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Bispecific antibodies represent an important innovation in the field of biomedicine

in recent years. Compared to monoclonal antibodies, their specific structure

enables a single antibody molecule to bind to two different antigens

simultaneously. This characteristic endows bispecific antibodies with more

functions, regulating multiple signal pathways simultaneously, enhancing the

therapeutic effect, and by infusion of targeted tumor antigens and drug carriers

in advance, the contact time between the drug and normal tissues is reduced,

and the toxic side effects are greatly reduced. They have shown promising

application prospects, especially in dermatology and other fields. This article

reviews the basic concepts of bispecific antibodies and their potential application

in the treatment of skin diseases, including inflammatory skin diseases, skin

tumors, and infectious skin diseases. The aim is to explore the current

application status and future development directions of bispecific antibodies in

dermatology, so as to provide references for related research and clinical practice.

KEYWORDS
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1 Introductions

Bispecific antibodies (BsAbs) are a class of antibodies that can simultaneously recognize

and bind to two different antigens. In recent years, they have received extensive attention due

to their potential applications in cancer immunotherapy and other diseases (1). The specific

structure of BsAbs enables them to target two different molecules simultaneously irrespective

if they are located on one cell or not, which enhances the therapeutic effect and potentially

reducing side effects, for example, bispecific antibodies can be infused in advance with

bispecific antibodies targeting tumor antigens and drug carriers using advance targeting

tumor antigens and drug carriers, and then drug carriers can be infused. This method of

administration can reduce the contact time between the drug and normal tissues, and

greatly reduce the toxic side effects (2). The design of BsAbs generally falls into categories

visualized in Figure 1 (structural formats, e.g., AZ17, Bimekizumab) and Figure 2

(pathway targeting, e.g., TNF-α/IL-17 axes). As shown, antibodies based on single—chain

variable fragments (scFvs), like certain early—stage constructs not fully depicted here but

following the scF vs. design principle, feature a compact structure with linked variable

regions for dual—antigen recognition, enabling rapid tissue penetration. Full—length IgG

—based antibodies, well—exemplified by Bimekizumab in Figure 1, retain the classic IgG

architecture with two antigen—binding arms, allowing them to engage Fc receptors and
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trigger immune effector functions while binding to targets such as IL-

17A/IL-17F. Fusion proteins, a category that can integrate diverse

functional domains, might operate across pathways shown in

Figure 2, like simultaneously interacting with cytokine—related

targets in the TNF-α/IL-17 axes to modulate inflammatory

cascades. These structural categories each bring distinct

pharmacokinetic and pharmacodynamic properties, shaping their

potential in dermatologic therapy. Among them, scFvs represent a

minimal format of bispecific antibodies, typically composed of two

distinct antigen-binding sites formed by linking the variable

domains of immunoglobulin heavy (VH) and light (VL) chains via

a flexible polypeptide linker. This format features a relatively small

molecular weight and enhanced tissue penetration (2). However,

due to the absence of an Fc region, scFvs generally have a shorter

half-life. For example, the BiTE (bispecific T-cell engager) drug

Blinatumomab (Blincyto, DrugBank® entry DB09052) has a mean

(±SD) elimination half-life of only 1.25 ± 0.63 h, necessitating

continuous intravenous (IV) infusion over a 4-week period to

maintain sufficient therapeutic serum concentrations. In contrast,

IgG-like bispecific antibodies retain the structural features of

conventional IgG molecules, consisting of two antigen-binding

fragments (Fabs) and one crystallizable fragment (Fc). Based on

their design strategy, they can be categorized into symmetric and

asymmetric structures. Asymmetric IgG-like bispecific antibodies

contain two distinct Fv regions, such as Catumaxomab (anti-

EpCAM× anti-CD3), which is produced using the quadroma

technology. Symmetric IgG-like bispecific antibodies achieve

bispecificity by attaching additional antigen-binding sites to the IgG

molecule (3). The Fc region in IgG-like bispecific antibodies serves

dual functions: it enables interaction with Fcγ receptors on

immune cells to mediate immune responses such as antibody-

dependent cellular cytotoxicity (ADCC), and it contributes to

prolonged circulating half-life of the antibody in vivo (4).

The function and effect of bispecific antibodies is widely

investigated in cancer therapy. BsAbs can close the gap between

FIGURE 1

Current dual-specificity therapeutic drugs for psoriasis under development. (A) AZ17, composed of two single-chain variable fragments (scFvs), each

binding to IL6 or IL23; (B) Bimekizumab, a humanized monoclonal antibody that simultaneously inhibits IL-17A and IL-17F; (C) Sonelokimab (M1095), a

trivalent anti-IL-17A/F nanobody; (D) COVA322, composed of Fynomer selectively binding to IL-17A, fused with the C-terminal light chain of the anti-

TNF-α antibody Adalimumab; (E) ABT-122, a dual-variable domain immunoglobulin targeting TNF-α and IL-17; (F) KYS202004, a dual-specificity

fusion protein antagonizing TNF-α and IL-17A; (G–I) The connection methods of BiAU003, BiAU022, and BiAU023 are IgG-scFv, DVD-IgG, and

IgG-Fab, respectively, all exhibiting high affinity for TNF-α and IL-12/23.

Abbreviations

BsAbs, bispecific antibodies; scFvs, single-chain variable fragments; VH, variable

domains of immunoglobulin heavy; VL, variable domains of immunoglobulin

light; IV, intravenous; ADCC, antibody-dependent cellular cytotoxicity; mAbs,

monoclonal antibodies; pAbs, polyclonal antibodies; TSLP, thymic stromal

lymphopoietin; SSc, systemic sclerosis; bsAbs, bispecific antibodies; SS,

Sjögren’s syndrome; HSV, herpes simplex virus.
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immune cells and tumor cells, induce the release of cytokines from

immune cells, or target different signaling molecules to inhibit the

growth and metastasis of tumors (5, 6). In recent years, candidate

drugs have entered the clinical trial stage. Blincyto, a bispecific

antibody targeting CD19 and CD3, has been approved for the

treatment of acute lymphoblastic leukemia (7–11). Bispecific

antibodies targeting different targets such as HER2 and CD3 are

also being continuously developed (12, 13).

In the field of dermatology, however, monospecific antibodies

remain the standard of care, particularly in the treatment of

immune-mediated skin diseases such as psoriasis and atopic

dermatitis. Approved therapies targeting single cytokines, including

IL-17A, IL-23, and IL-4Rα, have demonstrated robust clinical

efficacy and acceptable safety profiles. Nonetheless, bispecific

antibodies are emerging as a promising next-generation strategy,

especially in cases where single-target inhibition proves insufficient

due to the redundancy and interplay of inflammatory pathways.

BsAbs designed to simultaneously inhibit IL-17A and IL-17F, or

IL-13 and TSLP, have entered clinical development and have

shown favorable efficacy and safety signals. These agents are

designed to achieve enhanced therapeutic outcomes and

potentially reduce immunosuppressive side effects by offering a

more comprehensive blockade of disease-driving cytokines.

Cytokines are key mediators produced by immune, epithelial,

and endothelial cells that play central roles in the initiation and

perpetuation of inflammatory skin conditions. In psoriasis,

cytokines such as TNF-α, IL-17, and IL-23 are critical drivers of

the IL-23/Th17 axis, which promotes keratinocyte

hyperproliferation and inflammatory amplification through a

feed-forward loop involving antimicrobial peptides, chemokines,

and pro-inflammatory mediators (14–16). A summary of

monoclonal antibodies and bispecific antibodies for the treatment

of inflammatory skin diseases, including those targeting the

above cytokines, is provided in Table 1. IL-23 promotes the

differentiation and expansion of Th17 cells, thereby stimulating

the secretion of pro-inflammatory cytokines such as IL-17A and

IL-17F. IL-17 acts directly on keratinocytes, inducing the

production of antimicrobial peptides (e.g., β-defensins),

chemokines (e.g., CCL20), and other pro-inflammatory cytokines.

This establishes a positive feedback loop of inflammation, which

exacerbates skin lesion inflammation and contributes to the

hyperproliferation of keratinocytes (17). As a classic pro-

inflammatory cytokine, TNF-α not only enhances the activity of

the IL-23/Th17 pathway but also activates the NF-κB signaling

pathway, thereby further promoting the inflammatory cascade

response (18, 19). Other cytokines such as IL-1β, IL-6, and IL-12

FIGURE 2

Immunoregulatory network of IL-12, IL-23, TNFα, and IL-17 family members in Th cell differentiation. These cytokines mediate effects like broad

inflammatory responses, neutrophil recruitment against extracellular pathogens (e.g., fungi), and Th2 induction via receptors such as TNFR1/TNFR2

and IL-17RA/C. It also highlights therapeutic intervention points: Ustekinumab and Brakimumab target IL-12 (p35/p40), Guselkumab-class drugs

target IL-23 (p40/p19), ABT-122 and COVA322 act on TNFα, and Bimekizumab targets IL-17A/F, showcasing the complexity of cytokine—mediated

immune regulation and drug targeting.
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also play important roles in the inflammatory response of psoriasis,

promoting the infiltration of immune cells and the release of

inflammatory mediators (20). Bispecific antibodies achieve

therapeutic purposes by targeting these cytokines (21–23).

In the pathogenesis of atopic dermatitis, cytokines such as IL-4,

IL-5, and IL-13 are secreted by Th2 cells which can promote the

production and the infiltration of IgE, thus triggering the

inflammatory response of the skin (24). IL-31, as a newly

discovered cytokine, is closely related to the generation of itching

sensation, further exacerbating the condition of patients (25). On

the other hand, Th17 cytokines such as IL-17 and IL-22 also

play important roles in the chronic stage of atopic dermatitis,

promoting the damage of the skin barrier function and the

persistence of inflammation (26). Bispecific antagonistic

therapeutic strategies targeting these cytokines have shown good

clinical effects (27–30). While current clinical use still relies

heavily on monospecific antibodies, the development of BsAbs

tailored to complex cytokine networks represents a forward-

looking therapeutic strategy that may redefine the treatment

paradigm for inflammatory skin diseases.

2 Treatment of skin diseases with
traditional monospecific antibodies

Traditional monospecific antibody therapies—including

monoclonal antibodies (mAbs) and polyclonal antibodies (pAbs)-

have long been foundational in dermatologic treatment.

Monoclonal antibodies, derived from a single B cell clone, exhibit

high specificity and consistency, enabling targeted inhibition of

disease-relevant molecules. In contrast, polyclonal antibodies are

a heterogeneous mixture of immunoglobulins produced by

multiple B cell clones which recognize multiple epitopes on a

single or several antigens. Although pAbs lack the precision of

mAbs, their broader reactivity can be advantageous in certain

complex or polymicrobial disease contexts (32).

Clinically, mAbs have become central to the management of

inflammatory skin disorders. Anti-TNF-α mAbs such as

infliximab (31) and adalimumab (32, 33) are approved for

moderate-to-severe psoriasis, effectively reducing inflammation

by neutralizing TNF-α activity (15). Antibodies targeting IL-17

such as secukinumab (34), and those targeting IL-23, such as

ustekinumab (35) have also shown excellent clinical efficacy (36).

Ustekinumab has been shown to significantly relieve pruritus and

erythema by modulating Th1 and Th17 immune responses (37).

Other mAbs include rituximab, an anti-CD20 agent used in

autoimmune dermatoses such as dermatomyositis and lupus,

where B cell depletion reduces disease activity (38, 39). In

cutaneous oncology, anti-PD-1 therapy such as pembrolizumab

has improved melanoma outcomes by reactivating T cell

responses (40). pAbs, though less widely used, remain relevant in

specific contexts. Anti-IL-17 pAbs alleviate psoriatic symptoms

via broad immunomodulation (41), and anti-IgE pAbs show

promise in reducing allergic responses in atopic dermatitis (42,

43). Anti-venom and anti-infective pAbs assist in neutralizing

toxins and pathogens in wounds and infections (44–47).

TABLE 1 Summary of monoclonal antibodies and bispecific antibodies for the treatment of inflammatory skin diseases.

Antibody
name

Type Target Indication Developing
company

Global highest
R&D phase

Time of entering
this phase

Secukinumab Monoclonal Antibody IL-17A Psoriasis, Ankylosing

Spondylitis, etc.

Novartis Approved January 2015

Ixekizumab Monoclonal Antibody IL-17A Psoriasis, Psoriatic

Arthritis, etc.

Eli Lilly Approved March 2016

Bimekizumab Bispecific Antibody IL-17A & IL-

17F

Psoriasis UCB Approved August 2021 (EU)

Brodalumab Monoclonal Antibody IL-17RA Psoriasis Amgen/AstraZeneca Approved February 2017

Ustekinumab Monoclonal Antibody IL-12/23p40 Psoriasis, Crohn’s Disease,

etc.

Janssen (J&J) Approved September 2009

Guselkumab Monoclonal Antibody IL-23p19 Psoriasis, Psoriatic

Arthritis, etc.

Janssen (J&J) Approved July 2017

Tildrakizumab Monoclonal Antibody IL-23p19 Psoriasis Sun Pharma Approved March 2018

Risankizumab Monoclonal Antibody IL-23p19 Psoriasis, Crohn’s Disease,

etc.

AbbVie Approved March 2019 (Japan)

Mirikizumab Monoclonal Antibody IL-23p19 Ulcerative Colitis, Crohn’s

Disease

Eli Lilly Approved April 2023 (FDA)

LY3090106/

Tibulizumab

Bispecific Antibody BAFF & IL-

17A

Sjogren’s Syndrome Eli Lilly Clinical Phase 2 December 2024

SAR156597/

Romilkimab

Bispecific Antibody IL-4 & IL-13 Systemic Sclerosis Sanofi Clinical Phase 2 January 2012

KYS202004A Bispecific Antibody IL-17A &

TNF-α

Psoriasis, Rheumatoid

Arthritis

Kyowa Kirin Clinical Phase 1 December 2024

NM26-2198 Bispecific Antibody IL-4Rα & IL-

31

Atopic Dermatitis Not Available Clinical Phase 1 May 2023

ABT-122 Bispecific Antibody IL-17A &

TNF-α

Rheumatoid Arthritis AbbVie Development Terminated –

Briakinumab Monoclonal Antibody IL-12/23p40 Psoriasis Abbott Development Terminated –

Brazikumab Monoclonal Antibody IL-23p19 Crohn’s Disease Amgen/AstraZeneca Preclinical Study –
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However, both mAbs and pAbs act on single targets, which may be

insufficient in complex diseases involving multiple inflammatory

pathways. This limitation has led to growing interest in bispecific

antibodies, which offer the ability to target two pathogenic

mechanisms simultaneously.

3 Applications of bispecific antibodies
in the field of oncology

BsAbs, which are capable of simultaneously recognizing two

different antigens or epitopes, have demonstrated unique

advantages and broad potential in the field of cancer therapy.

Currently, the application of BsAbs in oncology can be broadly

classified into several categories. The first category is T cell-

redirecting BsAbs (e.g., CD3 × tumor antigen), which engage

both T cells and tumor cells, promoting immune-mediated

killing. Blinatumomab, targeting CD3 and CD19, has shown

efficacy in acute lymphoblastic leukemia, significantly improving

remission rates (7, 9, 10). Similarly, the HER2/CD3 bispecific

antibody Zanidatamab effectively directs T cells against

HER2-positive tumors and is approved for HER2-positive breast

cancer (48, 49). In addition, a bispecific antibody targeting

prostate-specific membrane antigen (PSMA) and CD3 has shown

promising potential in the treatment of prostate cancer (50).

The second category includes dual-target inhibitory BsAbs that

block two oncogenic pathways simultaneously, helping overcome

resistance. ZEN003694-T, targeting EGFR and MET, is approved

for EGFR exon 20-mutated NSCLC, offering a new strategy for

refractory tumors. Tumor microenvironment-modulating BsAbs,

like XmAb20717 (targeting PD-1 and CTLA-4), provide broader

immune checkpoint inhibition than single-target mAbs,

enhancing antitumor immunity (51, 52). It is under clinical trial

for melanoma and other solid tumors.

Additionally, BsAbs can serve as targeted delivery vehicles,

simultaneously binding tumor cells and chemotherapeutics to

increase intratumoral drug accumulation while reducing off-

target toxicity (53, 54).

4 Applications of bispecific antibodies
in dermatology

The application of BsAbs in dermatology represents a rapidly

advancing frontier in therapeutic innovation. Recent preclinical

and clinical studies have demonstrated the potential of BsAbs in

a range of IMIDs, including psoriasis, atopic dermatitis, systemic

lupus erythematosus, systemic sclerosis, and primary Sjögren’s

syndrome. In these conditions, bsAbs have been designed to co-

target key cytokines, immune cell receptors, or fibrotic mediators

with aims to improve disease control, reduce treatment

resistance, and minimize systemic immunosuppression. This

approach holds particular promise in diseases where single-target

therapies have shown suboptimal efficacy, making BsAbs as a

strategic tool in the next generation of IMID treatment.

4.1 Psoriasis

Psoriasis is a chronic, relapsing, and inflammatory skin disease.

In recent years, there has been an increasing number of studies on

bispecific antibodies for psoriasis. The bispecific molecule AZ17

(Figure 1A) is generated by combining the high-affinity binding

domains derived from monoclonal antibodies targeting human

IL-6 and IL-23. AZ17 has been successfully tested in a mouse

model. Compared with single anti-IL-6 or anti-IL-23 antibodies,

it has shown greater efficacy in improving psoriatic-like

inflammation and epidermal thickness (55).

Bimekizumab (UCB4940) (Figure 1B) is a novel humanized

bispecific monoclonal IgG1 antibody. Adams et al. found that

bimekizumab showed the same affinity for IL-17A as the

commercially available ixekizumab and secukinumab, and

demonstrated significant effects in the treatment of psoriasis (22).

“In the study by Abdin et al., after treatment with bimekizumab,

76% of patients with moderate to severe plaque psoriasis achieved

clearance within 72 h” (56). Concurrent with efficacy, mild injection

site reactions (15.3%) and upper respiratory tract infections (10.2%)

were observed, with no reports of severe infections or

thromboembolic events (56). Sonelokimab (M1095) (Figure 1C) is a

novel trivalent nanobody composed of monovalent camelid

nanobodies specific for IL-17A, IL-17F, and human serum albumin.

In a phase 2b study, 120 mg or lower doses of sonelokimab showed

significant clinical benefits compared with the placebo. The

incidence of adverse events in the 120 mg group was comparable to

that in the placebo group (32.6% vs. 29.8%), with headache (6.8%)

and nasopharyngitis (5.1%) being the most common; no severe

allergic reactions or dose-limiting toxicities were reported (57).

Silacci et al. constructed the bispecific TNF/IL-17A antibody

COVA322 (Figure 1D), and it has completed phase I/II trials

(NCT02243787) in subjects with stable moderate to severe chronic

plaque psoriasis (58). ABT-122 (Figure 1E) is a DVD-Ig bsAb that

can also specifically neutralize human TNFα and IL-17A. Mease

et al. conducted a phase II trial (NCT02349451) in subjects with

active psoriatic arthritis who had an insufficient response to

methotrexate. In this study, compared with the placebo, no serious

infections or systemic hypersensitivity reactions were observed with

ABT-122. Common adverse events included injection site erythema

(8.7%) and diarrhea (4.3%), which were consistent with the safety

profile of adalimumab (59). The efficacy of ABT-122 was better

than that of the placebo within 12 weeks, but there was no

significant difference in efficacy between ABT-122 and the anti-

TNFα adalimumab (59, 60). In another long-term extension study

for rheumatoid arthritis (RA) and psoriatic arthritis, the efficacy of

ABT-122 could be maintained for 36 weeks (61). KYS202004

(Figure 1F) is also a novel bispecific fusion protein that antagonizes

TNF-α and IL-17A. In the psoriasis model, KYS202004A at a dose

of 2 mg/kg had the same efficacy as the combination of ixekizumab

and etanercept (62). In addition, Xu et al. designed bispecific

antibodies BiAU003 (Figure 1G), BiAU022 (Figure 1H), and

BiAU023 (Figure 1I) mainly based on the variable region sequences

of adalimumab and ustekinumab antibodies. These antibodies can

act as antagonists of TNF-α and IL-12/23 p40 and have a blocking

effect on the formation of psoriasis in mice (63).
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4.2 Atopic dermatitis

Atopic dermatitis (AD) is a complex chronic inflammatory skin

disease, and its pathogenesis is closely related to the disorder of the

immune system, especially the abnormal activation of T cells and

the secretion of cytokines (64). Dupilumab is a monoclonal

antibody targeting the IL-4 and IL-13 signaling pathways and has

been widely used in the treatment of AD (65). In recent years, a

number of clinical trials have confirmed the effectiveness and

safety of Dupilumab in improving the skin symptoms and quality

of life of patients with atopic dermatitis.

Dupilumab has shown excellent efficacy in reducing the area

and severity of eczema and has relatively few side effects (66). In

one clinical trial, Dupilumab showed significant efficacy. After

patients received the treatment, the severity of skin lesions (EASI

score) was significantly reduced, and the accompanying itching

symptoms were also effectively relieved (67). Another study

showed that after Dupilumab treatment, the quality of life

assessment (DLQI score) of patients was significantly improved,

and these effects remained stable during the duration of the

treatment (68). In terms of safety, Dupilumab is well-tolerated,

and the common adverse reactions are mainly injection site

reactions and eye-related adverse events (69).

The long-term efficacy and safety of Dupilumab have also been

further verified in an open-label extension study lasting 52 weeks

(70). Patients can still maintain good efficacy after long-term use

of Dupilumab (71). In addition, Tezepelumab is a novel

bispecific antibody that can target thymic stromal lymphopoietin

(TSLP) and IL-33 simultaneously and shows potential in the

treatment of severe atopic dermatitis (72). IL-33 promotes the

skin inflammatory response by activating Th2 cells and releasing

pro-inflammatory cytokines. Simpson et al. found that

Tezepelumab can significantly reduce the severity of eczema in

patients and improve the overall condition of the skin. In their

phase 2a trial, common adverse events were local erythema

(8.2%) and headache (6.5%), with no treatment-related serious

adverse events reported (73). Tezepelumab has also shown

potential efficacy in patients with psoriasis, further demonstrating

its broad application value in the treatment of skin diseases (74).

4.3 Systemic lupus erythematosus

Systemic lupus erythematosus (SLE) is a complex autoimmune

disease, and its pathogenesis involves the abnormalities of multiple

cytokines and immune responses. Firstly, IFN is considered an

important pathological factor in SLE, especially type I IFN. Its

level is significantly increased in SLE patients, promoting the

activation of B cells and the production of antibodies (75). The

abnormal activation of B cells and antibody production are one of

the core characteristics of SLE. In addition, immunomodulatory

factors such as TNF-α, IL-10, IL-17, and IL-6 also play important

roles in the inflammatory response of SLE (76–78).

Obexelimab is a natural IgG bsAb that targets CD19 and FcγRIIb

and inhibits the B-cell response (79). The co-ligation of CD19 and

FcγRIIb inhibits key B-lineage cells in the pathogenesis of SLE.

Merrill et al. conducted a double-blind, randomized, placebo-

controlled phase II clinical trial. This study found that Obexelimab

showed good efficacy in the treatment of SLE patients. The

incidence of adverse events in the Obexelimab group was similar

to that in the placebo group (65.0% vs. 62.3%), with fatigue

(12.1%) and nasopharyngitis (10.3%) being the most common; no

treatment-related serious adverse events occurred (80).

Telitacicept (RC18) is a novel BLyS/APRIL fusion protein,

which is designed to target BAFF (BLyS) and APRIL

simultaneously to regulate the survival and function of B cells. In

animal models, RC18 has demonstrated good pharmacodynamic

effects, which can significantly reduce the disease activity of SLE

model mice, and the SLEDAI score decreases by more than 50%

(81). Among the SLE patients treated with Telitacicept, 68% of

the patients achieved the clinical improvement criteria (the

SLEDAI score decreased by ≥4 points) within 12 weeks (82).

Zhang et al. first introduced the development of Rozibafusp alfa

(AMG 570) in their study, pointing out that the drug aims to regulate

the B cell-related immune response through the mechanism of action

of simultaneously inhibiting inducible costimulatory ligand (ICOSL)

and B cell activating factor (BAFF). This mechanism can effectively

reduce the activation and proliferation of B cells in patients with

autoimmune diseases, and then reduce the production of

autoantibodies, which is a core pathological process of SLE. This

study has laid the foundation for the application of AMG 570 in

the treatment of SLE (83).

In the phase Ib/IIb, randomized, double-blind, placebo-

controlled study conducted by Abuqayyas et al., Rozibafusp alfa

did not significantly increase the incidence of adverse events

during the treatment of active RA, and at the same time, it

demonstrated its biological activity and therapeutic potential.

This good safety and effectiveness support its further clinical

application in the treatment of SLE (84, 85). Garces et al.

suggested that innovative trials such as adaptive design and

factor-rich design can increase the patient recruitment speed,

reduce the discard rate, increase cost-effectiveness, and accelerate

the marketing process of SLE drugs including Rozibafusp alfa

(86). In addition, Blinatumoma is a bispecific anti-CD3/anti-

CD19T-cell engager. Subklewe et al. first applied Blinatumomab

to patients with rapidly progressive severe systemic sclerosis, and

the patients’ symptoms improved rapidly. However, the long-

term treatment effect still needs further monitoring (87).

4.4 Systemic sclerosis

Systemic sclerosis (SSc) is a chronic autoimmune disease

characterized by fibrosis, vasculopathy, and immune dysregulation

(88). Recent advances have explored bispecific antibodies (bsAbs)

as a novel therapeutic approach to modulate the complex immune

landscape of SSc. By simultaneously targeting two antigens, BsAbs

offer enhanced selectivity and synergistic immunomodulation.

Notably, bsAbs designed to simultaneously inhibit TGF-β

signaling and IL-6 transduction-both implicated in fibrosis-have

shown promise in preclinical studies, effectively attenuating

fibroblast activation and extracellular matrix deposition (89, 90).
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Moreover, bsAbs targeting immune checkpoints and profibrotic

cytokines are being investigated to reshape immune tolerance and

reduce vascular inflammation. Another promising direction is the

use of bsAbs to deplete dual-expressing pathogenic B cells or

T cells while sparing regulatory subsets (91). While clinical data

are still emerging, bsAb platforms such as DVD-Ig and CrossMab

have laid the foundation for targeted multi-pathway blockade,

representing a potential breakthrough in treating refractory SSc (92).

4.5 Sjögren’s syndrome

Sjögren’s syndrome (SS) is a systemic autoimmune disease

primarily affecting exocrine glands, with B-cell hyperactivity and

chronic inflammation as central features (93). The pathogenesis

involves multiple immune pathways, including BAFF (B-cell

activating factor), type I interferons, and co-stimulatory

molecules (94). BsAbs have emerged as promising tools to

intervene in this multifactorial network. Preclinical models have

demonstrated that bsAbs targeting BAFF and ICOS-L or CD40l

can effectively disrupt aberrant B-T cell interactions and reduce

glandular infiltration (95). Additionally, BsAbs designed to

simultaneously block IFNAR and TNFα signaling have been

proposed to dampen inflammatory circuits more efficiently than

monotherapies. Therapeutic formats such as bispecific T-cell

engagers (BiTEs) or dual Fab BsAbs also allow for selective

targeting of autoreactive immune cells (96). Although no BsAbs

therapies for SS have yet reached phase 3 trials, early-phase

studies indicate acceptable safety profiles and immunological

efficacy, supporting further development. These approaches may

redefine the therapeutic landscape of SS by offering tailored,

combinatorial immunomodulation.

4.6 Skin tumors

In the treatment of skin tumors, especially melanoma,

bispecific antibodies also show promising potential for clinical

application. Bispecific antibodies that specifically target

melanoma cells and T cells can effectively enhance the anti-

tumor activity of T cells (97, 98). M7824 is a bispecific antibody

targeting PD-L1 and TGF-β, which has received extensive

attention in the treatment of skin tumors such as melanoma in

recent years. The combined treatment with M7824 can enhance

the anti-tumor immune response, thereby improving the clinical

efficacy. In Strauss et al.’s phase I trial, common adverse events

included rash (22.4%) and diarrhea (18.1%), while grade ≥3

serious adverse events were mainly immune-related pneumonitis

(3.2%) and elevated transaminases (2.8%) (99, 100).

Blinatumomab targets CD19 and CD3. Although it is mainly

used for the treatment of acute lymphoblastic leukemia, its

mechanism is also being studied for the treatment of melanoma.

Studies have shown that Blinatumomab can effectively activate

T cells and induce a cytotoxic response against melanoma cells

(101). DuoBody-CD3 × CD20 is a novel bispecific antibody that

can target CD20 and CD3 simultaneously. This antibody has

shown significant anti-tumor activity in the skin B-cell

lymphoma model, being able to effectively activate T cells and

eliminate tumor cells (102, 103).

REGN1979 is also a bispecific antibody targeting CD20 and

CD3. Studies on patients with cutaneous lymphoma have shown

that this drug can effectively induce the apoptosis of tumor cells

and achieve complete remission in some patients (104, 105). For a

comprehensive overview of bispecific antibodies in dermatological

research, including their targets, indications, and development

stages, see Table 2. Although bispecific antibodies show good

prospects in the treatment of skin tumors, further research is still

needed to optimize their efficacy and safety. How to overcome the

immunosuppressive factors in the tumor microenvironment is also

an important issue for improving the efficacy of bispecific antibodies.

4.7 Skin infections

Bispecific antibodies against specific pathogens can

simultaneously target infected cells and immune cells, thereby

TABLE 2 Summary of bispecific antibodies in dermatological research.

Antibody
name

Targets Indication Development
stage

Company Key safety data References

Bimekizumab IL-17A/IL-

17F

Psoriasis Approved (EU) UCB Injection site reactions (15.3%), upper respiratory

infections (10.2%); no severe infections or

thromboembolic events

(56)

Tezepelumab TSLP/IL-33 Atopic Dermatitis Phase 2 Amgen Local erythema (8.2%), headache (6.5%); no

treatment-related serious adverse events

(73)

Obexelimab CD19/

FcγRIIb

Systemic Lupus

Erythematosus

Phase 2 Xencor Fatigue (12.1%), nasopharyngitis (10.3%); no

treatment-related SAEs

(80)

M7824 PD-L1/TGF-

β

Melanoma Phase 2 Merck KGaA Rash (22.4%), diarrhea (18.1%); grade ≥3 SAEs:

immune-related pneumonitis (3.2%), elevated

transaminases (2.8%)

(100)

DuoBody-

CD3xCD20

CD20/CD3 Cutaneous B-cell

Lymphoma

Phase 1 Genmab Cytokine release syndrome (5.7%), fever (4.2%) (102)

REGN1979 CD20/CD3 Cutaneous

Lymphoma

Phase 1 Regeneron Infusion-related reactions (7.3%), neutropenia

(2.1%)

(104)

Anti-S.aureus

bispecific HCAb

LukS-PV/

LukF-PV

S. aureus Skin

Infections

Preclinical Undisclosed No significant toxicity in murine models; no

immunosuppression observed

(106)
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improving the efficiency of immune clearance. Staphylococcus

aureus (S. aureus) is one of the main pathogens causing skin

infections. Bispecific antibodies against S. aureus can effectively

neutralize its toxins and activate the host immune system at the

same time. Laventie et al. designed an engineered tetravalent

bispecific HCAb against S. aureus PVL in immunotransgenic

mice, which neutralizes toxin activity by simultaneously binding

to both LukS-PV and LukF-PV subunits, thereby preventing

their oligomerization and pore formation on host immune cells,

especially neutrophils (106). Moreover, a study by Tkaczyk et al.

compared the methods of multi-mechanism monoclonal

antibodies (Mabs) against S. aureus α-toxin and clumping factor

A (ClfA) with engineered bispecific antibodies and found that

the combination of Mabs targeting ClfA and α-toxin was more

promising than the corresponding BiSAb (107).

Candida spp. infections are particularly common in

immunosuppressed patients. Bispecific antibodies against

Candida can simultaneously target fungal cell wall components

and immune cells, enhancing the antifungal immune response.

Zito et al. constructed a bispecific antibody MP65/bglu mAb

against fungal microorganisms, which can simultaneously

recognize β-glucan and MP65 determinants in Candida and can

be used as a biomarker for Candida (108). Herpes simplex virus

(HSV) often causes skin and mucosal infections. Bispecific

antibodies against HSV can simultaneously recognize viral

surface glycoproteins and host immune cells, enhancing the

ability to clear the virus. Ravirala et al. found that the combined

use of bispecific and trispecific antibodies with HSV-based

oncolytic virus therapy can improve the anti-tumor effect by

enhancing T cell recruitment and activation through CD3 and

tumor-associated antigens, while also engaging co-stimulatory

receptors such as 4-1BB, thereby amplifying the cytotoxic

immune response and improving tumor clearance (109). Renard

et al. also confirmed the ability of the bispecific antibody CD3/

EGFR bimAb to redirect T cells against HPV in vitro

transformed keratinocytes in an autologous three-dimensional

culture model.

5 Bsabs advantages of bispecific
antibodies

Bispecific antibodies have demonstrated increasing potential in

the treatment of skin diseases, and their advantages are mainly

reflected in aspects such as targeted therapy, enhanced immune

response, and improved bioavailability of drugs. Firstly, they are

capable of simultaneously targeting two different cytokines or

antigens, thereby regulating the immune response more

effectively. Moreover, by targeting multiple pathological

mechanisms, bispecific antibodies can reduce the potential side

effects that may occur in single-target therapy. For example, in

patients with psoriasis, more thorough inhibition of

inflammation can be achieved by simultaneously targeting TNF-

α and IL-17, which is difficult to accomplish in traditional

antibody therapy (110). Secondly, bispecific antibodies can

promote the apoptosis of target cells by forming immune

complexes and enhance the clearance function of immune cells,

and this has been proven effective in cancer treatment (5, 111).

Bispecific antibodies can also enhance the body’s anti-tumor

immune response by regulating the immune microenvironment

(112). In recent years, the application of bispecific antibodies in

cancer immunotherapy has also provided new ideas for the

treatment of skin diseases.

In addition, the design of bispecific antibodies can optimize

their pharmacokinetic properties, prolong the half-life, and

improve the bioavailability (4, 113, 114). With the development

of genetic engineering technology, the production processes and

purification techniques of BsAbss have been continuously

optimized, making their applications in drug development

increasingly widespread (115, 116). Overall, the multi-targeting

characteristics and flexibility of bispecific antibodies make them a

promising therapeutic option, especially when facing complex

tumor heterogeneity and immune escape mechanisms.

6 Prospects and limitations

In the field of dermatology, bispecific antibodies, as an

innovative biological treatment method, have demonstrated broad

application prospects and significant clinical value. With the

rapid development of biotechnology, bispecific antibodies not

only provide new tools in basic research, promoting a deeper

understanding of the mechanisms of various skin diseases, but

also show good therapeutic effects in clinical applications,

especially in refractory skin diseases, inflammatory skin diseases,

and skin tumors.

However, the research, development, and application of

bispecific antibodies still face many challenges, such as high

production costs, issues related to drug stability and tolerability

(5, 115, 117–119). Therefore, future research should focus on

optimizing antibody design and production processes to improve

their economic efficiency and clinical adaptability. At the same

time, conducting large-scale clinical trials to further evaluate the

long-term effects and safety of bispecific antibodies in

dermatological applications is also an important task in the future.
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