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Rationale: Genetic risk scores (GRS) of Th1/2/17-related loci may be associated
with response to biologics. We leveraged previously published machine
learning-derived GRSs associated with plasma proteins from the INTERVAL/
UK-Biobank study.

Methods: We assessed 42 Th1/2/17-related GRSs and SNPs for association with
response (>50% reduction in exacerbations) to biologics in 172 White patients
with moderate-to-severe asthma in the Mass General Brigham Biobank
(MGBB: 92 omalizumab, 38 mepolizumab, 42 dupilumab). Replication was
sought in 243 individuals in the All of Us (AoU) cohort (111 omalizumab, 58
mepolizumab, 74 dupilumab). Models adjusted for age, sex, BMI, baseline
exacerbations, and principal components 1-10. AUROC was used to evaluate
top predictors; type | error was assessed using random GRS sets (target FDR
<20%).

Results: Females comprised a large proportion; mean BMI was 28-35 kg/m?.
IL21 GRS was associated with omalizumab response in MGBB (OR: 1.7, 95%
Cl: 1.03-2.87) with similar direction in AoU (1.5, 0.91-2.45). /L21 also
predicted dupilumab response in MGBB (2.4, 1.05-5.44) but in the opposite
direction in AoU (0.57, 0.31-1.06). IL21 replicated as a predictor of
omalizumab [AUROC, 95% CI: MGBB 0.62 (0.50-0.74), AoU: 0.71 (0.61-0.81)]
and dupilumab [AUROC, 95% CI, MGBB 0.76 (0.58-0.95), AoU: 0.75 (0.64—
0.86)]. Adding IL5RA (omalizumab) or CCL17 (dupilumab) modestly improved
AUROC but not significantly. No GRS predicted mepolizumab response.
Conclusions: Using ML-based GRS applied to an independent cohort of asthma
patients, we found that IL-21-related GRSs were predictors of response to
omalizumab and dupilumab.
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Introduction

There are six monoclonal antibodies currently approved for
the treatment of asthma. These therapies target various
cytokines and pathways, including immunoglobulin E (IgE),
interleukin-5 (IL-5) and its receptor, IL-4/IL-13, and thymic
stromal lymphopoietin (TSLP) (1). While these therapies have
indeed revolutionized the care of asthma, there are opportunities
to optimize their use. There is a high overlap in eligibility for
these therapies making therapy selection challenging and many
patients who meet eligibility for these therapies demonstrate
suboptimal response (2). While blood eosinophil count (BEC)
helps identify patients most likely to benefit from biologic
therapy, a significant subset of patients experience little to no
response, highlighting a critical challenge given the high cost of
these treatments (1). Thus, identifying additional biomarkers
predictive of response to respiratory biologics is important.

There is ample evidence that genetic polymorphisms
contribute to the development of both asthma and COPD as
well as to asthma endotypes and severity (3). Genetic risk scores
(GRS) have been shown to improve the predictive accuracy of
clinical models in predicting asthma risk and severity. In a
recent study that sought to optimize and validate GRS for ten
common chronic conditions, asthma was one of the top
conditions with the highest predictive accuracy (4). Genetically-
predicted protein levels have helped uncover mechanisms of
asthma risk by leveraging the fact that alterations in levels of
genetically regulated proteins are more likely to be causal rather
than a consequence of disease activity or confounders (5). Our
study objective was to identify whether GRS of T helper-1 (Th-
1), Th2-, and Th-17-related loci may be associated with
response to omalizumab (anti-IgE), mepolizumab (anti-IL5), or
(anti-IL4Ra) in two

to dupilumab real-world biobank-

derived cohorts.

Methods

This study leveraged previously published machine learning-
derived GRS calculated from 50,000 healthy blood donors from
the UK Biobank-Interval Study (available at https://www.
omicspred.org/) that predicted SomaScan protein levels with
R*>0.01 (6). We calculated the GRS associated with 42 pre-
selected Th1/2/17-related loci in White participants from the
Mass Brigham Biobank (MGBB) who
dupilumab, mepolizumab, or omalizumab for the treatment of

General initiated
moderate-to-severe asthma. These included loci associated with
the canonical Th2 cytokines and their receptors, various
chemoattractants and ligands, such as CCL17, alarmins and
(IL-25 and ILRL1/ST-2), IL-17-related
other inflammatory or

alarmin receptors
cytokines and receptors,
inflammatory cytokine, such as IL-21 and interferon-gamma
(IFN-y) (Table 1). These GRS were rank normalized to facilitate
GRS that

excluded and for GRS with trimodal distributions, we extracted

anti-

statistical ~analysis. remained non-normal were
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TABLE 1 T-helper (Th)-1/2/17-related loci (n=42) and 12 additional
SNPs evaluated.

Included in final Excluded from final SNPs
analyses (n = 22) analyses (n = 20) included in
final analyses
(n=14)
CCL17.3519.3.2 IL1B.3037.62.1 151976391
CCL22.3508.78.3 1L4R.3055.54.2 154540249
CXCL1.2985.35.1 IFNA14.7180.114.3 154959105
IGFLR1.7244.16.3 CCL1.2770.51.2 1s62143196
IL12B.1L23A.10365.132.3 IGHE.IGK.IGL.4135.84.2 1193150712
IL17RA.2992.59.2 IFNAR1.9183.7.3 1571640035
IL17RB.5084.154.3 IFNGR2.9180.6.3 rs114163150
IL17RD.3376.49.2 1GF1.2952.75.2 157870825
IL1IRAP.14048.7.3 11.10.2773.50.2 151801275
ILIRAP.2630.12.2 TRF4.9857.38.3 151805010
IL1RL1.4234.8.2 11.22.2778.10.2 151805015
IL1RL2.2994.71.2 IFNG.14147.50.3 151805013
112.3070.1.2 IRF6.9999.1.3 15117439560
1121.7124.18.3 IFNGR1.5825.49.3 159881048
1125.4137.57.2 IFNA10.14128.121.3
1L5.3741.4.3 1L17A.9170.24.3

IL5RA.13686.2.3
IL5RA.4491.4.2
IRF2.12801.33.3
PGD.4187.49.2
TNFAIP6.5036.50.1
TNFAIP8.12563.2.3

LTBR.2636.10.2
LTA.LTB.3506.49.1
1L6.4673.13.2

SNP, single nucleotide polymorphism.

allele dosages (0,1,2) from the single nucleotide polymorphism
(SNP) with the largest effects size in the score. Given the
biological relevance of the IL-4 receptor, we also included IL4R
SNPs reported in OMIM and the GWAS catalog (rs1805010,
rs1801275, rs1803013, and rs1805015) as a priori variants of
interest. Altogether, 22 GRS and 14 SNPs (Table 1 and
Supplementary Table E1) were carried forward for final analyses.

For outcomes, we defined exacerbations as a patient with
moderate-to-severe persistent asthma having a visit with
diagnostic code for an asthma exacerbation or having an ICD-
code for an asthma-related event, such as wheezing or dyspnea,
and a prescription for an oral corticosteroid (OCS) for 3-28
days within 7 days of the asthma-related event (Supplementary
Tables E2 and E3). We defined response as a reduction in
baseline exacerbations by >50% over the 12 months following
biologic initiation. Models were adjusted for age, sex, body mass
index (BMI), and exacerbations in the year prior to biologic
initiation. We censored individuals at the time of switching to
an alternate biologic. GRS were adjusted for ancestry using
residuals from a linear model regressed on the first 10 principal
components (PCs). We used all patients with available data. We
validated our results in an independent external dataset, the All
of Us (AoU) research program, a large-scale National Institutes
of Health (NIH)-sponsored initiative that includes clinical and
genomics data from a diverse group of Americans and currently
has over 200,000 enrollees with genetic data (7). We limited our
analysis to patients who self-identified as White as we did in the
MGBB cohort given that the GRS were trained in a European
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ancestry population. We used a p-value of <0.20 to evaluate
replication. We evaluated for type 1 error using two random
samples of 32 GRS from all GRSs available from the INTERVAL
study with a target false discovery rate of <20%. For replicated
signals, we evaluated predictive accuracy using the area-under-
the-receiver-operating-characteristic (AUROC) curve. DeLong
p-values were used to compare model performances (AUCs),
with p-values <0.05 considered significantly different. To assess
if risk estimates are well calibrated within each cohort, we
constructed calibration plots of observed vs. expected biologic
responsiveness and used Hosmer-Lemeshow tests to evaluate for
the evidence of miscalibration. We also constructed confusion
matrices of predicted probabilities vs. observed event rates and
evaluated the model performance across the cohorts. Additional
details of our methods are in the Supplementary File. The MGB
IRB this study (2021P003536).
conducted in the AoU Researcher Workbench. Analyses were
conducted using PLINK v2.0, R 4.2.0 with the MASS 7.3
package for negative binomial modeling and pROC version
1.18.5 for ROC.

The AoU analyses were

Results

The MGBB cohort included 172 patients: dupilumab (n = 42),
mepolizumab (n =38), and omalizumab (n=92). The mean age
was 60.6 for dupilumab users, 55.7 for mepolizumab, and 45.4
years for omalizumab, and mean BMI ranged from 27.7-
30.4 kg/m® In AoU, we identified 243 patients with moderate-

10.3389/falgy.2025.1670783

(n=74),
mepolizumab (n=58), or omalizumab (n=111). Their mean

to-severe  asthma who initiated  dupilumab

ages were 60.1, 57.1, and 53.6 years respectively and mean BMI
ranged from 29.3-35.2 kg/m> Baseline exacerbations in MGBB

were 1.2 (dupilumab), 2.7 (mepolizumab), and 1.5
(omalizumab). In AoU, they were: 2.7 (dupilumab), 6.2
(mepolizumab), and 4.5 (omalizumab) (Table 2). For

omalizumab, IL2] was most associated with response with
higher levels associated with better response in both the MGBB
(Odds Ratio, OR and 95% Confidence Intervals, CI: 1.72, 1.03-
2.87) and AoU (OR, 95% CI: 1.50, 0.91-2.45) cohorts (Table 3).
Increased allele dose of the IL5RA SNP were also associated
with better response in both cohorts but did not reach statistical
significance in either cohort. No GRS was significantly
associated with mepolizumab response. For mepolizumab, some
variants with p <0.20 (IGHE and IRF6) had opposing effects in
the cohorts. For dupilumab, IL2] allele dose was associated with
higher odds of response (OR: 2.39; 1.05-5.44) in the MGBB
cohort, but with lower odds in AoU (0.57; 0.31-1.06), though
crossed the null. CCL17 showed a similar trend (Table 3).
Multiple variants were used in calculating the GRS for IL2I
(n=157), IL5RA (n=29), and CCL17 (n=42) (Supplementary
Tables E4-E6). In the AUROC analyses, IL21 as a predictor of
response to omalizumab [AUROC and 95% CI: MGBB 0.62
(0.50-0.74), AoU: 0.71 (0.61-0.81)] and dupilumab [AUROC
and 95% CI, MGBB 0.76 (0.58-0.95), AoU: 0.75 (0.64-0.86)]
replicated across cohorts (Figure 1A). The AUROC increased for
both biologics in both cohorts when adding IL5RA to IL21 for
omalizumab and CCLI7 to IL2I for dupilumab (Figures 1B,C).

TABLE 2 Baseline characteristics of Mass General Brigham Biobank (MGBB) and All of US (AoU) cohort.

MGBB Dupilumab Mepolizumab Omalizumab
n 42 38 92
Age [mean (SD)] 60.6 (18.3) 55.7 (14.8) 45.4 (15.8)
Female =1 (%) 27 (64.3) 27 (71.1) 73 (79.3)
White Non-Hispanic, n (%) 42 (100.0) 38 (100.0) 92 (100.0)
Body mass index, BMI [mean (SD)] 28.1 (6.6) 27.7 (6.8) 304 (8.7)
Smoking (%)
CurrentSmoker 0 (0.0) 0 (0.0) 6 (6.5)
FormerSmoker 7 (16.7) 11 (28.9) 10 (10.9)
NeverSmoker 26 (61.9) 15 (39.5) 45 (48.9)
Unknown 9 (21.4) 12 (31.6) 31 (33.7)
Baseline annual exacerbation rate (mean, SD) 1.2 (1.2) 2.7 (2.6) 1.5 (1.9)
AoU Dupilumab Mepolizumab Omalizumab
n 74 58 111
Age [mean (SD)] 60.1 (18.0) 57.1 (13.9) 53.6 (15.7)
Female=1 (%) 45 (60.8) 47 (82.5) 81 (73.6)
White non-Hispanic, #n (%) 74 (100.0) 58 (100.0) 111 (100.0)
Body mass index, BMI [mean (SD)] 29.3 (7.2) 35.2 (9.0) 31.5 (8.9)
Smoking (%)
CurrentSmoker 12 (17.1) 9 (15.5) 19 (17.3)
FormerSmoker 16 (22.9) 16 (27.6) 24 (21.8)
NeverSmoker 42 (60.0) 33 (56.9) 67 (60.9)
Unknown 0 (0.0) 0 (0.0) 0 (0.0)
Baseline annual exacerbation rate (mean, SD) 2.7 (4.1) 6.2 (4.5) 4.5 (5.4)
SD, standard deviation.
Frontiers in Allergy 03 frontiersin.org
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TABLE 3 Genetic risk scores associated with response that replicated in both cohorts (mass general brigham biobank-MGBB and All of US research-

Aol).

Predictor

MGB Biobank (MGBB)

All of us (AoU)

Odds ratio (95% CI)

P-value*

Odds ratio (95% CI) P-value*

OMALIZUMAB Responder: 48 Non-responder: 44 Responder: 37 Non-responder: 74
Same direction of effect

1L21.7124.18.3 1.72 (1.03-2.87) 0.04 1.50 (0.91-2.45) 0.11
IL5RA.4491.4.2 1.46 (0.94-2.28) 0.09 1.44 (0.91-2.27) 0.12
Top associations, replicated but opposing direction of effect

N/A ‘ ‘
MEPOLIZUMAB Responder: 17 Non-responder: 21 Responder: 10 Non-responder: 48
Same direction of effect

N/A | \ \

Top associations, replicated but opposing direction of effect

IGHE.IGK.IGL.4135.84.2_snp 72.08 (0.71-7,309.55) 0.07 0.19 (0.03-1.35) 0.10
IRF6.9999.1.3_snp 6.42 (0.60-69.01) 0.13 0.08 (0.00-2.79) 0.16
DUPILUMAB Responder: 30 Non-responder: 12 Responder: 41 Non-responder: 33
Same direction of effect

N/A

Top associations, replicated but opposing direction of effect

1121.7124.18.3 2.39 (1.05-5.44) 0.04 0.57 (0.31-1.06) 0.08
CCL17.3519.3.2 2.29 (0.75-7.00) 0.15 0.54 (0.30-0.97) 0.04

*Including associations with p-value <0.20.
The GRS effects are reported per standard deviation, and the SNP effects are per allele dose.

A. Response predicted by IL21 B. Response predicted by IL21+IL5RA C. Response predicted by IL21+CCL17
in Omalizumab and Dupilumab in Omalizumab in Dupilumab

e | o ] o ]

o | o | © |

o o o

© _| © | © _|

g =} ‘g o %‘ o
33 8 3 8 3
N N o
o £ o o
" 7 = 1L21 Omalizumab MGBB (AUC =062 )
4 = = IL21 Omalizumab AoU (AUC =0.71 ) -
=== |L21 Dupilumab MGBB (AUC =0.764 ) /| == 1L21 + ILSRA Omalizumab MGBB (AUC = 0.663 ) == |L21 + CCL17 Dupilumab MGBB (AUC =0.773)
g Yy « = IL21 Dupilumab AoU (AUC = 0.749 ) g -/ ~ | = = IL21 + IL5SRA Omalizumab AoU (AUC =0.715) g _ = = IL21 + CCL17 Dupilumab AoU (AUC =0.774 )
T T T T T T T T T T T T T T T T T
1.0 0.8 0.6 04 0.2 0.0 1.0 0.8 0.6 04 0.2 0.0 1.0 0.8 0.6 0.4 0.2 0.0
Specificity Specificity Specificity

FIGURE 1
(A—C) Response to omalizumab and dupilumab as predicted by IL21.7124.18.3 and in combination with IL5RA (omalizumab) and CCL17 (dupilumab).
For (A) AUC and 95% ClI: IL-21: Omalizumab: MGBB 0.62 (0.50-0.74), AoU: 0.71 (0.61-0.81); Dupilumab: MGBB 0.76 (0.58-0.95), AoU: 0.75 (0.64—
0.86); (B) AUC and 95% CI: IL-21 + IL5RA: Omalizumab: MGBB 0.66 (0.55-0.78), AoU: 0.72 (0.61-0.82); (C) AUC and 95% CI: IL-21+ CCL17:
Dupilumab: MGBB 0.77 (0.60-0.95), AoU: 0.77 (0.67-0.88).

However, these were not significantly different with DeLong
p-values all >0.05 (Supplementary Table E7). A sensitivity
analysis using randomly selected GRS found a type 1 error rate
of 0.24. Calibration plots showed no significant miscalibration
(Hosmer-Lemeshow p-value >0.05) (Supplementary Table E8)
and confusion matrix revealed accuracy of 0.56 for IL2I
(omalizumab) in MGBB and 0.71 in AoU and 0.76 in MGBB
for dupilumab with 0.66 in AoU (Supplementary Table E9). The
sensitivity for IL21 for omalizumab was low in both cohorts
(0.50 MGBB; 0.35 AoU) with positive predictive value (PPV) of
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0.55 and 0.65 respectively. For dupilumab, the sensitivity was
high in both cohorts (0.90 MGBB; 0.76 AoU) with PPV of 0.69
and 0.67 respectively.

Discussion

In this study, we found associations between Th1/2/17-related
GRS and response to biologics used in the treatment of asthma.
For both omalizumab and dupilumab, an IL2I-related GRS
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significantly differentiated responders from nonresponders and
was replicated in the independent All of Us cohort, though
there was an inverse association with dupilumab across cohorts.

Similar to a recent study using genetically predicted protein
levels to uncover mechanisms underlying asthma (5), we
leveraged the causal relationship between genetics and proteins,
along with increasingly rich biobank data, to identify protein
biomarkers for responsiveness to several biologics. Our findings
are consistent with evidence that there is an interplay between
Th-1, Th2-, and Th-17 pathways in asthma and in treatment
response (8). We also add to the evidence that the addition of
genetic risk scores to clinical variables can enhance clinical
models predicting risk of obstructive lung diseases and severity
across diverse populations (9).

IL2]1 predicted response to dupilumab and omalizumab, which
are both effective in allergic asthma. In murine models, IL-21 has
been shown to modulate allergic inflammation and IgE
production (10). IL-21 increased ILC2 numbers in both the
airways and bronchoalveolar fluid (BAL) in mouse models, and
an anti-IL21 antibody obliterates house dust mite-induced airway
inflammation in murine models reducing IgE and eosinophilia.
Anti-IL21 antibody also worked synergistically with anti-IL9
antibody in reducing both Th2 and ILC2 cells as well as reducing
MUCS5AC and bronchial hyperreactivity. In the same study,
patients with allergic asthma had higher levels of IL-21 and IL-9
levels in their BAL and increased IL2IR transcripts from their
endobronchial brushings when compared to allergic controls (10).
Identifying a shared biomarker of response across biologics would
be clinically valuable but requires confirmation in prospective
studies and also at the protein level.

While we sought to validate our findings in an independent
cohort, our findings should be interpreted cautiously. First, we
limited to patients who self-identified as White as a crude proxy
for genetic ancestry and adjusted for the principal components of
genetic ancestry. Cross-ancestry genetic prediction is a major issue
in genetics, and one that we are not able to address in the current
indeed,

analytical methods are needed to ensure equitable use and

study; larger multi-ancestry cohorts and improved
representation of genetic prediction tools. Secondly, we did not
adjust for multiple testing given our small sample size. Instead,
using a p <0.20 threshold and randomly selected unrelated GRS in
sensitivity analyses, we observed type 1 error rates consistent with
this threshold. Our relatively small sample size may have limited
our power to detect associations, particularly in the mepolizumab
group. Thirdly, we were not able to ascertain medication use or
adherence or discontinuations. Lastly, there was some inverse
directionality of the IL21 GRS effects on dupilumab across
cohorts. However, there are several cohort differences that may
explain this phenomenon. None of the 42 dupilumab users in
MGBB were current smokers and only 16.7% were former
smokers. By contrast, in AoU, 40% of patients (Current-17.1%;
former- 22.9%) were current/former smokers. Additionally, AoU
had a higher burden of exacerbations (2.7 vs. 1.2). These cohort
differences might explain the inverse effects across cohorts.
Nonetheless, these findings highlight the potential utility of
GRS in predicting response to biologics in asthma and warrant
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further studies given the urgent need for accurate response
biomarkers to these costly therapies that are rapidly increasing
in number.

The data analyzed in this study is subject to the following
licenses/restrictions: The GRS used for this were extracted from
the publicly available data from the INTERVAL study. Details
on how to access these have been included in the manuscript/
supplement. For MGBB data, a data use agreement needs to be
set up with Mass General Brigham. Interested collaborators can
also reach out to the authors for guidance, as appropriate. All of
Us data is as managed by the All of Us research program.
Requests to access these datasets should be directed to the
corresponding authors, aakenroye@mgb.org or remol@channing.
harvard.edu.

The studies involving humans were approved by Mass General
Brigham Institutional Review Board. The studies were conducted
in accordance with the local legislation and institutional
requirements. The human samples used in this study were
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