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Introduction: Airway epithelial cells function as the first physical barrier against
pathogens and are key regulators of immune responses by producing a wide
array of cytokines involved in both innate and adaptive immunity.

Methods: This review summarizes recent advances in our understanding of
epithelial-derived cytokines in severe asthma (SA) pathogenesis and highlights
promising therapeutic strategies.

Results: Epithelial-derived cytokines can be functionally classified into the
following four main groups: alarmins [interleukin [IL]-25, IL-33, thymic stromal
lymphopoietin [TSLP]], proinflammatory cytokines (IL-1, IL-6, tumor necrosis
factor-a), chemokines (CCL2, CCL5), and antiviral cytokines [interferon (IFN)-a,
IFN-B, IFN-Al. Alarmins are rapidly released in response to epithelial injury and
play a pivotal role in initiating immune responses by activating dendritic cells,
type 2 innate lymphoid cells, and eosinophils. Proinflammatory cytokines
intensify inflammation by promoting immune cell activation and cytokine
cascades, while chemokines guide immune cells to sites of injury. Antiviral
cytokines enhance epithelial defenses by inducing the expression of antiviral
genes. In SA, epithelial-derived cytokines play a central role in initiating and
sustaining type 2 (T2) inflammation by activating the IL-4, IL-5, and IL-13 axis,
leading to increased eosinophils, elevated serum IgE, and heightened airway
hyperresponsiveness. These cytokines are also implicated in non-T2
inflammation, particularly in refractory asthma phenotypes.

Discussion: Growing insights into epithelial cytokines and their complex
signaling networks with the airway microenvironment have opened new
avenues for developing targeted and personalized treatment in SA.

KEYWORDS

severe asthma, epithelial-derived cytokines, alarmin, type 2 inflammation, non-T2
asthma

Airway epithelial cells form the first line of defense against inhaled pathogens and
environmental toxins, serving both physical and immunological barrier functions (1).
These cells develop, maintain, and repair the respiratory tract by producing mucus,
regulating inflammation, and facilitating tissue remodeling (2). Beyond their structural
role, epithelial cells are actively involved in innate immunity (3). Through pattern
recognition receptors, including Toll-like receptors, NOD-like receptors, and RIG-I-
like receptors, airway epithelial cells detect microbial components and initiate
intracellular signaling cascades (4). In response, they secrete a variety of antimicrobial
peptides, such as defensins, cathelicidins, and lysozymes, which directly contribute to
the elimination of pathogens (5). Epithelial cells also release cytokines and chemokines
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that direct immune cell recruitment and activation (3). Following
injury, airway epithelial cells rapidly proliferate and differentiate to
restore barrier integrity and prevent secondary infections (6).
Asthma is a chronic inflammatory disease of the airways
characterized by variable respiratory symptoms, including
wheezing, shortness of breath, chest tightness, cough, and
expiratory airflow limitation (7). Severe asthma (SA), affecting
approximately 5%-10% of patients with asthma, is a complex
clinical condition characterized by persistent symptoms that
remain  uncontrolled despite  adhering to
therapy  (8). SA
inflammatory phenotypes, including type 2 (T2) inflammation
with elevated IL-4, IL-5, and IL-13 driving eosinophilia, IgE

production, and airway hyperresponsiveness (9), as well as non-

guideline-

recommended encompasses  multiple

T2 phenotypes such as neutrophilic airway inflammation,
obesity-associated asthma, and paucigranulocytic asthma (10).
Recent studies have highlighted the importance of airway
epithelial cell-derived cytokines in SA (6, 11). These cytokines
activate both innate and adaptive immune responses, amplifying
inflammation and perpetuating chronic disease. In this review,
we systematically summarize the latest findings on the role of
cytokines in  SA, their
immunological function and potential as therapeutic targets.

epithelial-derived focusing on

The airway epithelial barrier comprises epithelial cells
interconnected by adhesion proteins, such as zonula occludens-1,
occludin, and claudins, which form tight junctions that establish
the first line of defense against airborne environmental threats,
). This
barrier comprises three key cell types: ciliated cells, which

including house dust mites, pollen, and pollutants (12,

coordinate mucociliary clearance by propelling mucus to remove
inhaled particles and pathogens; basal cells, located at the base of
the epithelium, which function as progenitor cells to regenerate
damaged or senescent epithelial cells; and secretory cells (such as
goblet cells), which produce mucins to form the protective mucus
layer, and in some cases, cytokines (11, 14) ( ).

In asthma, the airway epithelial barrier can be disrupted by the
breakdown of tight junctions, leading to increased permeability to
pathogens and environmental allergens (15, 16). This disruption is
observed across all asthma phenotypes. In severe T2-high asthma,
epithelial barrier dysfunction is associated with FceRI-IgE cross-
linking, which induces activation of Src family kinases, alarmin
expression, loss of junctional proteins, and increased epithelial
permeability (17).

Mucus hypersecretion is common in asthma, particularly SA.
The mucus obstructs the airways and leads to uncontrolled airway
(18). In SA,
overactivation of the IL-4/IL-13 pathway drives excessive mucus

inflammation and recurrent exacerbations
production (19). Additionally, eosinophils release eosinophil
peroxidase (EPO), which promotes the formation of dense and
highly viscous mucins, further impairing airflow (20). Goblet
cell hyperplasia, combined with a reduction in the number and

function of ciliated epithelial cells, worsens mucus retention (21).
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Basal cells serve as the primary progenitors of the airway
epithelium, playing a crucial role in tissue regeneration. They
maintain  epithelial homeostasis by  proliferating and
differentiating to replenish specialized cells, such as goblet and
ciliated cells after injury (11, 21). However, in SA, airway
epithelial cells, including basal cells, exhibit markedly increased
proliferation compared to those in mild asthma or healthy
individuals, potentially contributing to airway remodeling (22).
Moreover, structural damage to the epithelium may trigger the
release of growth factors such as TGF-B, which impairs the
ability of basal cells to regenerate and perpetuates epithelial
dysfunction (23).

Club cells (also known as Clara cells) are non-ciliated
epithelial cells located in the bronchioles. They secrete anti-
inflammatory proteins (club cell secretory protein/CC10), secrete
protective proteins and surfactant components, detoxify inhaled
substances via cytochrome P450 enzymes, and support epithelial
regeneration after injury (24). Ionocytes are rare, specialized
epithelial cells characterized by high expression of cystic fibrosis
transmembrane conductance regulator, a chloride channel
essential for ion transport and regulation of airway surface
liquid (ASL). This function maintains mucosal hydration and
effectively supports mucociliary clearance (25, 26).

Beyond structural cells, innate immune cells, including
dendritic cells (DCs) and mast cells, are scattered within or
adjacent to the airway epithelium. Although they do not directly
contribute to the physical barrier, they are critical in recognizing
environmental stimuli and activating other innate immune cells
as well as adaptive immune responses, thereby protecting the

airways from harmful agents.

In addition to forming a physical barrier, airway epithelial cells
also play a central role in orchestrating immune responses by
releasing a wide range of cytokines. Epithelial-derived cytokines
are functionally grouped into four categories: alarmins,
proinflammatory cytokines, chemokines, and antiviral cytokines.
Alarmins play a pivotal role in airway immune responses in
patients with severe asthma and will be discussed in detail in
the following sections.

Following injury or IL-13 stimulation, epithelial cells
—particularly basal cells and goblet cells—upregulate the
secretion of proinflammatory cytokines such as IL-6, IL-8, and
TNF-a via NF-kB and AP-1 signaling pathways (27-29), thereby
recruiting amplifying  inflammatory

responses, and promoting remodeling through the release of

inflammatory  cells,
growth factors (30, 31).
Chemokines are small (~15 kDa) signaling molecules secreted
by epithelial cells that guide the migration of immune cells to sites
of inflammation (32). According to their structural motifs,
chemokines are classified into two main families (CC and CXC)
and two subgroups (C and CX3C) (33). CC chemokines
primarily attract lymphocytes, cells,

monocytes, dendritic
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FIGURE 1

Roles of epithelial-derived cytokines in the pathogenesis of severe asthma. The airway epithelial barrier comprises ciliated and basal cells, along with
secretory cells such as goblet cells, club cells, and ionocytes, all covered by a mucus layer propelled by ciliary motion. This forms the first line of
defense against inhaled allergens, pollutants, and pathogens. Upon exposure, these agents trigger the release of various cytokines from epithelial
cells. Epithelial-derived alarmins, thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33, play key roles as initiators and amplifiers of
inflammation. TSLP drives dendritic cells (DCs) to induce CD4"* T cell differentiation into Th2 cells, enhances IgG and IgE production, activates
ILC2s and basophils, and stimulates the proliferation and differentiation of mast cells and macrophages toward a type 2 inflammatory response.
TSLP indirectly promotes Thl7 differentiation, leading to IL-17 production and neutrophilic inflammation, driving a type 1 inflammatory response.
It also stimulates airway smooth muscle cells to release proinflammatory cytokines. IL-33, stored in the nucleus and released upon cellular or
tissue damage, acts on both type 2 (Th2 cells, ILC2s, eosinophils) and type 1 (CD8* T cells, neutrophils) immune cells, thereby bridging and
amplifying both inflammatory pathways. IL-25, normally stored in the cytoplasm of epithelial cells, primarily targets T2 immune cells such as
ILC2s, Th2 cells, and basophils, boosting T2 inflammatory responses. Together, these cytokine pathways drive airway inflammation, mucus
hypersecretion, bronchoconstriction, and airway remodeling in severe asthma. Targeting epithelial-derived cytokines has become a promising
therapeutic approach, with tezepelumab (anti-TSLP) already approved for clinical use.

eosinophils, and basophils, but not neutrophils (34). Viral or
bacterial infections induce the release of epithelial chemokines,
including CCL2, CCL5, and CCL20 (35), while house dust mite
allergens trigger thymus- and activation-regulated chemokine,
enhancing Th2 cell recruitment (36). In asthma, CCL2 is often
overexpressed, and blocking CCL2 or its receptor alleviates
symptoms (37). CC chemokines such as CCL11, CCL24, CCL26,
and CCLS5 recruit eosinophils to allergic sites and activate them
via CCR3 signaling, promoting inflammation and the release of
intracellular granules (38-40). Meanwhile, CXC chemokines
predominantly recruit neutrophils and other inflammatory cells
(34). The association of CXCL5 with its receptor CXCR2 has
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been linked to eosinophilia during asthma exacerbations (41).
Additionally, the CXCL10/CXCR3 axis is involved in the
recruitment of mast cells to inflamed regions, contributing to the
contraction of airway smooth muscle (ASM) cells in asthma (42).

The airway epithelium produces type I interferons, particularly
IFN-B, in response to viral infections. IFN-f enhances antiviral
defenses by inducing interferon-stimulated genes and recruiting
NK, CD4+, and CD8+ T cells (43). IFN-B deficiency is
associated with asthma severity, and clinical trials with inhaled
IFN-B have shown reduced asthma exacerbations caused by
viruses (44). The mechanisms underlying IFN-B deficiency in
asthma and the therapeutic role of epithelial cytokines require

03 frontiersin.org
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further investigation (45). Due to the functional diversity and
complex interactions, non-alarmin epithelial-derived cytokines
difficulties in

therapeutic targets. The understanding of the role of non-

present  considerable pinpointing  precise
alarmin cytokines in SA remains limited. To date, no large-scale
studies have demonstrated significant success in developing

targeted treatments in this field.

The key alarmins include TSLP, IL-25, and IL-33. Their release
may occur concurrently or selectively, depending on the nature of
the environmental insult.

TSLP: the spark of inflammation

TSLP, a member of the IL-2 cytokine family, was first isolated
from thymic stromal cell cultures and initially linked to B cell
development (46). Structurally composed of four a-helical
bundles, TSLP is encoded by the TSLP gene on chromosome
5q22. It signals through a heterodimeric receptor comprising the
TSLP receptor chain (TSLPR) and the IL-7 receptor alpha chain
(IL-7Ra) (47). In humans, TSLP exists in two isoforms: the
short form (sfTSLP) and the long form (IfTSLP), each with
distinct functions (48). sfISLP is constitutively expressed in
healthy barrier tissues such as the epithelium of the lungs, gut,
and skin, contributing to immune homeostasis and displaying
potential anti-inflammatory and antimicrobial functions by
suppressing pro-inflammatory cytokines such as TNF-o, IL-1p,
and IL-6 (49). In contrast, IfTSLP is induced by inflammatory
stimuli, including allergens, infections, and cytokines, and
strongly promotes type 2 (T2) inflammatory responses (50).
Recent studies have demonstrated that IfTSLP disrupts airway
epithelial barrier function, whereas sfTSLP can counteract these
). Additionally, IfTSLP has been shown to
induce autophagy in ASM cells, thereby promoting airway

detrimental effects (

inflammation and remodeling in both in vitro and in vivo
asthma models, while sfTSLP exerts inhibitory effects on these
processes (52).

In the lungs, TSLP is primarily secreted by epithelial cells but
is also produced by fibroblasts, DCs, basophils, and mast cells (53).
TSLP secretion is triggered by various factors, including PAR-
2-activating proteases (e.g., airborne fungi like Alternaria) (54),
dsRNA from viruses such as rhinovirus or RSV (55), and uric
acid from house dust mites (56). There are several mechanisms
of TSLP-mediated immune activation. TSLP acts on DCs,
promoting their ability to stimulate naive CD4+ T cells to
differentiate into Th2 cells, which produce T2 cytokines such as
IL-4, IL-5, and IL-13 (57). TSLP may also directly influence
CD4+ T cells to differentiate into T follicular helper cells,
enhancing the production of IgG and IgE (58). TSLP inhibits
regulatory T cells, removing negative regulation and allowing

unchecked T2 inflammation (59, 60). TSLP and IL-33 jointly
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activate group 2 innate lymphoid cells, leading to IL-5 and IL-13
production (61). TSLP also promotes basophil production
independently of IL-3 (62,
CD203c, supports eotaxin-mediated migration, and forms an IL-3

), enhances the expression of

autocrine loop, contributing to allergic airway inflammation (64).

When stimulated by TNF-a, the expression of TSLPR and
TSLPR mRNA increases, activating eosinophils and the release
of eosinophil-derived neurotoxin (65). In bronchial epithelial
cells, TSLP delays apoptosis, enhances fibronectin adhesion, and
induces secretion of IL-6, IL-8, CXCL1, and CXCL2 (66). TSLP
also promotes the proliferation and differentiation of mast cells
from bone marrow by activating signal transducer and activator
of transcription 6 (STAT6) and upregulating mouse double
minute 2 homolog (MDM2), intensifying allergic inflammation
(67). TSLP drives the differentiation of macrophages into an
alternatively activated T2 inflammatory phenotype (68).

TSLP also contributes to non-type 2 (non-T2) inflammatory
processes, including non-allergic asthma and non-eosinophilic
asthma. In the context of viral infections or non-allergic
triggers, TSLP-stimulated DCs promote the differentiation of
naive CD4+ T cells into Th2 cells
differentiation, particularly in the presence of IL-1f, IL-6, and
IL-23 (69). These Th17 cells secrete IL-17, which contributes to
the recruitment

and promote Thl7

of neutrophils and induces neutrophilic
inflammation, a hallmark of non-T2 asthma (10). TSLP also
activates ASM cells, enhancing secretion of IL-6, CXCL8 (IL-8),
and CCL11 (eotaxin-1) (70).

Clinically, elevated TSLP levels in bronchoalveolar lavage fluid
and airway tissues correlate with disease severity and airway
obstruction in children with asthma (71). TSLP gene expression
is increased in the airway epithelium and mucosa of adult
patients with SA (72), and high plasma TSLP levels correlate
with persistent asthma exacerbations (73). In SA, TSLP has been
implicated in corticosteroid resistance, through regulation of
STATS5 phosphorylation and Bcl-xL expression in natural helper
cells (

remodeling, by inducing bronchial smooth muscle cell migration

). Beyond T2 inflammation, TSLP promotes airway

and proliferation, contributing to bronchial wall thickening and
remodeling in chronic asthma (75). In mouse models of chronic
asthma, TSLP inhibition improved airway remodeling features,
such as peribronchial collagen deposition and goblet cell

hyperplasia (76).
IL-25: amplifier of T2-inflammation
IL-25, also known as IL-17E, is a member of the IL-17

IL-25 is
), intestines, and colon,

cytokine family encoded on chromosome 14 (77).
produced by airway epithelial cells (
and is also produced by Th2 cells, alveolar macrophages (79),
). IL-25 signals
through a heterodimeric receptor composed of IL-17RA and IL-
17RB (also known as IL-17Rh1 or EVI27), both of which need
to be present to activate downstream signaling pathways (82).

eosinophils, basophils (80), and mast cells (

Under normal conditions, IL-25 is continuously produced and
stored in the cytoplasm of resting normal human bronchial
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epithelial cells and secreted upon exposure to allergen-derived
proteases (83).

IL-25 mRNA expression increases upon exposure to airborne
allergens (78, 84). IL-25 directly promotes the differentiation of
CD4" T cells into Th2 cells, via the production of cytokines
such as IL-4, IL-5, and IL-13, which are central to T2
inflammation. This process depends on the initial autocrine
production of IL-4 by T cells and the presence of the signaling
protein STAT6 (78). IL-25 enhances Th2 cytokine production,
recruits eosinophils and CD4" T cells to the airways, and
induces goblet cell hyperplasia, which are hallmarks of allergic
airway inflammation (78, 85). IL-25 also upregulates eotaxin and
arginase-1, two key factors in recruiting eosinophils into lung
tissue, thereby amplifying the T2 inflammatory response (86).

IL-25 is a potent activator of group 2 innate lymphoid cells
(ILC2), which are immune cells lacking specific antigen
receptors but capable of producing type 2 inflammatory
cytokines such as IL-5, IL-9, and IL-13 (87). Activated ILC2
promotes mucus secretion, bronchoconstriction (88), and the
recruitment of eosinophils and mast cells, which enhances the
inflammatory response (89, 90). This cytokine loop supports IgE
production, further fueling allergic type 2 inflammation (91).
The initiation and amplification of type 2 inflammation via
ILC2 also involves other alarmins such as TSLP and IL-33.
Furthermore, IL-25 directly enhances antigen uptake in
eosinophils and activates Th2 cells in allergic inflammation (92).
IL-25 promotes eosinophil activation and migration (93), while
reducing apoptosis  (94), thereby amplifying type 2
inflammation. Unlike TSLP and IL-33, IL-25 is currently not
associated with non-T2 inflammation (10, 95), reinforcing its
role as a T2-specific amplifier.

In asthma, IL-25 is elevated (96), particularly during
rhinovirus-triggered exacerbations (97). High IL-25 levels, even
in the absence of TSLP or IL-33, correlate with greater T2
inhaled

). IL-25 expression in the sputum of asthma

inflammation and increased responsiveness to
corticosteroids (
patients is associated with asthma severity (98). Evidence
suggests that IL-25 contributes to airway remodeling in SA by
inducing a fibrotic phenotype shift in airway epithelial cells and
circulating fibroblasts (99), promoting fibroblast proliferation,
extracellular matrix fibrotic

deposition  (100), and a

epithelial phenotype.

IL-33: tissue damage alarm

IL-33 is a member of the IL-1 cytokine family, acting as a vital
alarmin that helps maintain tissue balance and repair while
participating in both type 1 and type 2 immune responses (101).
IL-33 is
epithelial,

IL-33 is encoded on chromosome 9p24.1 (102).

predominantly expressed in the nucleus of
endothelial, and mesenchymal cells, including basal cells of the
airway epithelium (103). IL-33 is stored in the nucleus and can
be released in response to proteases derived from allergens or
), or in the

pathogens (104-106), during cellular stress (

course of apoptosis (108, 109).

Frontiers in

10.3389/falgy.2025.1681147

IL-33 is synthesized and stored in the nucleus as a full-length
form (IL-33-FL), which has modest biological activity. Upon
IL-33-FL is
extracellular space. Its biological fate then depends on the

cellular stress or necrosis, released into the
proteases involved: (i) proteolytic processing by allergen-derived
or endogenous proteases (e.g., elastase, cathepsin G, chymase, or
tryptase) generates mature IL-33 forms, which are up to 60-fold
more potent and bind with high affinity to its receptor ST2,
); (i)

conversely, cleavage by apoptotic caspases produces inactive IL-

promoting a rapid type 2 inflammatory response (

33 fragments, thereby preventing inappropriate immune
activation (108).
ST2 is also known as IL-1 receptor-like 1 (IL1IRL1) (111) and

exists in two forms: the membrane-anchored form (ST2l) and the
soluble form (sST2) (112). ST2] mediates IL-33 signaling, while
sST2 acts as a “decoy” receptor binding to IL-33 in the
extracellular fluid to prevent it from interacting with ST2I,
). Upon IL-
33 binding, ST2l associates with a co-receptor, IL-1 receptor
accessory protein (IL-1RAcP). The formation of the IL-33/ST2l/
IL-1RAcP complex activates intracellular signaling pathways

thereby regulating or inhibiting IL-33 signaling (

such as nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-kB) and mitogen-activated protein kinase, leading to
T2 cytokine production (114).

IL-33 impacts the immune system and tissue repair through
various mechanisms. In type 2 inflammation, IL-33 activates
Th2 cells via the transcription factor GATA3, promoting the
production of IL-5 and IL-13 (115, ). The IL-33/ST2
signaling axis activates ILC2, increasing the production of IL-5
and IL-13 (
STATS5, amplifying type 2 inflammation (

), and collaborates with TSLP to phosphorylate
). For eosinophils,
IL-33 stimulates degranulation, enhances superoxide production
similar to IL-5, prolongs cell survival, and increases adhesion
capacity (119, ). In basophils, IL-33 upregulates the surface
expression of the CD11b antigen, enhances adhesion, promotes
migration to inflammatory sites (121), and increases IgE-
dependent degranulation (122), reinforcing its role in T2
inflammation. IL-33 also stimulates mast cell differentiation,
(IL-5, 1IL-6, IL-10, and IL-13) and

CXCL8), contributing to

releasing cytokines
(CCL1,

inflammation (123).

chemokines allergic

Respiratory infections, such as viral (e.g., rhinovirus) or
bacterial (e.g., influenza) infections, are key factors that trigger
and aggravate exacerbations in patients with non-T2 SA (124).
IL-33 drives non-T2 inflammation to clear these pathogens,
potentially worsening airway inflammation. IL-33 cooperates
with IL-12 and TCR signaling to increase IFN-y production in
CD8+ T cells, promoting viral clearance and CD8+ T cell
differentiation (125, ). It also stimulates DCs to produce IL-6
and upregulate surface molecules, thereby driving type 1
inflammation via TNF-o and IFN-y (127), and contributes to
neutrophil activation in patients with uncontrolled SA (128).

In ASM cells, IL-33 aids wound healing through IL-13 from
mast cells (129). IL-33 also increases collagen and fibronectin
production in fibroblasts, contributing to airway remodeling in

asthma (130, ). Since IL-33 is released upon cellular or tissue
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damage, initiating inflammatory and tissue repair responses, it is
considered a “tissue damage alarmin.”
Clinically, IL-33 and ST2 levels are elevated in the serum and
sputum of asthma patients and correlate with disease severity (132,
). IL-33 expression is markedly elevated in ASM cells from
). Unlike
in driving virus-induced

endobronchial biopsy samples of patients with SA (
TSLP, IL-33 plays
exacerbations in asthma patients (135).

a key role

Recent advances in SA treatment have coincided with
improved phenotypic classification, particularly the recognition
of T2 inflammation (9). The development of monoclonal
antibodies targeting T2 pathways, such as anti-IL5 or anti-IL4/
IL13, has substantially alleviated the burden of SA (136).
However, a subset of patients, especially those lacking T2
inflammatory biomarkers, do not respond to these therapies
(10). In this context, targeting TSLP, a cytokine that initiates
inflammatory responses upon allergen exposure, may provide
therapeutic benefits for various SA phenotypes, including those
that do not respond to T2-targeted biologic therapies.

Tezepelumab, a fully humanized IgG2A monoclonal antibody
targeting TSLP, is currently the only successful anti-TSLP therapy
(137-

for the treatment of uncontrolled SA in patients aged 12 and older

). Approved for commercial use since 2021, it is indicated
and administered via subcutaneous injection (140). Tezepelumab
significantly reduces asthma exacerbation rates according to two
major clinical trials. In the PATHWAY trial (phase 2), patients
receiving tezepelumab experienced a 62%-71% reduction in
annual exacerbation rates compared to placebo, alongside
improvements in lung function, with efficacy independent of
In the NAVIGATOR trial
(phase 3), tezepelumab reduced exacerbation rates by 56%

baseline eosinophil counts (138).

compared to placebo, including in patients with elevated blood
eosinophils, while also improving lung function, asthma control,
quality of life, and symptom severity (139). To further reduce
systemic side effects and improve safety, inhaled anti-TSLP
products, such as ecleralimab, are being developed. Ecleralimab
(CSJ117), an inhaled anti-TSLP antibody fragment, binds to
soluble TSLP and prevents TSLP receptor activation (141).
Phase Ila that

bronchoconstriction and airway

studies indicate ecleralimab can reduce

inflammation caused by

allergens in patients with mild allergic asthma (142).
Monoclonal antibodies targeting IL-25 (anti-IL-25) (

IL-17RB (144, )

development or early research stages. Studies in mice indicate

) or

its  receptor remain in preclinical
that IL-25 inhibition can prevent airway hyperresponsiveness,
reduce the production of T2 inflammation-related cytokines,
decrease eosinophil infiltration, limit goblet cell hyperplasia, and
lower serum IgE levels (146). Anti-IL-25 agents, originally
developed for treating respiratory viral infections, may also help
manage severe asthma exacerbations associated with viral
infections (143). Despite promising findings, no anti-IL-25

agents have advanced to phase II clinical trials.
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The IL-33/ST2 axis is under investigation as a therapeutic
target for patients with SA, particularly those who have not
responded to previous biologic therapies. Several monoclonal
antibodies in trials include GSK3772847, REGN3500
(itepekimab), and ANB020 (etokimab). A phase Ila trial of
GSK3772847 in patients with moderate to SA and allergic fungal
airway disease showed no significant efficacy, possibly due to a
small sample size (147). Itepekimab, an anti-IL-33 monoclonal

antibody, reduced exacerbation rates and improved lung
function compared to placebo in patients with moderate to SA
but did not provide superior benefits compared to dupilumab
(148). A phase 2b trial of etokimab in patients with severe
eosinophilic asthma has been completed, but official results have
). Overall, drugs targeting the IL-33/

ILIRL1 axis hold potential as alternatives to current type 2

not yet been published (

monoclonal antibodies, but the efficacy of combining these
therapies requires further investigation.

Airway epithelial cells play a central role in asthma by

secreting proinflammatory cytokines, chemokines, antiviral
cytokines, and alarmins, driving diverse inflammatory responses,
including T2 and non-T2 inflammation. Understanding their
mechanisms of action and interaction networks offers
opportunities for targeted therapies in SA, particularly for non-
T2 phenotypes. Among current treatments, tezepelumab
(a commercialized anti-TSLP agent) has demonstrated efficacy
in reducing exacerbation rates and improving lung function,
while therapies targeting IL-25 and IL-33 show promise in
preclinical studies. However, clinical data on IL-25 and IL-33
remain limited, and large-scale studies on non-alarmin epithelial
cytokines are lacking. Future research should focus on cytokine-
specific pathways, evaluating combination therapies, and
developing inhaled biologics to optimize efficacy and minimize
systemic side effects. Large-scale clinical trials targeting non-T2
phenotypes and epithelial-driven airway remodeling pathways

are essential to advance personalized asthma treatments.
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