments for severe asthma with obesity are not available, with body weight reduction

being the only recommended treatment (2). Recently, the gut microbiome has been

highlighted for its role in regulating not only local gastrointestinal diseases, including

inflammatory bowel diseases, but also systemic diseases, including asthma (3).

Additionally, increased evidence has revealed that obesity itself and obesity-induced

diseases, such as cardiovascular diseases, diabetes, and metabolic syndrome, are

mechanistically associated with the gut microbiome (4). Based on these data, it is

plausible to suggest a close relationship between the gut microbiome and severity of

asthma in obese individuals. Furthermore, the gut microbiome might serve as a specific

therapeutic target for the treatment of asthma with obesity. In this review, we present
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evidence for the interaction between the gut microbiome and

obesity, asthma, and asthma with obesity, respectively, especially

focusing on the immune modulatory effect as the underlying

mechanism. In the final part of this review, we explore the

potential utility of new therapeutic strategies of gut microbiome-

targeted treatment for severe asthma in obese individuals. This

narrative review is based on a literature search conducted using

PubMed and Google Scholar. We included studies published

from January 2010 to April 2024, written in English. Search

keywords included asthma, obesity, gut microbiome, short-chain

fatty acids, airway inflammation, and animal models. Both

original research articles and reviews were considered. We

prioritized studies based on their relevance to the topic,

mechanistic insight, citation frequency, and methodological

quality. While no formal quality scoring system was applied,

each article was evaluated for scientific rigor and clarity of findings.

Overview of the gut microbiome

The gut microbiome, which consists of trillions of

microorganisms, such as bacteria, viruses, and fungi, has been

increasingly recognized as an external organ of the human body

(3, 5). Several studies have indicated that gut microbiome

composition, diversity, and metabolites, such as fatty acids, differ

between healthy and diseased individuals (6, 7), indicating that

the gut microbiome impacts human health. For example, the

characteristics and diversity of the gut microbiome are altered by

aging (8), and a youth-related pattern of the gut microbiome,

such as Bacteroides-dominant enterotype, is associated with

longevity in humans (9). Additionally, the main metabolites of

the gut microbiome, including bile acids, short-chain fatty acids

(SCFAs), trimethylamine N-oxide, and derivatives of tryptophan,

are potentially involved in human and animal longevity (10, 11).

Along with individual variability in the characteristics of

microorganisms in the gut, external factors, such as antibiotic

usage, early life events, and diet, also have a strong impact on

human health through their gut microbiome (12–14). The vast

dataset of human metagenomic assays suggests that antimicrobial

consumption influences an individual’s gut microbiome, with

increased prevalence of antimicrobial resistance genes (15). In

mice, antibiotic administration resulted in variable perturbation

of the gut microbiome, as assessed by 16s ribosomal RNA

sequencing analysis, depending on the type of antibiotic, such as

ampicillin, metronidazole, neomycin, or vancomycin (16).

Another study involving a longitudinal analysis of stool samples

from 903 children revealed that receipt of breast milk, either

exclusively or partially, as an early life event, had the highest

association with the microbiome structure, with a higher level of

Bifidobacterium species (13). A recent human cohort of 21,561

individuals showed variability in microbial profile depending on

the individual’s dietary pattern, whether omnivorous, vegetarian,

or vegan, with interaction with their health outcomes in terms of

favorable cardiometabolic markers (17). We previously reported

that a high-fiber diet and high-fat diet drastically changed the

gut microbiome compared to normal chow in mice (18–20).

These data suggested that the gut microbiome impacts human

health, and should be taken into consideration in the mechanistic

analysis of health problems, including obesity and asthma (1, 21).

Interaction between the gut microbiome
and immunity

The gut is the largest organ related to the mammalian immune

system, containing more than 70% of the immune cells of the entire

body. Additionally, the gut microbiome influences the immune

system, including intestinal and extra-intestinal organs (22, 23).

The gut microbiome exerts functional effects on the immune

system in both healthy and diseased individuals, likely through

the barrier function of the mucus layer that is regulated by

immunoglobulin A (IgA), and by direct activation of the

immune system through gut-associated lymphoid tissue (GALT)

and immune cells (22, 24). The mucus layer in the intestine

physically and functionally serves as a barrier between harmful

external molecules and microorganisms and the inside of the

human body (25). In this process, secretory IgA is recognized as

the first line of defense for maintaining gut homeostasis, with

increasing evidence of the role of the gut microbiome in

regulating this system (26). Nakajima A et al. reported that IgA

production in mucus is increased by a specific bacterium, namely

Bacteroides species, and it is involved in the diversity and

metabolic activity of the gut microbiome, and consequently in

gut homeostasis (27). Thereafter, immune cells, such as T cells

and B cells in GALT, serve as downstream mechanisms in the

barrier function of the mucus layer for impact of immunity on

gut microbiome (28). GALT consists of multi-follicular lymphoid

tissue, such as Peyer’s patches and numerous isolated lymphoid

follicles, which exist in large numbers in immune cells in the

small and large intestines (29). In mice, B cell responses derived

from Peyer’s patches in GALT were shown to be altered in germ-

free mice compared to normal mice free of specific pathogens

(30, 31). Other studies have reported that Bacteroides acidifaciens

and Prevotella buccalis induce Peyer’s patch-dependent IgA

production, which stimulates the mammary gland to secrete IgA

in milk (32). Localized and systemic inflammation caused by

immune reactions is also affected by the gut microbiome. For

example, in inflammatory bowel diseases, a higher proportion of

Bacteroides, Bacteroidales, and Enterobacteriaceae, and lower

proportion of Firmicutes, such as Faecalibacterium prausnitzii,

induces reduction of SCFAs as metabolites from the bacteria,

which exacerbate colitis, characterized by an increase in tumor

necrosis factor alpha (TNF-α), interferon gamma (IFN-γ) and

interleukin 17A (IL-17A), with differentiation of T helper cell 1

(Th1), Th2, and Th17 from naïve T cells (33). In systemic lupus

erythematosus, a systemic inflammatory disease, a higher

proportion of Lachnospiraceae, Ruminococcaceae, and

Rikenellaceae, and lower proportion of Lactobacillaceae induces

lupus nephritis by polarized Th17-type inflammation (33). Since

obesity itself has the potential to cause systemic inflammation,

and gut immunity contributes to innate and acquired systemic
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immunity, as mentioned above, gut immunity might have the

ability to modulate the severity of obesity-induced asthma (33–35).

Interaction between the gut microbiome
and obesity

Increasing evidence has shown that obesity itself, and the

pathophysiology of obesity-related diseases, such as diabetes

mellitus, cardiovascular diseases, and metabolic syndrome are

influenced by the gut microbiome. Along with food intake and

dietary habits, many factors are directly associated with gut

microbial perturbation and body weight in obese individuals

compared to lean individuals. The interaction between the gut

microbiome and obesity is far from simple. In 2006, the gut

microbiome, along with metabolites such as SCFAs, were

compared between genetically induced obese mice, called ob/ob

mice, and their lean littermates. In that study, the principal

component of the gut microbiome, ratio of Firmicutes to

Bacteroidetes (which was greater in obese mice) and

concentration of SCFAs were significantly different between the

two groups. Additionally, colonization of the gut microbiome

derived from obese mice into germ-free mice induced an increase

in body fat, suggesting the presence of an obesity-specific gut

microbiome (36). Previous studies in other genetic or diet-

induced obese mice models also showed similar results (18, 20).

In humans, comparative analysis of the gut microbiome in a

large Korean cohort of 1,463 subjects who were categorized

based on body mass index (BMI) showed phylogenetic diversity

and significant differences in the principal component of the gut

microbiome between lean and obese individuals (37). The

authors suggested that the mechanisms for these differences

could be that the gut microbiome increases the risk factors for

obesity, such as induction of energy uptake, fat storage, and

appetite, in these individuals (38–40). Obesity also induces

metabolic dysfunction, such as insulin resistance and systemic

inflammation (4). For example, Takeuchi T et al. reported that in

306 individuals, the pattern of their gut microbiome was

associated with either insulin resistance or insulin sensitivity,

with distinct patterns of carbohydrate metabolism (41).

Additionally, interactions were observed between concentrations

of TNF-α and IFN-γ in blood, as indicators of systemic

inflammation, and gut microbiome composition in humans,

which is associated with microbial metabolic pathways, including

palmitoleic acid metabolism and degradation of tryptophan to

tryptophol (42). These data provide evidence for the close

association between the gut microbiome and obesity. In the

treatment of obesity, weight reduction by all methods, dietary

restriction, exercise, and bariatric surgery, reportedly impacts the

gut microbiome (43). An intervention study using a low energy

diet for weight reduction in 211 overweight or obese participants

revealed significant alterations in the gut microbiome with weight

loss. In particular, greater microbial richness and diversity, along

with greater abundance of Akkermansia and Christensenellaceae

R-7 group, and decrease in Pseudobutyrivibrio, acetogenic

Blautia, and Bifidobacterium species were seen with weight loss

(44). Several studies have also reported that along with weight

reduction, bariatric surgeries, such as gastric bypass and sleeve

gastrectomy, have the ability to manipulate the gut microbiome

(45–47). These data also indicated that the gut microbiome is

not only involved as a mechanistic factor in obesity, but also

might be a therapeutic target for weight loss.

Gut microbiome and asthma: the gut–lung
axis

The gut microbiome is associated with the development and

severity of asthma. It is widely known that the human microbial

composition matures within the first few years of life, and is

potentially a risk factor for the development of asthma (48, 49).

Stokholm J et al. reported that in 690 participants, immature

microbial composition at 1 year of age was associated with an

increased risk of asthma at the age of 5 years (50). Others also

reported that infants at high risk for asthma exhibited delayed

maturation of gut microbiome diversification compared to

healthy infants, and early intervention with Lactobacillus

rhamnosus GG showed potential to modify the gut microbiome

and host immunity, with elevation of regulatory T cells (Tregs)

(51). Indeed, an observational study in 152 children with food

allergy showed that differences in Bacteroides and

Bifidobacterium species were associated with higher rates of

asthma (52). In mice, ozone, an air pollutant that is a trigger for

asthma, induces AHR and inflammation (53, 54), with this

phenomenon being attenuated by antibiotics and depletion of the

gut microbiome, and in germ-free mice (16). Additionally, ozone

exposure causes greater AHR in male mice compared to female

mice, with the sex difference being abolished by depletion of the

gut microbiome by antibiotics (55). In that report,

transplantation of the gut microbiome from male to female mice

resulted in greater ozone-induced AHR and airway inflammation

in the female recipients, indicating that the gut microbiome

directly influences AHR and airway inflammation, both of which

are pivotal clinical characteristics of asthma (55). The precise

mechanisms linking the gut and lung, called the gut–lung axis,

are, however, still unclear, although the role of metabolites of the

gut microbiome, such as SCFAs, gut hormones, and immune

reactions, including dendritic cells (DCs), Tregs, lymphocytes,

and cytokines, have been suggested (56, 57). SCFAs, including

acetate, butyrate, and propionate, with carbon chain lengths of

C2 to C6, are synthesized by specific microbes upon

fermentation of ingested fiber, and have the potential to

manipulate the pathophysiology of asthma (58). In children,

asthmatic individuals showed significant reduction of fecal

butyrate, with lower levels of butyrate-inducing bacteria, such as

Faecalibacterium and Roseburia species in the gut, as compared

to healthy volunteers (59). In mice, house dust-induced airway

inflammation was attenuated by a high-fiber diet with

perturbation of the gut microbiome, likely via the effect of free

fatty acid receptor 3, a specific receptor of SCFAs (60).

Conversely, we reported that a high-fiber diet induced greater

AHR and airway inflammation with manipulation of the gut
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microbiome and increase in the serum concentration of SCFAs.

Reportedly, propionate, a SCFA, induced exacerbation of ozone-

induced AHR and airway inflammation (16, 18). Additionally,

the signaling of gut hormones, such as glucagon-like peptide 1

(GLP-1) secreted by L cells in the small intestine, is regulated by

gut microbiome manipulation (61–64). Importantly, GLP-1 and

its receptor signal affect the pathophysiology of asthma.

A retrospective cohort study of 4,373 asthmatic patients who

were also being treated with diabetic drugs showed that adult

patients with asthma treated by a GLP-1 receptor agonist for

their type 2 diabetes mellitus had lower rates of asthma

exacerbations than those treated with other anti-diabetic drugs

(65). In mice, the GLP-1 receptor is expressed more in lung

tissue compared to other organs, such as the small intestine,

brain, heart, and kidney. Additionally, AHR induced by the

inhalation of ovalbumin and lipopolysaccharides was significantly

attenuated by treatment with liraglutide, a GLP-1 receptor

agonist (66). Accumulating evidence underscores the existence of

complex and multi-layered crosstalk between the bidirectional

gut–lung axis and the host immune system. In mice,

vancomycin, an antibiotic that manipulates the gut microbiome

with reduction of SCFAs in the gut, attenuated ovalbumin- and

papain-induced airway inflammation. Importantly, migration of

DCs was enhanced by treatment with vancomycin, and this

phenomenon was restored by supplementation of SCFAs (67).

Other researchers also indicated that SCFAs in blood affect

various types of DCs, such as monocyte DCs, conventional DCs

that deactivate Th2 effector cells and attenuate allergic airway

inflammation (56). These data suggest that the gut microbiome

and pathophysiology of asthma are closely inter-related, although

more detailed, precise data are required to further elucidate

this interaction.

Interaction between asthma and obesity

Increasing evidence has clarified that obesity is associated

with the severity of asthma [see (1, 21)]. Although the clinical

and biological characteristics of asthma are heterogeneous,

previous cluster analysis of a large cohort of asthmatic patients

identified various features of asthma with obesity, including late

onset asthma, preponderance in females, greater severity of

symptoms, low sputum eosinophil counts, less atopy, moderate

AHR and reversibility of airway obstruction, and low

responsiveness to inhaled corticosteroids (68). Other similar

analyses (69, 70) on the clinical characteristics of asthma with

obesity also showed frequent exacerbation, type 2 low airway

inflammation in adult-onset asthma, decreased pulmonary

function, and AHR with a female preponderance (21). Indeed,

we previously reported that in a total of 56 patients with adult-

onset asthma, being overweight, defined as a BMI greater than

25 kg/m2, was associated with a higher annual exacerbation rate

and lower blood eosinophil count, characterized as type 2 low

airway inflammation (71). Other studies have also reported

similar results (72). Additionally, in another of our previous

studies, we focused on pulmonary function in 193 patients with

asthma and 2,159 patients without asthma, and found that

obesity reduced pulmonary function, including forced vital

capacity and forced expiratory volume in 1 s, in patients with

asthma, but not in those without asthma (73). These data

indicate that obesity has specific effects on pulmonary

functional decline in patients with asthma, but not in those

without asthma. Although the inflammatory phenotype of

asthma with obesity is still debatable (74), it might involve an

increased incidence of type 2 low airway inflammation, as

mentioned above (71). Indeed, in mice, those with obesity

caused by diet or genetic factors showed exacerbation of AHR

and neutrophilic airway inflammation with increasing

expression of IL-17A in the lung (18, 75, 76) and Th17

lymphocytes, suggesting that type 3 innate lymphoid cells might

be responsible for worsening the AHR and airway inflammation

in such animals (77, 78). As possible severity mechanisms,

corticosteroid resistance, cytokines, and fatty acids should be

considered. In our retrospective analysis of 56 patients with

adult-onset asthma, the annual exacerbation rate in overweight

asthma patients was higher than that in normal weight

individuals despite the greater use of high doses of inhaled

corticosteroids in overweight individuals, suggesting the

possibility of corticosteroid resistance in this population (71).

Indeed, levels of mitogen-activated protein kinase phosphatase-

1, as a glucocorticoid-responsive gene, are significantly lower in

obese than in non-obese asthma patients, which also supports

this phenomenon (79). In terms of cytokines, IL-17A, which is

a strong activator of neutrophils (80), is significantly increased

by obesity, and is associated with exacerbation of the

pathophysiological factors of asthma in humans and mice (18,

75, 76, 78, 81). IL-6, a predictive marker of systemic

inflammation and metabolic syndrome in obesity (82) is also

involved in the severity of asthma with obesity. A study from

the USA evaluating a severe asthma cohort revealed that the

plasma concentration of IL-6 was associated with exacerbation

of asthma in obese individuals, and that IL-6 concentration

correlated with BMI in this cohort (83). Our biomarker analysis

study also indicated that serum concentrations of IL-6 and the

annual exacerbation ratio were significantly higher in

overweight asthma patients than those who were not overweight

(71). In mice, obese mice showed greater neutrophilic airway

inflammation with elevation of IL-6 levels in broncho-alveolar

lavage (BAL) fluid, which was reduced by neutralizing

antibodies for IL-6, indicating that IL-6 also has the potential to

mediate obesity-induced asthma severity (84). In terms of fatty

acids, long-chain (C12-C22) fatty acids might be affected worse

in obese asthma patients. In mice, a high-fat diet consisting of

poly saturated fatty acids, such as palmitic acid, induced obesity

in mice, with these mice showing greater AHR and neutrophilic

airway inflammation following exposure to house dust mites

(HDMs) than lean mice. Importantly, systemic administration

of palmitic acids exacerbated HDM-induced AHR and

neutrophilic airway inflammation (75). Hence, there is a close

association between obesity and asthma, although more detailed

data are needed to clarify the precise mechanisms for

this association.
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Impact of the gut microbiome on asthma
with obesity

As discussed above, obesity and asthma are both potentially

associated with the gut microbiome. Hence, it is understandable

that the gut microbiome might affect the severity of obesity-

induced asthma. Recently, to clarify the correlation between the

gut microbiome and specific asthma phenotypes, 211 gut

microbiota taxa were analyzed in a genome-wide association

study calculated by Mendelian randomization analysis and

sensitivity analysis (85). The study focused on allergic asthma,

childhood asthma, and obesity-related asthma, with analysis

performed to clarify the causal relationships between the gut

microbiome and distinct asthma phenotypes. The results

indicated that a higher genetically predicted abundance of the

genera Holdemanella, Lachnospiraceae FCS020 group,

Eubacterium xylanophilum group, Odoribacter, and

Lachnospiraceae ND3007 group was associated with an increased

risk of obesity-related asthma. In contrast, the genera

Ruminococcaceae UCG010 and Senegalimassilia were inversely

associated with the risk. At the family level, Rikenellaceae and

Pasteurellaceae were associated with a decreased risk of obesity-

related asthma. Furthermore, the bacterial order NB1-n showed

a positive association with the disease risk, whereas the order

Pasteurellales demonstrated a protective effect. Other studies also

reported that obesity in patients with asthma was associated

with elevated levels of proinflammatory molecules in the

bloodstream, along with alterations in the gut microbiome.

Furthermore, a reduced relative abundance of Akkermansia

muciniphila has been shown to directly correlate with increased

asthma severity, indicating that several specific bacteria affect

disease severity in obese asthmatic patients (86). We previously

clarified the specific interaction between the gut microbiome and

pathophysiology of obesity-induced asthma, such as AHR and

neutrophilic airway inflammation, in mice. Briefly, the gut

microbiome in lean mice and genetically induced obese mice

called db/db mice were different, and ozone-induced AHR and

neutrophils in BAL fluid were greater in obese mice than in lean

mice. Importantly, depletion of the gut microbiome by a cocktail

of antibiotics induced significant recovery of AHR and

neutrophilic airway inflammation. Additionally, ozone-induced

AHR and neutrophils were greater in germ-free mice with

reconstitution of microbes derived from obese mice, than in

germ free mice with microbial reconstitution using microbes

derived from lean mice, indicating that the gut microbiome itself

affects worsening of the severity of asthma with obesity (18).

A high-fat diet also has the capacity to manipulate the gut

microbiome along with an increase in body weight in mice (20),

which augments pulmonary responses following exposure to

ozone or HDMs (20, 75, 76). Bariatric surgeries for obesity,

including sleeve gastrectomy and Roux-en-Y gastric bypass,

decrease body weight and might attenuate AHR and airway

inflammation, both of which are involved in the

pathophysiology of asthma in obese individuals (87).

Importantly, bariatric surgery also affects the gut microbiome,

and induces a significant perturbation of the gut microbiome

with increased abundance of Akkermansia muciniphila at 3

months after the operation, with the effect continuing through

12 months (88). This suggests that the obesity-specific gut

microbiome affects the severity of obesity-induced asthma.

Additionally, the gut microbiome might be a new therapeutic

target in the fight against obesity-induced asthma, and clinical

trials of specific interventions to improve perturbations of the

gut microbiome are expected in the future (Figure 1). Notably,

leptin—one of the important adipokines associated with obese

individuals and obesity-related diseases—may also impact the

severity of obesity-related asthma through effects on the gut

microbiome (89). Indeed, several reports have indicated a strong

association between body fat ratio and serum leptin

concentration (90, 91). Additionally, leptin itself has the capacity

to modify the gut microbiome, which in turn affects body

weight in response to dietary fat intake (92). Importantly, db/db

mice, which are characterized by leptin receptor deficiency,

exhibit a distinct gut microbiome composition compared to

wild-type mice. This altered microbiome directly contributes to

increased AHR and inflammation, as noted above (18).

Possible gut microbiome-targeted
therapies for obese asthma patients

Various options as gut microbiome-targeted therapies in

asthmatic patients with obesity have been suggested, such as fecal

microbiome transplantation, probiotics, prebiotics, and the

prudent use of antibiotics (1, 21, 93). The purpose of

intervention trials for asthma patients with obesity should

include endpoints such as exacerbation frequency, pulmonary

function, microbiome diversity and serum biomarkers. These

trials should also take into account the clinical phenotype of

airway inflammation in participants, as well as the type and

dosage of the intervention. Several clinical trials have evaluated

the efficacy of fecal microbiome transplantation in patients with

disease conditions, and it has shown positive results in patients

with recurrent Clostridium difficile infection and inflammatory

bowel syndrome (94–97). In terms of obesity and metabolic

syndrome, a fair number of the trials showed that fecal

microbiome transplantation did not affect clinical parameters,

including BMI, even though it partially improved peripheral

insulin sensitivity, suggesting that a short duration of the

intervention should be considered (98). Unfortunately, to the

best of our knowledge, there is no clinical trial on fecal

microbiome transplantation in asthmatic patients with obesity,

and future investigation on this is required.

Probiotics are defined as living bacteria that are beneficial for

human health. As mentioned above, Akkermansia muciniphila

might have beneficial effects in obese asthmatic patients (86, 88).

Indeed, it was recently reported that heat-killed Akkermansia

muciniphila strain EB-AMDK19 attenuated HDM-induced AHR,

airway inflammation, mucus hyperplasia, and elevation of

cytokines and chemokines in mice (99). Other specific bacteria,

as mentioned above, might be candidate probiotics for the

treatment of asthmatic patients.
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Prebiotics, which include dietary fiber, are defined as a group of

nutrients that are degraded by gut microbiota (100). Pectin, a

fermentable fiber, attenuates HDM-induced AHR and airway

inflammation, with elevation of SCFA production, which directly

attenuates the pathophysiology of asthma via G protein-coupled

receptors (60). We previously reported that worsening of ozone-

induced AHR and neutrophilic airway inflammation in obese

mice was ameliorated by administration of pectin, but not

cellulose, an unfermentable fiber, resulting in elevation of serum

SCFAs (18). These data indicated that supplementary

administration of a fermentable fiber has beneficial effects on

augmented asthma pathophysiology in obese individuals via

SCFAs, and that SCFAs might also be candidates in gut

microbiome-targeted therapies in obese asthmatic patients.

Notably, the effects of SCFAs on AHR and airway inflammation

may depend on clinical phenotypes, as suggested by findings

from mouse experiments. For example, as mentioned above,

SCFAs showed beneficial effects on HDM-induced AHR and

eosinophilic airway inflammation in lean mice, as well as on

ozone-induced AHR and neutrophilic airway inflammation in

obese mice (18, 60). However, SCFAs—particularly propionate—

exhibited harmful effects on ozone-induced AHR and

neutrophilic airway inflammation in lean mice (16). Although

the detailed mechanisms underlying the differential effects of

SCFAs on asthma pathophysiology remain unclear, their clinical

impact on asthma severity, especially in patients with obesity,

should be carefully evaluated. Although induction of resistance

and resistant genes should be kept in mind, antibiotics also have

a big impact on manipulating the gut microbiome, which might

improve asthma pathophysiology in obese individuals. Indeed,

antibiotic cocktails reportedly attenuate ozone-induced increases

in AHR and airway inflammation in obese mice with depletion

of their gut microbiome, as we previously reported (18). Based

on clinical experience, macrolide antibiotics are typically

prescribed for a long duration in patients with chronic bronchitis

and non-tuberculous mycobacterium, and could also be

candidate drugs in obese asthmatic patients. Gibson PG et al.

reported in a randomized, double-blind, placebo-controlled trial

focusing on severe asthmatic patients that azithromycin

attenuated exacerbations and led to recovery of the patients’

quality of life (101). We also reported that EM900, another

macrolide antibiotic, attenuated exacerbation of HDM-induced

airway inflammation in obese mice (76). However, we still do not

know whether azithromycin would be effective in attenuating

FIGURE 1

Possible mechanistic basis of the interaction between the gut microbiome and severe asthma with obesity. The obesity-specific gut microbiome is

characterized by a reduced proportion of Akkermansia muciniphila, which affects the modulation of local immunity via gut-associated lymphoid

tissue and immunoglobulin A-related barrier function. These phenomena induce metabolites of the gut microbiome and hormones, such as short

chain fatty acids and glucagon-like peptide 1, respectively, leading to modification of lung immunity through dendritic cells, regulatory T cells,

T cells, and cytokines. Consequently, airway hyperresponsiveness and airway inflammation are exacerbated in obese asthmatic patients. Blue

arrows indicate gut-to-lung signaling pathways. The figure is based on our previous report with partial modification (21). GALT, gut-associated

lymphoid tissue; IgA, immunoglobulin A; SCFAs, short-chain fatty acids; GLP-1, glucagon-like peptide 1; DCs, dendritic cells; Tregs, regulatory T cells.
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asthma severity in obese individuals. We are currently planning an

intervention study of azithromycin for obesity-induced severe

asthma to evaluate its efficacy in reducing exacerbations, along

with alteration of the gut microbiome and biomarkers, such as

cytokines and chemokines (102).

Conclusion

This review addressed the role of the gut microbiome in severe

asthma with obesity. Although careful interpretation is necessary

when considering clinical efficacy, as the present review is

primarily based on murine data, we have proposed candidate

treatments as potential gut microbiome-targeted therapies for

this form of asthma. As mentioned previously, several murine

studies have demonstrated that fecal microbiota transplantation,

probiotics, prebiotics, and antibiotics can ameliorate AHR and

airway inflammation in obese asthma models. While FMT

remains largely hypothetical as a therapeutic approach in this

context, other microbiome-targeted interventions—such as

probiotics, prebiotics, and selected antibiotics—may be more

feasible for clinical application and warrant further investigation

through interventional trials. Due to the shortage of essential

data for evaluation of these therapies for asthma with obesity,

future clinical trials would be useful.
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