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Epithelial-derived cytokines in 
the pathogenesis of 
severe asthma

Duong Duc Pham and Tae-Bum Kim*

Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of 

Medicine, Seoul, Republic of Korea

Introduction: Airway epithelial cells function as the first physical barrier against 

pathogens and are key regulators of immune responses by producing a wide 

array of cytokines involved in both innate and adaptive immunity.

Methods: This review summarizes recent advances in our understanding of 

epithelial-derived cytokines in severe asthma (SA) pathogenesis and highlights 

promising therapeutic strategies.

Results: Epithelial-derived cytokines can be functionally classified into the 

following four main groups: alarmins [interleukin [IL]-25, IL-33, thymic stromal 

lymphopoietin [TSLP]], proinflammatory cytokines (IL-1, IL-6, tumor necrosis 

factor-α), chemokines (CCL2, CCL5), and antiviral cytokines [interferon (IFN)-α, 

IFN-β, IFN-λ]. Alarmins are rapidly released in response to epithelial injury and 

play a pivotal role in initiating immune responses by activating dendritic cells, 

type 2 innate lymphoid cells, and eosinophils. Proinflammatory cytokines 

intensify inflammation by promoting immune cell activation and cytokine 

cascades, while chemokines guide immune cells to sites of injury. Antiviral 

cytokines enhance epithelial defenses by inducing the expression of antiviral 

genes. In SA, epithelial-derived cytokines play a central role in initiating and 

sustaining type 2 (T2) inflammation by activating the IL-4, IL-5, and IL-13 axis, 

leading to increased eosinophils, elevated serum IgE, and heightened airway 

hyperresponsiveness. These cytokines are also implicated in non-T2 

inflammation, particularly in refractory asthma phenotypes.

Discussion: Growing insights into epithelial cytokines and their complex 

signaling networks with the airway microenvironment have opened new 

avenues for developing targeted and personalized treatment in SA.
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Introduction

Airway epithelial cells form the first line of defense against inhaled pathogens and 

environmental toxins, serving both physical and immunological barrier functions (1). 

These cells develop, maintain, and repair the respiratory tract by producing mucus, 

regulating in ammation, and facilitating tissue remodeling (2). Beyond their structural 

role, epithelial cells are actively involved in innate immunity (3). Through pattern 

recognition receptors, including Toll-like receptors, NOD-like receptors, and RIG-I- 

like receptors, airway epithelial cells detect microbial components and initiate 

intracellular signaling cascades (4). In response, they secrete a variety of antimicrobial 

peptides, such as defensins, cathelicidins, and lysozymes, which directly contribute to 

the elimination of pathogens (5). Epithelial cells also release cytokines and chemokines 
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that direct immune cell recruitment and activation (3). Following 

injury, airway epithelial cells rapidly proliferate and differentiate to 

restore barrier integrity and prevent secondary infections (6).

Asthma is a chronic in ammatory disease of the airways 

characterized by variable respiratory symptoms, including 

wheezing, shortness of breath, chest tightness, cough, and 

expiratory air ow limitation (7). Severe asthma (SA), affecting 

approximately 5%–10% of patients with asthma, is a complex 

clinical condition characterized by persistent symptoms that 

remain uncontrolled despite adhering to guideline- 

recommended therapy (8). SA encompasses multiple 

in ammatory phenotypes, including type 2 (T2) in ammation 

with elevated IL-4, IL-5, and IL-13 driving eosinophilia, IgE 

production, and airway hyperresponsiveness (9), as well as non- 

T2 phenotypes such as neutrophilic airway in ammation, 

obesity-associated asthma, and paucigranulocytic asthma (10). 

Recent studies have highlighted the importance of airway 

epithelial cell-derived cytokines in SA (6, 11). These cytokines 

activate both innate and adaptive immune responses, amplifying 

in ammation and perpetuating chronic disease. In this review, 

we systematically summarize the latest findings on the role of 

epithelial-derived cytokines in SA, focusing on their 

immunological function and potential as therapeutic targets.

Airway epithelium as a physical barrier

The airway epithelial barrier comprises epithelial cells 

interconnected by adhesion proteins, such as zonula occludens-1, 

occludin, and claudins, which form tight junctions that establish 

the first line of defense against airborne environmental threats, 

including house dust mites, pollen, and pollutants (12, 13). This 

barrier comprises three key cell types: ciliated cells, which 

coordinate mucociliary clearance by propelling mucus to remove 

inhaled particles and pathogens; basal cells, located at the base of 

the epithelium, which function as progenitor cells to regenerate 

damaged or senescent epithelial cells; and secretory cells (such as 

goblet cells), which produce mucins to form the protective mucus 

layer, and in some cases, cytokines (11, 14) (Figure 1).

In asthma, the airway epithelial barrier can be disrupted by the 

breakdown of tight junctions, leading to increased permeability to 

pathogens and environmental allergens (15, 16). This disruption is 

observed across all asthma phenotypes. In severe T2-high asthma, 

epithelial barrier dysfunction is associated with FcϵRI–IgE cross- 

linking, which induces activation of Src family kinases, alarmin 

expression, loss of junctional proteins, and increased epithelial 

permeability (17).

Mucus hypersecretion is common in asthma, particularly SA. 

The mucus obstructs the airways and leads to uncontrolled airway 

in ammation and recurrent exacerbations (18). In SA, 

overactivation of the IL-4/IL-13 pathway drives excessive mucus 

production (19). Additionally, eosinophils release eosinophil 

peroxidase (EPO), which promotes the formation of dense and 

highly viscous mucins, further impairing air ow (20). Goblet 

cell hyperplasia, combined with a reduction in the number and 

function of ciliated epithelial cells, worsens mucus retention (21).

Basal cells serve as the primary progenitors of the airway 

epithelium, playing a crucial role in tissue regeneration. They 

maintain epithelial homeostasis by proliferating and 

differentiating to replenish specialized cells, such as goblet and 

ciliated cells after injury (11, 21). However, in SA, airway 

epithelial cells, including basal cells, exhibit markedly increased 

proliferation compared to those in mild asthma or healthy 

individuals, potentially contributing to airway remodeling (22). 

Moreover, structural damage to the epithelium may trigger the 

release of growth factors such as TGF-β, which impairs the 

ability of basal cells to regenerate and perpetuates epithelial 

dysfunction (23).

Club cells (also known as Clara cells) are non-ciliated 

epithelial cells located in the bronchioles. They secrete anti- 

in ammatory proteins (club cell secretory protein/CC10), secrete 

protective proteins and surfactant components, detoxify inhaled 

substances via cytochrome P450 enzymes, and support epithelial 

regeneration after injury (24). Ionocytes are rare, specialized 

epithelial cells characterized by high expression of cystic fibrosis 

transmembrane conductance regulator, a chloride channel 

essential for ion transport and regulation of airway surface 

liquid (ASL). This function maintains mucosal hydration and 

effectively supports mucociliary clearance (25, 26).

Beyond structural cells, innate immune cells, including 

dendritic cells (DCs) and mast cells, are scattered within or 

adjacent to the airway epithelium. Although they do not directly 

contribute to the physical barrier, they are critical in recognizing 

environmental stimuli and activating other innate immune cells 

as well as adaptive immune responses, thereby protecting the 

airways from harmful agents.

Immune functions of airway 
epithelial cells

In addition to forming a physical barrier, airway epithelial cells 

also play a central role in orchestrating immune responses by 

releasing a wide range of cytokines. Epithelial-derived cytokines 

are functionally grouped into four categories: alarmins, 

proin ammatory cytokines, chemokines, and antiviral cytokines. 

Alarmins play a pivotal role in airway immune responses in 

patients with severe asthma and will be discussed in detail in 

the following sections.

Following injury or IL-13 stimulation, epithelial cells 

—particularly basal cells and goblet cells—upregulate the 

secretion of proin ammatory cytokines such as IL-6, IL-8, and 

TNF-α via NF-κB and AP-1 signaling pathways (27–29), thereby 

recruiting in ammatory cells, amplifying in ammatory 

responses, and promoting remodeling through the release of 

growth factors (30, 31).

Chemokines are small (∼15 kDa) signaling molecules secreted 

by epithelial cells that guide the migration of immune cells to sites 

of in ammation (32). According to their structural motifs, 

chemokines are classified into two main families (CC and CXC) 

and two subgroups (C and CX3C) (33). CC chemokines 

primarily attract monocytes, lymphocytes, dendritic cells, 

Pham and Kim                                                                                                                                                         10.3389/falgy.2025.1681147 

Frontiers in Allergy 02 frontiersin.org



eosinophils, and basophils, but not neutrophils (34). Viral or 

bacterial infections induce the release of epithelial chemokines, 

including CCL2, CCL5, and CCL20 (35), while house dust mite 

allergens trigger thymus- and activation-regulated chemokine, 

enhancing Th2 cell recruitment (36). In asthma, CCL2 is often 

overexpressed, and blocking CCL2 or its receptor alleviates 

symptoms (37). CC chemokines such as CCL11, CCL24, CCL26, 

and CCL5 recruit eosinophils to allergic sites and activate them 

via CCR3 signaling, promoting in ammation and the release of 

intracellular granules (38–40). Meanwhile, CXC chemokines 

predominantly recruit neutrophils and other in ammatory cells 

(34). The association of CXCL5 with its receptor CXCR2 has 

been linked to eosinophilia during asthma exacerbations (41). 

Additionally, the CXCL10/CXCR3 axis is involved in the 

recruitment of mast cells to in amed regions, contributing to the 

contraction of airway smooth muscle (ASM) cells in asthma (42).

The airway epithelium produces type I interferons, particularly 

IFN-β, in response to viral infections. IFN-β enhances antiviral 

defenses by inducing interferon-stimulated genes and recruiting 

NK, CD4+, and CD8+ T cells (43). IFN-β deficiency is 

associated with asthma severity, and clinical trials with inhaled 

IFN-β have shown reduced asthma exacerbations caused by 

viruses (44). The mechanisms underlying IFN-β deficiency in 

asthma and the therapeutic role of epithelial cytokines require 

FIGURE 1 

Roles of epithelial-derived cytokines in the pathogenesis of severe asthma. The airway epithelial barrier comprises ciliated and basal cells, along with 

secretory cells such as goblet cells, club cells, and ionocytes, all covered by a mucus layer propelled by ciliary motion. This forms the first line of 

defense against inhaled allergens, pollutants, and pathogens. Upon exposure, these agents trigger the release of various cytokines from epithelial 

cells. Epithelial-derived alarmins, thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33, play key roles as initiators and amplifiers of 

inflammation. TSLP drives dendritic cells (DCs) to induce CD4+ 
T cell differentiation into Th2 cells, enhances IgG and IgE production, activates 

ILC2s and basophils, and stimulates the proliferation and differentiation of mast cells and macrophages toward a type 2 inflammatory response. 

TSLP indirectly promotes Th17 differentiation, leading to IL-17 production and neutrophilic inflammation, driving a type 1 inflammatory response. 

It also stimulates airway smooth muscle cells to release proinflammatory cytokines. IL-33, stored in the nucleus and released upon cellular or 

tissue damage, acts on both type 2 (Th2 cells, ILC2s, eosinophils) and type 1 (CD8+ 
T cells, neutrophils) immune cells, thereby bridging and 

amplifying both inflammatory pathways. IL-25, normally stored in the cytoplasm of epithelial cells, primarily targets T2 immune cells such as 

ILC2s, Th2 cells, and basophils, boosting T2 inflammatory responses. Together, these cytokine pathways drive airway inflammation, mucus 

hypersecretion, bronchoconstriction, and airway remodeling in severe asthma. Targeting epithelial-derived cytokines has become a promising 

therapeutic approach, with tezepelumab (anti-TSLP) already approved for clinical use.
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further investigation (45). Due to the functional diversity and 

complex interactions, non-alarmin epithelial-derived cytokines 

present considerable difficulties in pinpointing precise 

therapeutic targets. The understanding of the role of non- 

alarmin cytokines in SA remains limited. To date, no large-scale 

studies have demonstrated significant success in developing 

targeted treatments in this field.

Epithelial alarmins: initiators and 
boosters of inflammation

The key alarmins include TSLP, IL-25, and IL-33. Their release 

may occur concurrently or selectively, depending on the nature of 

the environmental insult.

TSLP: the spark of inflammation

TSLP, a member of the IL-2 cytokine family, was first isolated 

from thymic stromal cell cultures and initially linked to B cell 

development (46). Structurally composed of four α-helical 

bundles, TSLP is encoded by the TSLP gene on chromosome 

5q22. It signals through a heterodimeric receptor comprising the 

TSLP receptor chain (TSLPR) and the IL-7 receptor alpha chain 

(IL-7Rα) (47). In humans, TSLP exists in two isoforms: the 

short form (sfTSLP) and the long form (lfTSLP), each with 

distinct functions (48). sfTSLP is constitutively expressed in 

healthy barrier tissues such as the epithelium of the lungs, gut, 

and skin, contributing to immune homeostasis and displaying 

potential anti-in ammatory and antimicrobial functions by 

suppressing pro-in ammatory cytokines such as TNF-α, IL-1β, 

and IL-6 (49). In contrast, lfTSLP is induced by in ammatory 

stimuli, including allergens, infections, and cytokines, and 

strongly promotes type 2 (T2) in ammatory responses (50). 

Recent studies have demonstrated that lfTSLP disrupts airway 

epithelial barrier function, whereas sfTSLP can counteract these 

detrimental effects (51). Additionally, lfTSLP has been shown to 

induce autophagy in ASM cells, thereby promoting airway 

in ammation and remodeling in both in vitro and in vivo 

asthma models, while sfTSLP exerts inhibitory effects on these 

processes (52).

In the lungs, TSLP is primarily secreted by epithelial cells but 

is also produced by fibroblasts, DCs, basophils, and mast cells (53). 

TSLP secretion is triggered by various factors, including PAR- 

2-activating proteases (e.g., airborne fungi like Alternaria) (54), 

dsRNA from viruses such as rhinovirus or RSV (55), and uric 

acid from house dust mites (56). There are several mechanisms 

of TSLP-mediated immune activation. TSLP acts on DCs, 

promoting their ability to stimulate naive CD4+ T cells to 

differentiate into Th2 cells, which produce T2 cytokines such as 

IL-4, IL-5, and IL-13 (57). TSLP may also directly in uence 

CD4+ T cells to differentiate into T follicular helper cells, 

enhancing the production of IgG and IgE (58). TSLP inhibits 

regulatory T cells, removing negative regulation and allowing 

unchecked T2 in ammation (59, 60). TSLP and IL-33 jointly 

activate group 2 innate lymphoid cells, leading to IL-5 and IL-13 

production (61). TSLP also promotes basophil production 

independently of IL-3 (62, 63), enhances the expression of 

CD203c, supports eotaxin-mediated migration, and forms an IL-3 

autocrine loop, contributing to allergic airway in ammation (64).

When stimulated by TNF-α, the expression of TSLPR and 

TSLPR mRNA increases, activating eosinophils and the release 

of eosinophil-derived neurotoxin (65). In bronchial epithelial 

cells, TSLP delays apoptosis, enhances fibronectin adhesion, and 

induces secretion of IL-6, IL-8, CXCL1, and CXCL2 (66). TSLP 

also promotes the proliferation and differentiation of mast cells 

from bone marrow by activating signal transducer and activator 

of transcription 6 (STAT6) and upregulating mouse double 

minute 2 homolog (MDM2), intensifying allergic in ammation 

(67). TSLP drives the differentiation of macrophages into an 

alternatively activated T2 in ammatory phenotype (68).

TSLP also contributes to non-type 2 (non-T2) in ammatory 

processes, including non-allergic asthma and non-eosinophilic 

asthma. In the context of viral infections or non-allergic 

triggers, TSLP-stimulated DCs promote the differentiation of 

naive CD4+ T cells into Th2 cells and promote Th17 

differentiation, particularly in the presence of IL-1β, IL-6, and 

IL-23 (69). These Th17 cells secrete IL-17, which contributes to 

the recruitment of neutrophils and induces neutrophilic 

in ammation, a hallmark of non-T2 asthma (10). TSLP also 

activates ASM cells, enhancing secretion of IL-6, CXCL8 (IL-8), 

and CCL11 (eotaxin-1) (70).

Clinically, elevated TSLP levels in bronchoalveolar lavage  uid 

and airway tissues correlate with disease severity and airway 

obstruction in children with asthma (71). TSLP gene expression 

is increased in the airway epithelium and mucosa of adult 

patients with SA (72), and high plasma TSLP levels correlate 

with persistent asthma exacerbations (73). In SA, TSLP has been 

implicated in corticosteroid resistance, through regulation of 

STAT5 phosphorylation and Bcl-xL expression in natural helper 

cells (74). Beyond T2 in ammation, TSLP promotes airway 

remodeling, by inducing bronchial smooth muscle cell migration 

and proliferation, contributing to bronchial wall thickening and 

remodeling in chronic asthma (75). In mouse models of chronic 

asthma, TSLP inhibition improved airway remodeling features, 

such as peribronchial collagen deposition and goblet cell 

hyperplasia (76).

IL-25: amplifier of T2-inflammation

IL-25, also known as IL-17E, is a member of the IL-17 

cytokine family encoded on chromosome 14 (77). IL-25 is 

produced by airway epithelial cells (78), intestines, and colon, 

and is also produced by Th2 cells, alveolar macrophages (79), 

eosinophils, basophils (80), and mast cells (81). IL-25 signals 

through a heterodimeric receptor composed of IL-17RA and IL- 

17RB (also known as IL-17Rh1 or EVI27), both of which need 

to be present to activate downstream signaling pathways (82). 

Under normal conditions, IL-25 is continuously produced and 

stored in the cytoplasm of resting normal human bronchial 
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epithelial cells and secreted upon exposure to allergen-derived 

proteases (83).

IL-25 mRNA expression increases upon exposure to airborne 

allergens (78, 84). IL-25 directly promotes the differentiation of 

CD4+ T cells into Th2 cells, via the production of cytokines 

such as IL-4, IL-5, and IL-13, which are central to T2 

in ammation. This process depends on the initial autocrine 

production of IL-4 by T cells and the presence of the signaling 

protein STAT6 (78). IL-25 enhances Th2 cytokine production, 

recruits eosinophils and CD4+ T cells to the airways, and 

induces goblet cell hyperplasia, which are hallmarks of allergic 

airway in ammation (78, 85). IL-25 also upregulates eotaxin and 

arginase-1, two key factors in recruiting eosinophils into lung 

tissue, thereby amplifying the T2 in ammatory response (86).

IL-25 is a potent activator of group 2 innate lymphoid cells 

(ILC2), which are immune cells lacking specific antigen 

receptors but capable of producing type 2 in ammatory 

cytokines such as IL-5, IL-9, and IL-13 (87). Activated ILC2 

promotes mucus secretion, bronchoconstriction (88), and the 

recruitment of eosinophils and mast cells, which enhances the 

in ammatory response (89, 90). This cytokine loop supports IgE 

production, further fueling allergic type 2 in ammation (91). 

The initiation and amplification of type 2 in ammation via 

ILC2 also involves other alarmins such as TSLP and IL-33. 

Furthermore, IL-25 directly enhances antigen uptake in 

eosinophils and activates Th2 cells in allergic in ammation (92). 

IL-25 promotes eosinophil activation and migration (93), while 

reducing apoptosis (94), thereby amplifying type 2 

in ammation. Unlike TSLP and IL-33, IL-25 is currently not 

associated with non-T2 in ammation (10, 95), reinforcing its 

role as a T2-specific amplifier.

In asthma, IL-25 is elevated (96), particularly during 

rhinovirus-triggered exacerbations (97). High IL-25 levels, even 

in the absence of TSLP or IL-33, correlate with greater T2 

in ammation and increased responsiveness to inhaled 

corticosteroids (96). IL-25 expression in the sputum of asthma 

patients is associated with asthma severity (98). Evidence 

suggests that IL-25 contributes to airway remodeling in SA by 

inducing a fibrotic phenotype shift in airway epithelial cells and 

circulating fibroblasts (99), promoting fibroblast proliferation, 

extracellular matrix deposition (100), and a fibrotic 

epithelial phenotype.

IL-33: tissue damage alarm

IL-33 is a member of the IL-1 cytokine family, acting as a vital 

alarmin that helps maintain tissue balance and repair while 

participating in both type 1 and type 2 immune responses (101). 

IL-33 is encoded on chromosome 9p24.1 (102). IL-33 is 

predominantly expressed in the nucleus of epithelial, 

endothelial, and mesenchymal cells, including basal cells of the 

airway epithelium (103). IL-33 is stored in the nucleus and can 

be released in response to proteases derived from allergens or 

pathogens (104–106), during cellular stress (107), or in the 

course of apoptosis (108, 109).

IL-33 is synthesized and stored in the nucleus as a full-length 

form (IL-33-FL), which has modest biological activity. Upon 

cellular stress or necrosis, IL-33-FL is released into the 

extracellular space. Its biological fate then depends on the 

proteases involved: (i) proteolytic processing by allergen-derived 

or endogenous proteases (e.g., elastase, cathepsin G, chymase, or 

tryptase) generates mature IL-33 forms, which are up to 60-fold 

more potent and bind with high affinity to its receptor ST2, 

promoting a rapid type 2 in ammatory response (110); (ii) 

conversely, cleavage by apoptotic caspases produces inactive IL- 

33 fragments, thereby preventing inappropriate immune 

activation (108).

ST2 is also known as IL-1 receptor-like 1 (IL1RL1) (111) and 

exists in two forms: the membrane-anchored form (ST2l) and the 

soluble form (sST2) (112). ST2l mediates IL-33 signaling, while 

sST2 acts as a “decoy” receptor binding to IL-33 in the 

extracellular  uid to prevent it from interacting with ST2l, 

thereby regulating or inhibiting IL-33 signaling (113). Upon IL- 

33 binding, ST2l associates with a co-receptor, IL-1 receptor 

accessory protein (IL-1RAcP). The formation of the IL-33/ST2l/ 

IL-1RAcP complex activates intracellular signaling pathways 

such as nuclear factor kappa-light-chain-enhancer of activated 

B cells (NF-κB) and mitogen-activated protein kinase, leading to 

T2 cytokine production (114).

IL-33 impacts the immune system and tissue repair through 

various mechanisms. In type 2 in ammation, IL-33 activates 

Th2 cells via the transcription factor GATA3, promoting the 

production of IL-5 and IL-13 (115, 116). The IL-33/ST2 

signaling axis activates ILC2, increasing the production of IL-5 

and IL-13 (117), and collaborates with TSLP to phosphorylate 

STAT5, amplifying type 2 in ammation (118). For eosinophils, 

IL-33 stimulates degranulation, enhances superoxide production 

similar to IL-5, prolongs cell survival, and increases adhesion 

capacity (119, 120). In basophils, IL-33 upregulates the surface 

expression of the CD11b antigen, enhances adhesion, promotes 

migration to in ammatory sites (121), and increases IgE- 

dependent degranulation (122), reinforcing its role in T2 

in ammation. IL-33 also stimulates mast cell differentiation, 

releasing cytokines (IL-5, IL-6, IL-10, and IL-13) and 

chemokines (CCL1, CXCL8), contributing to allergic 

in ammation (123).

Respiratory infections, such as viral (e.g., rhinovirus) or 

bacterial (e.g., in uenza) infections, are key factors that trigger 

and aggravate exacerbations in patients with non-T2 SA (124). 

IL-33 drives non-T2 in ammation to clear these pathogens, 

potentially worsening airway in ammation. IL-33 cooperates 

with IL-12 and TCR signaling to increase IFN-γ production in 

CD8+ T cells, promoting viral clearance and CD8+ T cell 

differentiation (125, 126). It also stimulates DCs to produce IL-6 

and upregulate surface molecules, thereby driving type 1 

in ammation via TNF-α and IFN-γ (127), and contributes to 

neutrophil activation in patients with uncontrolled SA (128).

In ASM cells, IL-33 aids wound healing through IL-13 from 

mast cells (129). IL-33 also increases collagen and fibronectin 

production in fibroblasts, contributing to airway remodeling in 

asthma (130, 131). Since IL-33 is released upon cellular or tissue 
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damage, initiating in ammatory and tissue repair responses, it is 

considered a “tissue damage alarmin.”

Clinically, IL-33 and ST2 levels are elevated in the serum and 

sputum of asthma patients and correlate with disease severity (132, 

133). IL-33 expression is markedly elevated in ASM cells from 

endobronchial biopsy samples of patients with SA (134). Unlike 

TSLP, IL-33 plays a key role in driving virus-induced 

exacerbations in asthma patients (135).

Alarmin-targeted therapies for SA

Recent advances in SA treatment have coincided with 

improved phenotypic classification, particularly the recognition 

of T2 in ammation (9). The development of monoclonal 

antibodies targeting T2 pathways, such as anti-IL5 or anti-IL4/ 

IL13, has substantially alleviated the burden of SA (136). 

However, a subset of patients, especially those lacking T2 

in ammatory biomarkers, do not respond to these therapies 

(10). In this context, targeting TSLP, a cytokine that initiates 

in ammatory responses upon allergen exposure, may provide 

therapeutic benefits for various SA phenotypes, including those 

that do not respond to T2-targeted biologic therapies.

Tezepelumab, a fully humanized IgG2λ monoclonal antibody 

targeting TSLP, is currently the only successful anti-TSLP therapy 

(137–139). Approved for commercial use since 2021, it is indicated 

for the treatment of uncontrolled SA in patients aged 12 and older 

and administered via subcutaneous injection (140). Tezepelumab 

significantly reduces asthma exacerbation rates according to two 

major clinical trials. In the PATHWAY trial (phase 2), patients 

receiving tezepelumab experienced a 62%–71% reduction in 

annual exacerbation rates compared to placebo, alongside 

improvements in lung function, with efficacy independent of 

baseline eosinophil counts (138). In the NAVIGATOR trial 

(phase 3), tezepelumab reduced exacerbation rates by 56% 

compared to placebo, including in patients with elevated blood 

eosinophils, while also improving lung function, asthma control, 

quality of life, and symptom severity (139). To further reduce 

systemic side effects and improve safety, inhaled anti-TSLP 

products, such as ecleralimab, are being developed. Ecleralimab 

(CSJ117), an inhaled anti-TSLP antibody fragment, binds to 

soluble TSLP and prevents TSLP receptor activation (141). 

Phase IIa studies indicate that ecleralimab can reduce 

bronchoconstriction and airway in ammation caused by 

allergens in patients with mild allergic asthma (142).

Monoclonal antibodies targeting IL-25 (anti-IL-25) (143) or 

its receptor IL-17RB (144, 145) remain in preclinical 

development or early research stages. Studies in mice indicate 

that IL-25 inhibition can prevent airway hyperresponsiveness, 

reduce the production of T2 in ammation-related cytokines, 

decrease eosinophil infiltration, limit goblet cell hyperplasia, and 

lower serum IgE levels (146). Anti-IL-25 agents, originally 

developed for treating respiratory viral infections, may also help 

manage severe asthma exacerbations associated with viral 

infections (143). Despite promising findings, no anti-IL-25 

agents have advanced to phase II clinical trials.

The IL-33/ST2 axis is under investigation as a therapeutic 

target for patients with SA, particularly those who have not 

responded to previous biologic therapies. Several monoclonal 

antibodies in trials include GSK3772847, REGN3500 

(itepekimab), and ANB020 (etokimab). A phase IIa trial of 

GSK3772847 in patients with moderate to SA and allergic fungal 

airway disease showed no significant efficacy, possibly due to a 

small sample size (147). Itepekimab, an anti-IL-33 monoclonal 

antibody, reduced exacerbation rates and improved lung 

function compared to placebo in patients with moderate to SA 

but did not provide superior benefits compared to dupilumab 

(148). A phase 2b trial of etokimab in patients with severe 

eosinophilic asthma has been completed, but official results have 

not yet been published (149). Overall, drugs targeting the IL-33/ 

IL1RL1 axis hold potential as alternatives to current type 2 

monoclonal antibodies, but the efficacy of combining these 

therapies requires further investigation.

Conclusion

Airway epithelial cells play a central role in asthma by 

secreting proin ammatory cytokines, chemokines, antiviral 

cytokines, and alarmins, driving diverse in ammatory responses, 

including T2 and non-T2 in ammation. Understanding their 

mechanisms of action and interaction networks offers 

opportunities for targeted therapies in SA, particularly for non- 

T2 phenotypes. Among current treatments, tezepelumab 

(a commercialized anti-TSLP agent) has demonstrated efficacy 

in reducing exacerbation rates and improving lung function, 

while therapies targeting IL-25 and IL-33 show promise in 

preclinical studies. However, clinical data on IL-25 and IL-33 

remain limited, and large-scale studies on non-alarmin epithelial 

cytokines are lacking. Future research should focus on cytokine- 

specific pathways, evaluating combination therapies, and 

developing inhaled biologics to optimize efficacy and minimize 

systemic side effects. Large-scale clinical trials targeting non-T2 

phenotypes and epithelial-driven airway remodeling pathways 

are essential to advance personalized asthma treatments.
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