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Background: Asthma is a multifactorial chronic inflammatory disease

characterized by intermittent airflow obstruction, which may result in

irreversible pathological remodelling of the airways. In Kuwait, the prevalence

of asthma among young adults is approximately 11%, with a strong maternal

influence on asthma risk. While nuclear genetic studies have identified several

asthma-associated loci, the role of maternally inherited mitochondrial DNA

(mtDNA) in asthma susceptibility remains poorly understood, particularly in

Middle Eastern populations.

Methods: In this exploratory study, we analysed mtDNA from 287 Kuwaiti

individuals, including 48 asthmatics and 239 controls, extracted from whole-

exome sequencing data (average coverage 27×), with variant calling via GATK

and haplogroup assignment using HaploGrep2. Logistic regression was used

to assess associations between mtDNA variants/haplogroups and asthma,

adjusting for age, sex, and BMI.

Results:Mitochondrial haplogroup M was identified as a significant risk factor for

asthma (OR = 3.37; 95% CI = 1.09–10.42; P=0.035). Additionally, we identified

fourteen mtDNA variants associated with asthma risk through complementary

case-control and exclusivity analyses. These variants are located within genes

encoding subunits of mitochondrial Complex I (MT-ND1, MT-ND3, MT-ND5),

Complex III (MT-CYB), Complex IV (MT-CO1, MT-CO2), and the mitochondrial

control region. Most are linked to dysfunction and reactive oxygen species

(ROS) production, key processes implicated in asthma pathogenesis.

Conclusions: Our findings suggest that mitochondrial haplogroup M and

specific mtDNA variants contribute to asthma susceptibility in the Kuwaiti

population. These insights provide a foundation for future research on

mitochondrial genetic influences in asthma and highlight the need for

larger studies to validate these associations and explore potential

therapeutic implications.

KEYWORDS

mitochondrial haplogroups, asthma genetics, Kuwaiti population, mitochondrial DNA
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Introduction

Asthma is a chronic inflammatory disorder of the lungs, specifically affecting the

bronchi and bronchioles. It is characterized by intermittent airflow obstruction, airway

hyper-responsiveness, and recurrent episodes of breathlessness, wheezing, chest

tightness, and coughing. If left untreated, it can lead to irreversible airway remodelling
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and intractable airflow limitation (1, 2). Asthma represents a major

global health concern, affecting an estimated 262 million

individuals worldwide, and its prevalence continues to increase (3).

In Kuwait, asthma prevalence is notably high, with recent

estimates between 11%–15% among adults, 18% in children, and

an overall adjusted rate of approximately 9.5%—the highest in

the Gulf region (4, 5). Asthma-related hospital admissions and

mortality also remain significant. Although hospitalization rates

declined by 49.5% and mortality by 77.6% from 2000 to 2014

(6), recent WHO data (7) reported an age-adjusted mortality rate

of 1.12 per 100,000, reflecting a persistent disease burden despite

improved management. Kuwaiti nationals experience significantly

higher risks than non-Kuwaitis for both hospitalizations and

mortality, as indicated by adjusted rate ratios exceeding 1.8 and

1.2, respectively. This disparity arises from environmental factors

(e.g., dust storms, historical oil-related pollution, humidity,

indoor allergens like incense), behavioural risks (e.g., smoking

prevalence of 20%–30%, household second-hand smoke),

socioeconomic issues (e.g., stigma, delayed care, emergency

service overuse), and clinical factors (e.g., high comorbidity rates

such as allergic rhinitis in 70%–80%, obesity around 40%, and

poor adherence to medications) (6, 8). Non-Kuwaitis, often

expatriates, may be underdiagnosed or repatriated in severe cases,

artificially reducing reported rates (6). Psychological stressors,

including war-related trauma, further increase risks among

Kuwaitis (9). Compared to other populations, Kuwait’s asthma

prevalence (9.5%–18%) is generally lower than Caucasian cohorts

(10%–20%) but higher than East African populations (∼5%–6%).

Differences are likely due to varying environmental exposures

and genetic factors (5, 10). Kuwait’s unique context—with high

consanguinity rates (∼50%) increasing the expression of recessive

genetic variants in key immune pathways and significant

environmental stressors—exacerbates asthma susceptibility,

severity, and allergic phenotypes, highlighting the need for

targeted research and interventions (8, 11).

Asthma is a multifactorial disorder where genetic and

environmental factors interact to influence disease susceptibility

and severity (12). Numerous genome-wide association studies

(GWAS) have identified key autosomal genetic loci of asthma,

including genes involved in immune response and inflammation

pathways, such as TSLP, TNFSF4, ADORA1, CHIT1, GATA3, and

MUC5AC (1, 2, 13, 14). These genes primarily regulate immune

responses, epithelial barrier function, and inflammatory processes

associated with asthma pathogenesis. However, despite these

insights, a parental history of allergy—particularly from the

maternal side—remains a notably strong predisposing factor

(15–18). Children of asthmatic mothers are at higher risk

of developing asthma compared to those with non-asthmatic

mothers (19, 20), suggesting that maternal inheritance,

including mitochondrial DNA (mtDNA), could contribute to

asthma susceptibility.

Mitochondria are specialized organelles responsible for cellular

energy production and are inherited exclusively from the mother.

They contain their own genome, encoding key proteins and RNA

molecules essential for oxidative phosphorylation (OXPHOS),

which drives ATP production and supports cellular metabolic

balance. In addition to generating energy, mitochondria play

crucial roles in regulating calcium homeostasis, apoptosis, and

the production of reactive oxygen species (ROS). Excessive ROS

production can lead to oxidative stress and activate inflammatory

pathways, contributing to chronic inflammation and tissue

damage (21). Mitochondrial dysfunction, resulting from

mutations or variants in mtDNA, can impair OXPHOS

efficiency, leading to increased ROS levels and promoting

inflammatory responses—central mechanisms implicated in

asthma pathogenesis (22).

Previous studies have investigated the potential role of

mitochondrial genetic background in asthma. Raby et al. (23)

identified an association between mitochondrial haplogroup

U and elevated total serum IgE levels in children with asthma,

primarily in Caucasian populations. Similarly, Zifa et al. (24)

reported specific mtDNA mutations more frequent in

asthmatics than in controls in a Greek cohort. Studies

conducted in Chinese (25) and German (26) populations also

identified mtDNA variants associated with asthma risk or

severity. More recently, studies in admixed and African

ancestry populations, such as those by Vergara et al. (27) and

Xu et al. (28), have reported associations between maternal

African mitochondrial ancestry or mtDNA copy number and

asthma-related traits. Collectively, these findings support the

role of mitochondrial genetic variation in asthma susceptibility

across multiple ancestries.

However, the specific contributions of mtDNA in Middle

Eastern populations—particularly those with substantial African

and Asian haplogroup components—remain largely unexplored.

This study addresses this gap by investigating mitochondrial

variation in a Kuwaiti cohort, providing novel insights into

population-specific asthma risk mechanisms.

We previously demonstrated the effectiveness of next-

generation sequencing (NGS) whole-exome data for capturing

the mitochondrial genome. Our comparative analyses using

duplicate samples sequenced via whole-genome and Sanger

sequencing revealed high concordance in identifying

mitochondrial variants and haplogroups, validating the utility of

exome data for mitochondrial genetic analysis (29, 30).

Building on this background, we investigated mitochondrial

DNA variation and haplogroup distribution in a Kuwaiti cohort

to assess potential associations with asthma susceptibility.

Materials and methods

Ethical considerations

The study was conducted in accordance with the principles

outlined in the Declaration of Helsinki (2008 amendments).

Written informed consent was obtained from all participants,

and ethical approval was granted by the Ethical Review

Committee at Dasman Diabetes Institute. For further details on

the recruitment process and initial cohort characteristics, please

refer to John et al. (31).
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Study exome data

A total of 287 self-reported Kuwaiti participants, who were part

of a population genetics study in Kuwait and selected to be free

from rare genetic disorders, were divided into two groups:

asthma (48 individuals) and control (239 individuals). All

participants were adults (≥18 years) and provided written

informed consent. Inclusion criteria included Kuwaiti nationality.

Individuals with known monogenic or immune-related disorders

were excluded, while those with common complex conditions

were not, to reflect the general adult population (31). These

individuals, described in detail in John et al. (31), underwent

whole-exome sequencing using the Illumina HiSeq platform

(Illumina Inc., USA) with two different capture kits: the TruSeq

Exome Enrichment kit (obsolete) or its replacement the Nextera

Rapid Capture Exome kit. The sequencing protocols, DNA

extraction methods, and quality control measures are detailed in

John et al. (31).

Variant-level data (including sample IDs, mitochondrial

variants, and haplogroup classifications) for all individuals are

provided in Supplementary Table S1. Raw sequencing data are

publicly available under the Sequence Read Archive (SRA)

accession number PRJNA1162699.

mtDNA sequences, variants calling,
annotation and haplogroups classification

Raw paired-end reads generated from whole-exome sequencing

were aligned to the GRCh37 human genome assembly, which

includes both nuclear and mitochondrial sequences, using BWA-

MEM version 0.7.17 with default settings (32). This strategy

reduces misalignment of nuclear mitochondrial DNA segments

(NUMTs), as NUMT-derived reads preferentially align to their

nuclear locations (33). Duplicate reads were removed using

Picard tools version 2.20.2, and mtDNA sequences

(NC_012920.1) were extracted using SAMtools version 0.1.19

(34). Coverage for the mitochondrial genome was calculated

using SAMtools depth, yielding an average coverage of 27×,

which was sufficient for reliable variant calling and haplogroup

assignment (29, 30).

Variant calling was performed using the Genome Analysis

Toolkit (GATK) version 3.8-1-0 (35) with the HaplotypeCaller

module. The output was generated as Genomic Variant Call

Format (GVCF) files, which were subsequently merged to

produce a multi-sample Variant Calling Format (VCF) file. As

this study focused on fixed mtDNA variants, the potential

influence of residual NUMT reads is expected to be minimal.

Haplogroups were assigned using the HaploGrep2 tool (36).

This was based on PhyloTree build 17 (accessed March 5, 2024),

via upload of the mtDNA VCF file to the online platform.

Annotation of the mtDNA variants was carried out using the

Ensembl Variant Effect Predictor (37), incorporating functional

predictions from SIFT and PolyPhen-2. Additionally, variants

were cross-referenced with MitoMaster (38) and ClinVar

(https://www.ncbi.nlm.nih.gov/clinvar/) databases to assess

potential clinical relevance.

Statistical analyses

Descriptive statistics for clinical characteristics were performed

using R software version 3.6.2 (https://www.R-project.org/).

Categorical variables, including sex and smoking status, were

presented as numbers and percentages. In contrast, continuous

variables, such as age and BMI, were presented as

mean ± standard deviation (SD), median, and interquartile range

(IQR). The Chi-square test was used to examine associations

between categorical variables and asthma. Since age and BMI

scores were not normally distributed, as determined by the

Shapiro–Wilk test, the Mann–Whitney U-test was employed to

evaluate their association with asthma.

Principal component analysis (PCA)

To investigate potential hidden relationships and batch effects,

PCA was performed using the complete set of mtDNA variants.

The PCAtools package in R software version 3.6.2 was employed

to generate biplots using the first and second principal

components (PCs) to visualize clustering patterns and assess the

influence of covariates.

Association analysis

Nominal associations between asthma and mtDNA

haplogroups were tested using Fisher’s exact test. Odds ratios

(OR) and 95% confidence intervals (CI) were calculated for each

haplogroup, with a P-value < 0.05 considered statistically

significant. To adjust for covariates (age, sex, and BMI), logistic

regression was performed using IBM® SPSS® Statistics Version

25 software. The covariates age, sex, and BMI were selected to

account for their influence on asthma risk within our cohort.

Age was included due to its association with varying asthma

prevalence (18), sex was adjusted for based on observed

differences in susceptibility (2), and BMI was incorporated due

to its significant association with asthma in our cohort (Table 1;

P = 0.003) and link to inflammation (6). These were controlled

for in the logistic regression to minimize confounding and isolate

genetic associations with asthma. For mtDNA variant

associations, logistic regression was implemented using PLINK

version 1.9 (39), adjusting for age, sex, BMI, and haplogroup to

minimize confounding effects. Haplogroup adjustment accounted

for potential maternal lineage effects, addressing population

structure to ensure reliable genetic associations. Multiple testing

corrections, such as Bonferroni or Benjamini-Hochberg

procedures, were not applied, reflecting the exploratory nature of

the analysis and the complexity of mitochondrial DNA, given

that asthma is a complex, multifactorial disease where these

associations may involve cumulative variant effects.
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To address potential inflation due to case-control imbalance, we

performed a sensitivity analysis using Firth logistic regression in

PLINK v2.0 with the –glm firth-fallback option, using the same

covariates as the primary analysis. This method applies penalized

likelihood estimation to reduce bias in unbalanced datasets.

Exclusivity analysis

Exclusivity analysis was conducted to identify mtDNA variants

recurrently present in asthmatic individuals, thereby increasing the

likelihood of disease association. Variants were retained only if they

were detected in more than one asthma patient and completely

absent from the control group. Variants present in any control

or found in only one asthmatic individual were excluded. The

retained variants were then subjected to Fisher’s exact test, with a

P-value < 0.05 considered significant.

Results

Study population

The descriptive statistics for the dataset, comprising 287

Kuwaiti individuals, are presented in Table 1. The study

population included 48 asthmatic individuals and 239 controls.

There were no significant differences between cases and controls

regarding sex, age, or smoking status. However, the results of the

Mann–Whitney U-test for BMI scores showed that individuals

with asthma had significantly higher BMI scores compared to

control samples (P = 0.003).

mtDNA coverage and variants

To assess the uniformity of mitochondrial genome coverage across

the 287 samples analyzed, we generated a genome-wide coverage

profile from the WES data. As shown in Supplementary Figure S1,

the coverage was consistent across nearly all mtDNA positions, with

an average depth of ∼27× and no evidence of regional dropout.

Principal component analysis (PCA)

Using the HaploGrep 2 tool, we identified 12 mitochondrial

haplogroups (H, HV, J, K, L, M, N, R, T, U, W, X) across the

sample set. Among these, haplogroup J was the most prevalent

across the entire sample set (n = 287; 54 individuals, as shown in

Table 2). The average quality score of predicted haplogroups for

all samples was above 91%, indicating high accuracy in

haplogroup assignment. Principal component analysis (PCA) was

performed on 1,241 mitochondrial variants from 287 Kuwaiti

samples (48 asthmatic, 239 controls). PCA revealed clustering

patterns consistent with haplogroup assignment, indicating that

mtDNA variants could capture maternal lineage without

confounding effects. The biplot of PC1 vs. PC2 (Figure 1) shows

the distribution of samples based on their haplogroups,

confirming no significant population stratification.

The control group, consisting of individuals without asthma, is

represented by circles, while the case group, consisting of

individuals with asthma, is represented by triangles. The x-axis

and y-axis denote the first and second principal components

(PC1 and PC2), respectively, with the percentage of variation

they explain.

Mitochondrial haplogroups association with
asthma

Haplogroup association analysis revealed that individuals with

haplogroup M had a significantly higher risk of developing asthma

(OR = 3.65; P = 0.013). After adjusting for age, sex, and BMI, the

association remained significant (OR = 3.37; 95% CI = 1.091–

10.416; P = 0.035). Asthma is a complex, multifactorial disease, and

TABLE 1 Clinical characteristics of the Kuwaiti asthma study.

Asthmatic (N= 48) n (%) Control (N = 239) n (%) Total (N = 287) n(%) P-value

Sex

Male 19 (40%) 98 (41%) 117 (41%) 0.98

Female 29 (60%) 141 (59%) 170 (59%)

Age (years)

≤50 16 (33.3%) 119 (49.8%) 135 (47%) 0.08

>50 32 (66.7%) 120 (50.2%) 152 (53%)

Mean ± SD 51.7 ± 10.9 53.7 ± 10.9 52.5 ± 11

Median (IQ) 51 (44–59) 54 (47–60) 52.5 (45–59)

Smoking

Yes 7 (14.6%) 52 (22.8%) 59 (20.6%) 0.35

No 41 (85.4%) 187 (78.2%) 228 (79.4%)

BMI score

Mean ± SD 36.4 (10.3) 31.8 (8.7) 32.6 ± 9.1 0.003

Median (IQ) 35.4 (29.1–42) 30.1 (24.6–38.3) 31(25.3–38.9)

P-values for continuous age and BMI scores were calculated using the Mann–Whitney U-test. P-values for sex and smoking status were calculated using the Chi-square test.
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this association may reflect cumulative effects of variants within

haplogroup M, potentially interacting with environmental factors.

This P-value would not remain significant after correction for the

multiple haplogroups tested (n = 12), consistent with the exploratory

approach given the numerous mtDNA variants identified.

Mitochondrial variant association with
asthma

In total, nine mitochondrial variants were found to be significantly

associated with asthma (P-values <0.05) using univariate analysis

(Table 3). Of these, eight variants remained significant after adjusting

for age, sex, BMI, and maternal haplogroups using multivariate

logistic regression. All eight variants were positively associated with

asthma (OR > 1). The one variant that lost its significance after

adjustment was an upstream variant in the MT-TP, specifically

MT:16519C > T, which was negatively associated with asthma

(OR < 1). Another upstream variant in the MT-TP gene,

MT:16359T >C, had the most significant P-values (0.015 in

univariate and 0.005 in multivariate analyses), with a 15-fold and

27-fold likelihood of being associated with asthma, respectively.

Post hoc power analysis was conducted to evaluate the study’s

ability to detect observed associations. For haplogroup M (12.5% in

FIGURE 1

PCA analysis of 287 Kuwaiti samples based on their mtDNA.

TABLE 2 Mitochondrial haplogroup associated with asthma in the Kuwaiti population.

Haplogroups Asthmatic N (48) Control N (239) OR P-value OR (95% CI)* P-value*

H 10 (20.83%) 36 (15.06%) 1.48 0.32 1.553 (0.696–3.468) 0.283

HV 0 (0%) 10 (4.18%) 0 0.149 – 0.997

J 5 (10.41%) 49 (20.50%) 0.45 0.103 0.423 (0.156–1.152) 0.092

K 2 (4.16%) 8 (3.34%) 1.26 0.778 1.190 (0.229–6.176) 0.836

L 3 (6.25%) 33 (13.80%) 0.42 0.149 0.337 (0.095–1.193) 0.092

M 6 (12.5%) 9 (3.76%) 3.65 0.013 3.371 (1.091–10.416) 0.035

N 4 (8.33%) 17 (7.11%) 1.19 0.767 1.277 (0.395–4.126) 0.683

R 7 (14.58%) 25 (10.46%) 1.46 0.408 1.696 (0.666–4.321) 0.268

T 5 (10.41%) 14 (5.85%) 1.87 0.246 1.556 (0.511–4.742) 0.436

U 5 (10.41%) 27 (11.29%) 0.91 0.86 1.098 (0.387–3.118) 0.86

W 0 (0%) 3 (1.25%) 0 0.435 – 0.998

X 1 (2.08%) 8 (3.34%) 0.61 0.647 0.631 (0.075–5.332) 0.672

Bold values indicate statistically significant associations between mitochondrial haplogroups and asthma in the Kuwaiti population (P < 0.05).

*Values after adjustment for age, sex, and BMI.

N, number of individuals; OR, odds ratio; CI, confidence intervals.
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cases vs. 3.76% in controls), power estimates ranged from 56%

(two-proportion z-test) to 68% (chi-squared method). For the

most significant variant, MT:16359T > C (6.2% in cases vs. 0.4%

in controls), the estimated power was approximately 66%,

indicating moderate statistical power. To account for potential

inflation due to case-control imbalance, we performed a

sensitivity analysis using Firth logistic regression (Supplementary

Table S2). All mitochondrial variants that were significant in the

standard logistic regression remained significant, and none

required penalization (FIRTH? = “No”), suggesting that these

associations are unlikely to be driven by imbalance-related bias.

Moreover, five SNPs were detected exclusively in the asthmatic

group, in at least two individuals each (Table 4). These SNPs were

also found to be significant when analysed using Fisher’s exact test.

Among them were two upstream variants, MT:16319G > A and

MT:16368T > C, in the MT-TP gene. Additionally, two coding

variants in the MT-ND5 gene [nicotinamide adenine dinucleotide

(NADH) dehydrogenase subunit 5]—a missense variant

(MT:12346C > T) and a synonymous variant (MT:13152A > G)—

and one synonymous variant in the MT-ND1 gene (NADH

dehydrogenase subunit 1) (MT:3705G > A) were identified. To

further evaluate the reliability of these low-frequency mtDNA

variants, we performed manual inspection using the Integrative

Genomics Viewer [IGV; (40)]. All variants were visually

confirmed with clear read support (Figure 2).

The in silico functional analysis using SIFT and PolyPhen-2

tools suggested that none of the mtDNA exonic variants were

predicted to be pathogenic or likely pathogenic. However, the

clinical significance of the synonymous variants MT:14783T > C

and MT:15043G > A in the MT-CYB gene, both positively

correlated with asthma, has been reported as likely pathogenic

for familial breast cancer in the ClinVar database. Additionally,

the Mitomaster database indicates that the MT:15043G > A

variant is associated with Major Depressive Disorder (41).

Furthermore, the synonymous variant MT:10400C > T, which is

positively correlated with asthma, has been associated with

gastric cancer susceptibility (42) and Leber hereditary optic

neuropathy (43) in the literature.

IGV screenshots showing read alignments at the genomic

positions of the five mtDNA variants listed in Table 4. Each

panel highlights the variant position, where coloured bases

represent mismatches from the reference genome. The

alignments show consistent read support from both strands,

along with depth and base quality metrics, confirming the

presence of these variants despite their low allele frequency in

the cohort.

Discussion

Kuwait’s unique genetic and environmental context provides a

window into how mtDNA haplogroups and variants can influence

asthma. The 1991 oil fires and ongoing pollution have imposed

chronic oxidative stress on the population (44–46). These

environmental stressors likely interact with genetic factors –

particularly mitochondrial variants– to modulate OXPHOS

efficiency and inflammatory responses (21, 22).

In this context, we investigated the association between

mtDNA haplogroups and variants with asthma risk by analysing

indirect whole-exome sequences from 287 Kuwaiti individuals,

with an average mtDNA coverage of 27× Principal component

analysis revealed that individuals sharing the same maternal

haplogroup clustered together, supporting the accuracy of our

haplogroup profiling and indicating minimal confounding factors.

TABLE 3 Mitochondrial variants associated with asthma in the Kuwaiti population.

mtDNA Variant Gene Consequence Asthmatic F Control F OR (95% CI) P-value OR (95% CI)* P-value *

MT:16359T > C MT-TP Upstream 0.062 0.004 15.8 (1.607–155.3) 0.015 27.8 (2.682–288.3) 0.005

MT:7853G > A MT-CO2 Missense 0.062 0.004 15.73 (1.6–154.7) 0.015 18.25 (1.69–197.1) 0.016

MT:14783T > C MT-CYB Synonymous 0.125 0.037 3.61 (1.224–10.7) 0.025 3.52 (1.143–10.84) 0.028

MT:10400C > T MT-ND3 Synonymous 0.125 0.038 3.57 (1.208–10.56) 0.026 3.47 (1.127–10.72) 0.030

MT:15043G > A MT-CYB Synonymous 0.130 0.042 3.40 (1.172–9.892) 0.029 3.21 (1.057–9.8) 0.039

MT:12403C > T MT-ND5 Missense 0.062 0.008 7.9 (1.283–48.63) 0.034 8.49 (1.239–58.27) 0.029

MT:16248C > T MT-TP Upstream 0.062 0.008 7.86 (1.278–48.42) 0.034 7.30 (1.119–47.64) 0.037

MT:14110T > C MT-ND5 Missense 0.062 0.008 7.83 (1.273–48.22) 0.035 8.43 (1.232–57.76) 0.029

MT:6446G > A MT-CO1 Synonymous 0.062 0.008 7.76 (1.262–47.81) 0.035 8.49 (1.234–58.49) 0.029

MT:16519C > T MT-TP Upstream 0.266 0.437 0.46 (0.230–0.952) 0.045 0.51 (0.243–1.086) 0.081

*Values after adjustment for age, sex, BMI, and mitochondrial haplogroup.

F, frequency; OR, odds ratio; CI, confidence intervals.

TABLE 4 Significant associated mtDNA variants that present only in asthmatic individuals (>1).

mtDNA variants Gene Consequence Number of individuals Amino acids SIFT PolyPhen P-value

MT:16319G > A MT-TP Upstream 4 – – – 0.001

MT:3705G > A MT-ND1 Synonymous 3 L – – 0.004

MT:12346C > T MT-ND5 Missense 3 H/Y tolerated unknown 0.004

MT:13152A > G MT-ND5 Synonymous 2 L – – 0.027

MT:16368T > C MT-TP Upstream 2 – – – 0.028
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The maternal haplogroup association analysis revealed

mitochondrial haplogroup M as a significant risk factor for

asthma in the Kuwaiti population. Individuals in our study

carrying maternal haplogroup M had a threefold increased risk

of developing asthma (OR = 3.371; 95% CI = 1.091–10.416;

P = 0.035) after adjusting for covariates. To our knowledge, this is

the first study to report such an association. Haplogroup M is

predominantly found in Asian and African populations

compared to European populations (47) and may confer asthma

risk due to specific mitochondrial variants that contribute to

mitochondrial dysfunction, oxidative stress, and inflammation—

pathways strongly implicated in asthma pathogenesis (22).

Kuwait’s population has a distinctive genetic makeup shaped

by admixture from settlers of Saudi Arabian, Iranian, and other

Arabian Peninsula origins, with a significant African contribution

observed among its Bedouin subgroups (48). Thus, the

identification of haplogroup M as an asthma risk factor in this

study likely reflects unique genetic backgrounds interacting with

specific regional environmental exposures, such as elevated

pollution levels and allergen prevalence.

Our finding contrasts notably with previous studies focusing

primarily on European-ancestry cohorts, where haplogroup

U rather than M has been implicated. For instance, Raby et al.

(23) observed that haplogroup U carriers in North America

exhibited significantly higher serum IgE levels and greater atopic

sensitization compared to non-carriers. Similarly, Zifa et al. (24)

found a significant association between haplogroup U and

asthma severity in a Greek cohort, where 27.6% of asthma

FIGURE 2

IGV visualization of the five low-frequency mtDNA variants identified exclusively in asthma patients.
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patients belonged to haplogroup U compared to only 4% of

controls. These earlier studies suggest a mitochondrial maternal

lineage effect underlying asthma susceptibility and severity. In

our Kuwaiti cohort, haplogroup U showed no significant

association with asthma, nor did it follow frequency trends

previously observed in Western populations; its frequency was

marginally higher (by approximately 1%) in controls compared

to asthmatics. This discrepancy highlights the complexity of

mitochondrial genetic factors in asthma and emphasizes the

importance of investigating diverse populations. While genetic

background and environmental context may contribute to

population-specific associations, the lack of replication of

previously reported haplogroup U associations may also reflect

limited statistical power in our modest cohort. Therefore, the

novel association between haplogroup M and asthma identified

here likely arises from mitochondrial polymorphisms within

haplogroup M sub-clades that may confer neutrality or selective

advantage in their original geographic context but predispose

carriers to asthma in Kuwait’s specific environmental conditions.

Beyond haplogroup comparisons, we identified 10 exonic

mitochondrial variants associated with asthma risk through two

complementary analyses: case-control association testing (Table 3)

and exclusivity analysis (Table 4), within genes encoding subunits

of Complex I (MT-ND1, MT-ND3, MT-ND5), Complex III

(Cytochrome b gene, MT-CYB), Complex IV (Cytochrome c

oxidase genes, MT-CO1, MT-CO2), and the D-loop region

upstream of the mitochondrial tRNA-Pro (MT-TP) gene. Complex

I mediates electron transfer from NADH to ubiquinone, Complex

III facilitates electron transfer from ubiquinol to cytochrome c,

and Complex IV catalyses electron transfer to molecular oxygen.

Genetic variants within these complexes can disrupt mitochondrial

electron transport, resulting in mitochondrial dysfunction, elevated

ROS production, oxidative stress, and inflammatory responses—

key mechanisms underlying asthma pathogenesis (49–53). Notably,

both missense and synonymous variants were identified in these

critical genes. Although our study did not directly assess

functional impact, prior research has shown that similar types of

variants in these same mitochondrial genes can disrupt mRNA

stability, translation, or electron transport, potentially leading to

excess ROS and inflammation (49, 54, 55). These mechanisms

may underlie the biological relevance of the observed associations

in asthma. Previous research by Fukuda et al. (56) identified

altered expression of mitochondrial respiratory chain genes,

specifically subunits of Complex I (NADH dehydrogenase) and

Complex IV (Cytochrome c oxidase II and III), in allergic airway

conditions, collectively reinforcing the relevance of mitochondrial

genetic variants in asthma susceptibility.

In addition to exonic variants, our study identified variants in the

mitochondrial control region (MT:16248C > T, MT:16319G >A) and

upstream of the tRNA-Pro gene (MT:16359T > C) associated with

asthma susceptibility. The control region variants (MT:16248C > T,

MT:16319G >A), located in hypervariable region 1 (HVR1), are

traditionally linked to haplogroup-defining polymorphisms but

may also influence mtDNA replication or transcription efficiency.

Alterations in control region activity could modulate mitochondrial

copy number or nucleoid organization, indirectly exacerbating

oxidative stress in airway cells—a mechanism implicated in asthma

pathogenesis (28). While the upstream MT:16359T > C variant does

not directly alter the tRNA-Pro gene, previous studies have

demonstrated that mitochondrial tRNA mutations are significantly

more frequent in asthmatic patients than in controls (24–26).

Although our study did not detect the MT:3243A >G mutation in

tRNA-Leu(UUR)—a variant classically linked to MELAS syndrome

but reported in other asthma cohorts (57)—the observed

enrichment of tRNA-Pro variants in our cohort supports the

broader role of mitochondrial tRNA destabilization in airway

disease. Such tRNA defects impair respiratory chain biogenesis,

elevate ROS production, and amplify inflammatory responses

in airway epithelia (52). Interestingly, one MT-TP variant

(MT:16519C > T) initially exhibited a protective effect against

asthma in our cohort (OR = 0.46; P = 0.045); however, this

association did not remain significant after adjusting for covariates.

This suggests that the protective effect may be influenced by

confounding factors, warranting further investigation.

While SIFT and PolyPhen-2 predicted low pathogenicity for the

variants identified in our study, these tools were developed for nuclear

genes and may not reliably assess mitochondrial variants. Wang et al.

(58) reported only ∼57% concordance between predictions and

known mtDNA variant classifications, highlighting the need for

cautious interpretation of such results. Moreover, ClinVar does not

annotate any mtDNA variants for asthma, including those

identified here, across all clinical classifications. However, some are

linked to other conditions sharing mitochondrial dysfunction,

inflammation, or oxidative stress with asthma pathogenesis (59).

For example, familial breast cancer and gastric cancer involve

chronic inflammation and ROS overproduction (60, 61); major

depressive disorder exhibits comorbidity with asthma via cytokine

dysregulation (62); and Leber hereditary optic neuropathy features

mitochondrial impairment with elevated ROS (63), akin to airway

oxidative stress in asthma.

This study has certain constraints that warrant

acknowledgment. The primary limitation is the modest cohort

size (n = 287, including 48 asthmatic individuals), which limits

the statistical power to detect associations with rare

mitochondrial haplogroups or low-frequency variants. Post hoc

power analysis indicated moderate power for key findings (56%–

68% for the haplogroup M association and ∼66% for

representative mtDNA variants), highlighting the need for

replication in larger, independent cohorts. The retrospective

nature of the study and its nesting within a broader population-

based genetic cohort resulted in a fixed case-control ratio. To

address potential bias from this imbalance, we performed a

sensitivity analysis using Firth logistic regression, which showed

that the primary associations remained statistically significant.

Additionally, asthma status was self-reported, precluding

stratification by disease severity or immunological subtypes (e.g.,

eosinophilic asthma) and limiting adjustment for clinical

covariates such as IgE levels. While WES is not primarily

designed for mtDNA capture, previous validations—including our

own—support its utility in detecting homoplasmic variants and

assigning haplogroups. Our analysis showed consistent coverage

across the mitochondrial genome (mean depth ∼27×) without
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regional dropout; meeting depth thresholds commonly used for

reliable variant calling. However, this depth is suboptimal for

detecting low-frequency heteroplasmic variants, which require

higher coverage and targeted sequencing to distinguish from

technical artifacts (33). Heteroplasmy is also tissue-specific; thus,

blood-derived mtDNA may not fully represent disease-relevant

mitochondrial variation in airway tissues (64). Multiple testing

correction was not applied, as conventional methods (e.g.,

Bonferroni) can be overly conservative for mitochondrial data due

to its linked, non-recombining structure, potentially masking

cumulative effects in a multifactorial disease like asthma. Future

studies should incorporate larger cohorts, deeper tissue-targeted

sequencing, and orthogonal validation methods to more accurately

characterize mtDNA heterogeneity in asthma.

Conclusion

Despite its limitations, this study provides novel insights into the

role of mitochondrial genetics in asthma susceptibility within the

Kuwaiti population. We identified mitochondrial haplogroup M as

a significant risk factor, along with several mtDNA variants in

genes directly involved in mitochondrial dysfunction and ROS

production—both of which are implicated in asthma pathogenesis.

These findings emphasize the interplay between maternal lineage,

mitochondrial biology, and asthma risk, offering a foundation for

future research. Further functional studies—including in vitro or

in vivo experiments—in larger Middle Eastern cohorts are

necessary to validate these associations and to explore how

mitochondrial genetic profiles interact with environmental

stressors to influence asthma outcomes.
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