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Sound localization circuits
in reptiles
Dawei Han1, Rebeca W. Fuquen2, Katie L. Willis3,
Jakob Christensen-Dalsgaard4* and Catherine E. Carr1*

1Department of Biology, University of Maryland, College Park, MD, United States, 2Department of
Animal and Avian Sciences, University of Maryland, College Park, MD, United States, 3School of
Biological Sciences, University of Oklahoma, Norman, OK, United States, 4Department of Biology,
University of Southern Denmark, Odense, Denmark
Location of sound sources is a fundamental task of the auditory system. Recent

studies have shown that land vertebrates employ an array of sound localization

strategies. We have therefore compared auditory brainstem circuits by

measuring cell numbers in the cochlear nuclei in relation to brain weight

among different groups of reptiles to determine if these behavioral differences

are reflected in the organization of the brainstem. In extant archosaurs, the birds

and crocodilians, the two ears are weakly connected pressure receivers, and

sound direction is computed by binaural interactions in brain involving parallel

processing of interaural time and level differences. The first-order cochlear

nuclei are nucleus magnocellularis (NM) and nucleus angularis (NA). NM

projects bilaterally to the nucleus laminaris (NL), where interaural time

differences are computed in archosaurs. Relative to brain size, NA, NM and NL

cell counts of the American alligator (Alligator mississippiensis) are similar to

those of birds. Testudines (turtles and tortoises), sister group to archosaurs, are

also assumed to compute sound location from binaural interactions in the brain

due to weakly connected middle ears. Compared to archosaurs, NA, NM and NL

of the red-eared slider (Trachemys scripta), common snapping turtle (Chelydra

serpentina) and Hermann’s tortoise (Testudo hermanni) are all proportionally

small. In lizards, due to the strong internal coupling of the middle ears, the

cochlear nerve responses are directional, and interaural time and level

differences are co-dependent and frequency dependent, suggesting that the

neural processing of sound direction may be different from archosaurs.

Compared to archosaurs, NM and NL of the tokay gecko (Gekko gecko) and

green iguana (Iguana iguana) are proportionally small, but NA is well-developed,

suggesting a greater importance of the NA pathway for the processing of the

high-frequency directional information generated by the coupled ears. Snakes

originated from lizard ancestors, but have secondarily lost their eardrums, and

their sound localization strategies are unknown. NA and NM of the western

ratsnake (Pantherophis obsoletus) are proportionally smaller than those of

the lizards.
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Introduction

When the terrestrial vertebrates (tetrapods) emerged in the

Devonian, the adaptation of their auditory systems for air-borne

hearing led to many changes, and eventually to the emergence of an

evolutionary novelty, the tympanic middle ear, in the Triassic (Clack,

1997; Christensen-Dalsgaard and Carr, 2008). Prior to its appearance,

early tetrapods had a bulky stapes that is hypothesized to have served

as a structural support in the skull, and their ability to hear airborne

sound was likely poor (Bolt and Lombard, 1985; Robinson et al.,

2005; Sigurdsen, 2008; Sigurdsen and Bolt, 2010; Clack et al., 2017).

Tympanic ears appeared independently in all major tetrapod

groups (amphibians, lepidosaurs, chelonians, archosaurs and

mammals), and many aspects of the tympanic structures show

similarities due to convergent or parallel evolution. One evident

advantage of animals with tympanic ears compared to their non-

tympanic ancestors is that sensitivity to sound is increased,

particularly at higher frequencies. The tympanic ear also changed

the directional hearing of animals, particularly in the lizards and

archosaurs, and enabled different sound localization strategies.

Directional hearing in all animals is based on processing of the

physical cues associated with the propagating sound wave, and

especially important in vertebrates are the binaural neural

comparisons of the inputs from the two ears, chiefly the level of

neural activity and the timing of neural activity in the two auditory

nerves. The magnitude of these cues depends on the physical

characteristics of the animal, most fundamentally its size. If the

animal is small compared to the wavelength of sound it will not

create a strong sound shadow, and therefore the interaural level

difference (ILD) will be small. Similarly, the time difference between

the sound wave arriving at the two ears (ITD) depends on size.

However, if sound can pass from one eardrum to the other (called

acoustical coupling) this interaction produces a directional response

of the eardrums, and thus a much larger difference in neural activity

in the two auditory nerves even in animals that are small compared

to the wavelength of sound (Christensen-Dalsgaard, 2011).

Here, we review the brainstem cochlear nuclei of lizards, snakes,

testudines, and archosaurs, with a focus on directional cues

provided by the new tympanic ears. The tympanic ears of lizards

are acoustically coupled across the pharynx, and thus highly

directional (Christensen-Dalsgaard and Manley, 2005, 2008).

Thus, already a simple binaural comparison in the CNS produces

a lateralized response (Christensen-Dalsgaard et al., 2021). Snakes,

which originated from lizard ancestors, have secondarily lost their

eardrums (Rieppel, 1988). In archosaurs, by contrast, the two

middle ears are joined by sinuses, creating weakly connected

pressure receivers. In this group, both acoustic coupling and

additional binaural interactions in the brain provide cues for

computation of sound source location, mostly based on ITDs,

since interaural level differences ILDs are small in small animals.

In turtles, which are a sister group to archosaurs, the middle ear

cavities are connected to the pharynx by relatively narrow

Eustachian tubes, reducing the acoustic coupling of the eardrums.

Consequently, the turtle and tortoise eardrum exhibit less

directionality than lizards and archosaurs (Courte-Pinault and

Christensen-Dalsgaard, 2024), and turtles may need additional
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computation of sound location based on binaural comparisons

(Carr and Christensen-Dalsgaard, 2016; Willis and Carr, 2017).

Since sensory systems allow organisms to perceive environmental

stimuli, behavioral acuity can be associated with the enlargement of the

relevant brain regions (Catania and Kaas, 1995; Kubke et al., 2004).

Thus, the relative size of sensory regions in the brain can reveal a

species’ reliance on a particular sensory modality (Iwaniuk and

Wylie, 2020). In birds, this approach has been used extensively to

better understand the evolution of differences in sensory acuity and

sensitivity across species (Iwaniuk et al., 2006; Wylie et al., 2015).

We have compared brainstem circuits for processing cochlear input

among different groups of reptiles to determine if differences among

tympanic ears are reflected in the organization of the brainstem

cochlear nuclei, and in sound localization strategies mentioned

above. We have focused on the first order recipients of the cochlear

nerve, with cell counts of the nucleus angularis (NA) and the nucleus

magnocellularis (NM), and the binaural nucleus laminaris (NL) in two

species of archosaurs (the barn owl and the American alligator), three

species of turtles (the red-ear slider, the common snapping turtle and

Hermann’s tortoise), and three species of lepidosaurs (the tokay gecko,

the green iguana and the western ratsnake).

Brain size in vertebrates varies principally with body size, and

relative brain size has been used to predict sensory capacity

(Corfield et al., 2016; Jerison, 1973; Kubke et al., 2004; but also

see Olkowicz et al., 2016). Increases in relative brain size would be

expected to be costly because of the energetic cost of maintaining a

larger brain mass (Laughlin et al., 1998), and the relative cost may

be larger in ectothermic animals with their generally lower

metabolism. There have been few studies of brain size in reptiles,

apart from birds (Font et al., 2019; Kverková et al., 2022; Herculano-

Houzel, 2023; Song et al., 2023). We have therefore included relative

brain and brainstem sizes from our sample, in addition to our

measures of neuron number in brainstem cochlear nuclei. The

results show that NM was largest in the archosaurs, which compute

sound source location in the brain, and smallest in lepidosaurs,

which receive directional information from their coupled ears

(Christensen-Dalsgaard et al., 2011). NA, NM, and NL were small

in testudines compared to archosaurs, which may reflect turtles’

limited and low-frequency hearing range (Christensen-Dalsgaard

et al., 2012; Willis and Carr, 2017). In lizards, NA was comparable

in size to NA in birds, and larger than in turtles, while NM and NL

were small relative to birds, which suggests that NA pathways may

mediate processing of the high-frequency directional information

generated by the coupled ear. Both NA, and in particular NM, were

reduced in the western ratsnake (Han and Carr, 2023).
Materials and methods

We obtained the brain weights and the cell numbers of NM, NA

and NL in two species of archosaurs [the barn owl (Tyto alba) and

the American alligator (Alligator mississippiensis)], three species of

turtles [the red-ear slider (Trachemys scripta), common snapping

turtle (Chelydra serpentina) and Hermann’s tortoise (Testudo

hermanni)], and three species of lepidosaurs [the tokay gecko

(Gekko gecko), the green iguana (Iguana iguana) and the western
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ratsnake (Pantherophis obsoletus)]. Animals were obtained

commercially and used in previous studies (Christensen-Dalsgaard

et al., 2011; Carr et al., 2015; Willis and Carr, 2017; Kettler and Carr,

2019; Han and Carr, 2023). All procedures and protocols were

approved by the University of Maryland Institutional Animal Care

and Use Committees and complied with the National Institutes of

Health Guide for the use and care of laboratory animals.
Brain and body weights

Brain and body weights for our material (Table 1) were

quantified by direct weighing or obtained from literature. The

weights of adult specimens were used for data analysis. We also

measured the brain and body weights of 25 juvenile alligators and

45 juvenile western ratsnakes, which were not included in the data

analysis. Additionally, we directly measured the weights of the

forebrain and brainstem in four adult barn owls, four juvenile

alligators, one Hermann’s tortoise and one tokay gecko.
Cell counts

Neurons were quantified by manual counting under 400x

magnification or by stereological counting under 1000x

magnification in cresyl-violet stained sections. The total unilateral

population of neurons were counted manually for the red-ear slider,

Hermann’s tortoise, tokay gecko, and green iguana following

procedures described in Han and Carr (2023). In brief, we first

labelled the contour of each cochlear nucleus using Neurolucida

(MBF Bioscience, Williston, VT, USA) in conjunction with a light

microscope (Olympus BX60), and then placed a marker in every

neuron with a clear nucleolus within the nuclear boundaries to count

total cell numbers. As a result of the thickness of our sections (>50 µm),

overestimation of total cell number from double counting split nucleoli

is negligible (Abercrombie, 1946). Neuron counts of the American

alligator, barn owl and snapping turtle cochlear nuclei were obtained
Frontiers in Amphibian and Reptile Science 03
using the optical fractionator methods (Gundersen et al., 1999)

implemented in Stereo Investigator (MBF Bioscience) in conjunction

with a light microscope (Olympus BX60). Neurons were counted

unilaterally for NM, NA, and NL in every second section. Neurons

were counted if they contained a distinct nucleolus and intact cellular

membrane. We measured the thickness of sections at each counting

site as the distance between the first and last particle coming in and out

of focus (West et al., 1991). For neuron counts of the barn owl and

American alligator, we implemented a guard zone of 5 µm with 20 µm

dissector height, 137 x 187 µm grid size and a counting frame of 80 x 80

µm. For neuron counts of the common snapping turtle, we

implemented a guard zone of 5 µm with 15 µm dissector height,

60x60 µm grid size and a counting frame of 85 x 85 µm.
Data analyses

To visualize the allometric relationship between brain and body

weight, we obtained values for brain weight and body weight data of

lepidosaurs, turtles and archosaurs from Kverková et al. (2022), with

additional species supplemented by dataset in Font et al. (2019). Brain

weight and body weight were log10 transformed and plotted. Species

surveyed in this study are highlighted in green and red. To visualize

how neuron counts scale with brain weight in non-avian reptiles

compared to birds, we obtained the cell counts of NA, NM and NL

of 30 avian species with available brain weights from Winter (1963)

and Winter and Schwartzkopff (1961). To demonstrate the scaling

relationship between the brain weight and number of neurons in avian

species, we log10 transformed brain weight and neuron numbers then

performed least squares linear regression. We then calculated 95%

confidence intervals for the regression lines. In this study, we used data

for barn owls measured in our laboratory, instead of that ofWinter and

Schwartzkopff (1961). The dataset from Winter and Schwartzkopff

(1961) andWinter (1963) is subject to “errors caused by the difficulty of

delimiting a given nuclear area from surrounding nervous tissue

(Winter, 1963)”, which has been resolved over the years. As such, we

have updated the neuron count data for the barn owl. For the other
TABLE 1 List of reptile species surveyed, number of neurons in cochlear nuclei, and adult brain weight (g) and body weight (g).

Species common name NA NM NL Brain weight (g) Body weight (g)

Barn owl 16308 26647 21451 6.45 ± 0.40 (n=5) 569 ± 89 (n=5)

American alligatora 4198 11624 6647 10.231 1348501

Red eared slider 120 694 154 0.612 7992

Snapping turtle 538 1572 598 0.981 51251

Hermann’s tortoise 118 392 136 0.50 (n=1) 6933

Green iguana 1882 442 X 1.254 45674

Tokay gecko 2164 634 130 0.25 ± 0.05 (n=24) 57 ± 20 (n=24)

Western ratsnakeb 580 40 X 0.24 ± 0.04 (n=18) 456 ± 138 (n=5)
1Crile & Quiring, 1940.
2Quay, 1972.
3Platel, 1979.
4Kverková et al, 2022.
aJuvenile (n=25) body weight 887.2± 288.4 g, brain weight 1.84± 0.26 g.
bJuvenile (n=45) body weight 37.18 ± 57.42 g, brain weight 0.11 ± 0.05 g.
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avian species, Winter and Schwartzkopff (1961) and Winter (1963)

remain the most complete dataset and was used for data analysis. We

added lepidosaur, alligator and turtle data to the plot for comparison.

Species surveyed in this study are highlighted in color.
Results

We provide a general description of the middle ear and cochlear

nuclei for the animals in this study, followed by neuron counts for

the brainstem cochlear nuclei.
Overview of middle ear and
cochlear nuclei

Crocodilia
Pneumatized tympanic sinuses among the archosaurs couple the

middle ears and create a substrate for directional sensitivity

(Figure 1A) (Carr et al., 2016; Larsen et al., 2016). These sinuses

have been previously described (Witmer and Ridgely, 2009; Dufeau,

2011; Bierman et al., 2014; Larsen et al., 2016) and are only briefly

reviewed here in the context of their contribution to detection of

sound sources. In extant archosaurs, the birds and crocodilians, the

effect of coupling by interaural sinuses is greatest at low frequencies,

generating both larger ILDs and effectively increasing the range of

ITDs for coupled ears than would be predicted from the head size

alone (Calford and Piddington, 1988; Carr et al., 2009; Bierman et al.,

2014; Kettler et al., 2016; Larsen et al., 2016; Kettler and Carr, 2019).

Thus, animals with large heads necessarily have a wider range of ITDs

than those with small heads, and animals with coupled ears again

have a wider range of ITDs than animals without coupled ears.

The first order recipients of cochlear nerve projections in all

diapsids, including crocodilians, are the nucleus angularis (NA) and

the nucleus magnocellularis (NM; Figure 1B) (Leake, 1974). NA

occupies the rostrolateral part of the acoustic tubercle (Figure 2A),

with a prominent periventricular tail-like extension that extends
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caudally to lie over NM and NL (Figures 2B, C, arrows). This

extension is both similar in location and more developed than that

described in chick quail chimeras by Marıń and Puelles (1995). NM is

located caudal to NA (Figure 2B), and projects bilaterally to the

binaural nucleus laminaris (NL; Ramón y Cajal, 1908). Among

archosaurs, i.e. in alligator, emu and chicken, NL typically forms a

compact layer of bitufted neurons (Figure 2C; Kubke and Carr, 2006;

MacLeod et al., 2006). In owls and some songbirds, NL increases in size

and loses its laminar organization (Kubke and Carr, 2006).
Testudines
As stated above, the directional responses of the turtle middle ear

are less than in lizards, probably demanding more binaural processing

in the CNS. Given the low-frequency sensitivity of turtles (200-1000

Hz) and the strong phase locking in auditory nerve fibers at these low

frequencies (Crawford and Fettiplace, 1980), it seems likely that

binaural ITD comparison would be useful (Willis and Carr, 2017).

In the turtle species sampled, NA consists of sparsely distributed

neurons located superficially in the acoustic tubercle caudal to the

cerebellar peduncle, and rostral to NM (Figure 3B). Both NM and NL

are caudal to NA, and their borders are more distinct than that of NA.

In transverse sections, NM forms a crescent shape composed of large

round neurons adjacent to the ventricle (Figure 3C), while NL forms a

compact layer of bitufted neurons ventral to rostral NM (Figure 3D;

Willis and Carr, 2017). We found little variation in the cytoarchitecture

of cochlear nuclei among the turtle and tortoise species sampled,

consistent with Miller and Kasahara (1979).
Lepidosauria (lizards)
In extant lizards the eardrums are strongly coupled and interact

acoustically to produce a strongly directional response from the

tympanic membranes (Figure 4A; Christensen-Dalsgaard and

Manley, 2005, 2008). The strongest directionality is produced at

frequencies above 1 kHz. Recordings from cochlear nerve fibers in the

tokay gecko (Gekko gecko) show that all responses are directional, and

that in principle, comparison of cochlear nerve activity in the left and
FIGURE 1

Schematic of the auditory structures of reptiles. (A) The middle ear, depicted in the American alligator. The middle ears of other species are listed as
panel (A) in Figures 3–5. Tracing of transverse CT scan shows the connected middle ear cavities via sinuses dorsal and ventral to the brain case.
from Bierman and Carr (2015). The red box indicates the otic capsule. CT scan acquired by the University of Texas High-Resolution X-ray CT Facility,
courtesy of Jessie Maisano, Alan Resetar, and DigiMorph.org. itr, intertympanic recess; s, stapes; b, brain case; t, tympanum. (B) The basilar papilla
(BP) and its projections to the brainstem cochlear nuclei. Schematic of the inner ear, depicted in the crocodile, is modified from Maddin and
Anderson (2012). The length of the basilar papilla varies depending on the species. Schematic of a transverse section showing the cochlear nuclei of
reptiles (NA, nucleus angularis; NM, nucleus magnocellularis; NL, nucleus laminaris) is modified from Walton et al., 2017.
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right cochlear nerve should give a robust indication of the animal’s

direction to the sound source (Christensen-Dalsgaard et al., 2011,

2021; Christensen-Dalsgaard and Carr, 2018).

In both the tokay gecko and the green iguana, NA is located in the

rostral part of the acoustic tubercle, spanning across the mediolateral

axis in transverse sections (Figure 4B). The caudally located NM forms

a medial cluster or band in transverse sections (Figure 4C), and NL is

either a small nucleus situated beneath rostral NM in the tokay gecko

(Figure 4D), or indistinguishable in the green iguana. Miller (1975) was

“never able to define an unequivocal NL in lizards” and noted that

small fusiform cells ventral to NM can only be “occasionally” observed.
Frontiers in Amphibian and Reptile Science 05
In the tokay gecko, NL neurons were distinguished by

immunoreactivity against calretinin (Yan et al., 2010), by their

bitufted morphology, and by ascending connections to the torus

(Yan et al., 2010; Tang et al., 2012).

Lepidosauria (snakes)
Snakes originated from lizard ancestors (Rieppel, 1988), but

have secondarily lost their eardrums. Snakes lack a Eustachian tube,

and the stapes/columella passes through skeletal muscle and

vasculature (Figure 5A). The proximal end of the stapes expands

to a footplate resting in the oval window, as in other lizards, but the
FIGURE 2

Structures for sound localization in the American alligator. (A) Transverse view of nucleus angularis (NA; dashed line), stained with cresyl violet. Inset:
Location of NA. Scale bar = 200 mm for (A–C); scale bar = 1 mm for (A–C) insets. (B) Transverse view of nucleus magnocellularis (NM; dashed line).
Inset: Location of NM. (C) Transverse view of nucleus laminaris (NM; dashed line). Inset: Location of NL.
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distal end of the stapes is connected to the quadrate and coupled to

lower jaw elements. Snakes are sensitive to low-frequency substrate

vibration but can only detect airborne sound via sound-induced

head vibration, i.e. bone conduction (Hartline and Campbell, 1969;

Hartline, 1971; Christensen et al., 2012).

The organization of the western ratsnake (Pantherophis obsoletus)

brainstem cochlear nuclei reflects this diminished sensitivity to airborne

sound. The ratsnake has a distinct NA located superficially in the rostral

acoustic tubercle (Figure 5B). NM, however, is indistinguishable from

surrounding neuropil and can only be discerned via calbindin

immunohistochemistry as a cluster of approximately 40 neurons

(Han and Carr, 2023). We cannot find NL in the western ratsnake.
Differences in cell numbers among
different species

The cell counts of cochlear nuclei, as well as adult brain weight

and body weight of surveyed species, are listed in Table 1. N=1 for

all cell counts, except for the western ratsnake where N=3. We

acknowledge the potential variability caused by the small sample

size. The cell counts for the barn owl obtained from stereological

counts exceeded that of earlier studies (Winter and Schwartzkopff,

1961). The current barn owl counts in NM and NA are supported
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by counts of cross sections through the cochlear nerve, which

yielded mean counts of 31,142 axons (Köppl, 1997; Köppl et al.,

2000). The brain and body weight relationship of surveyed species,

as well as other members in their respective clade, are illustrated

in Figure 6.

In birds, the number of neurons in NA, NM, and NL increases

with brain size (Figure 7). Neuron counts from the alligator cochlear

nuclei reveal comparable numbers of neurons in NA, NM and NL to

that predicted from avian data (Figure 7). Alligator NM in particular

contains a large number of neurons. Neuron counts from the cochlear

nuclei of the snapping turtle, red eared slider and Hermann’s tortoise

reveal proportionally fewer neurons in NA, NM and NL than would be

predicted from their brain weight (Figure 7). Neuron counts from both

the tokay gecko and the green iguana cochlear nuclei reveal a well-

developed NA comparable in size to archosaur NA (Figure 7A), and

proportionally fewer neurons in NM and NL (Figures 7B, C). Neuron

counts from the western ratsnake cochlear nuclei reveal a smaller NA

than in comparable lizards (Figure 7A), and far fewer neurons in NM

than predicted from the avian data (Figures 7B, C).

We noted that NA cell numbers, plotted with respect to whole

brain weight, were comparable among the lizards, the ratsnake, and

the two archosaurs, the alligator and barn owl. This was surprising

because barn owls (and other owls) have hypertrophied cochlear

nuclei (Kubke et al., 2004). Since the trend might be attributed to
FIGURE 3

Structures for sound localization in the red-eared slider. (A) Transverse MRI of a red-eared slide head at the level of the rostral midbrain. Arrows
indicated narrow but detectable Eustacian tubes. Scale bar = 500 mm. MR images acquired at the Armed Forces Institute of Pathology (Rockville,
MD).b, brain; ie, inner ear; t, tympanum. (B) Transverse view of nucleus angularis (NA; dashed line), stained with cresyl violet. Inset: Location of NA.
Scale bar = 100 mm for (B–D); scale bar = 500 mm for (B–D) insets. (C) Transverse view of nucleus magnocellularis (NM; dashed line). Inset: Location
of NM. (D) Transverse view of nucleus laminaris (NM; dashed line). Inset: Location of NL.
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the effects of whole brain weight, we measured both forebrain and

brainstem weight of barn owls, American alligators, a Hermann’s

tortoise and a tokay gecko. For adult barn owls (n=4), forebrain

weight = 4.28 ± 0.78 g, brainstem weight = 1.92 ± 0.50 g. For

juvenile American alligators (n=4), forebrain weight = 0.85 ± 0.13 g,

brainstem weight = 0.73 ± 0.08 g. For an adult Hermann’s tortoise

(n =1), forebrain weight = 0.25 g, brainstem weight = 0.25 g. For an

adult tokay gecko (n=1), forebrain weight = 0.13 g, brainstem

weight = 0.13 g. Even with reference to brainstem weight, as

opposed to whole brain weight, the size of NA in the tokay gecko

remained large, comparable to that of the avian data in Figure 7A.

Characteristics of the basilar papilla, middle ear and cochlear

nuclei of different reptile groups are summarized in Table 2.
Discussion

We have compared brainstem circuits for processing cochlear

input among reptiles with different sound localization strategies to

determine if these differences are reflected in the first order nuclei.

Overall, NM is largest in the archosaurs and turtles, which compute

interaural time differences in the brain, and smallest in snakes and

lepidosaurs, which receive directional information from their

coupled ears. In lepidosaurs, NA is proportionally large, which

suggests a greater prominence of the NA pathway for processing of
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the high-frequency directional information generated by their

coupled ears. Both NA and NM are proportionally small in turtles.

Some clues to the differences between archosaurs and lepidosaurs

might be found in their evolutionary and life history. Both the fossil

record and recent developmental studies support the parallel and

independent development of the tympanum in lepidosaurs and

archosaurs (Sobral et al., 2016b; Clack et al., 2017; Lessner and

Stocker, 2017; Müller et al., 2018). The invention of the tympanum

would have led to more sensitive, higher frequency hearing in both

groups, and potentially to the appearance of distinct localization

strategies among these animals, because there are differences among

tympanic ears. Archosaur middle ears are coupled by sinuses (Witmer

and Ridgely, 2009; Bierman et al., 2014; Sobral et al., 2016b). The

coupling provides some directionality at low frequencies (Moiseff and

Konishi, 1981; Kettler et al., 2016; Larsen et al., 2016), and also selective

pressure to enhance the central computation of sound source location

through binaural comparisons. Lepidosaur middle ears are widely open

to the mouth cavity, and thus highly directional (Christensen-

Dalsgaard and Manley, 2005, 2008). Turtle ears are adapted to

aquatic life, with narrow Eustachian tubes, and weak coupling

(Courte-Pinault and Christensen-Dalsgaard, 2024).

We will discuss and review the evolution of directional hearing,

the reorganization of the auditory system after formation of the

tympanum, and sound localization strategies in lepidosaurs

and archosaurs.
FIGURE 4

Structures for sound localization in the tokay gecko. (A) Combined photomicrograph and drawing of a transverse section at the level of the caudal
medulla showing connected middle ears. From Christensen-Dalsgaard et al. (2011). (B) Transverse view of nucleus angularis (NA; dashed line),
stained with cresyl violet. Inset: Location of NA. Scale bar = 100 mm for (B–D); scale bar = 500 mm for (B–D) insets. (C) Transverse view of nucleus
magnocellularis (NM; dashed line). Inset: Location of NM. (D) Transverse view of nucleus laminaris (NM; dashed line). Inset: Location of NL.
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Evolution of directional hearing and the
origins of NA and NM

The tetrapods and possibly their sarcopterygian ancestors are

characterized by a new hearing organ, the basilar papilla or cochlea.

It is not clear whether it emerged once or multiple time among the

tetrapods (Lombard and Bolt, 1979; Fritzsch, 1987). Regardless of

whether the new papilla occurred prior to or after the emergence of

land vertebrates, its formation would have exerted a reorganizing

effect on its central auditory targets including NA and NM

(Wilczynski, 1984; Fritzsch, 1992, 1999). We have hypothesized

that an Osteichthyan-like circuit could have been transformed to

one like that found in diapsids (Walton et al., 2017). In this
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scenario, afferents from the new papilla might have first

overlapped with the saccular input to the “auditory” portion of

the descending octaval nucleus, since, in fish, auditory afferents

from the saccule enter the medulla and terminate in the anterior

octaval nucleus and the dorsal portions of descending octaval

nucleus (Edds-Walton, 1998; Kozloski and Crawford, 1998;

McCormick, 1999; Bass et al., 2001). These first order auditory

nuclei may correspond to the diapsid NA and NM (Lipovsek and

Wingate, 2018; Walton et al., 2017).

The early tetrapods may have retained some directional sensitivity

after their transition from water to land, in the form of ‘bone

conduction’, i.e. sound-induced motion of the skull. Support for this

hypothesis comes from recent work on atympanate salamanders which
FIGURE 6

Allometric relationship between brain weight and body weight in reptiles. Scaling of brain weight with body weight. Scatter plots show the
logarithms for brain weight as a function of the logarithms of body weight. Each data point represents an individual species. The species surveyed in
this study are colored red and green and annotated, and sources for brain and body weight are listed in Table 1. Other reptile species in their
respective clades are colored grey and black, and dataset for brain and body weight is from Kverková et al. (2022), supplemented by dataset
compiled in Font et al. (2019).
FIGURE 5

Middle ear and cochlear nucleus of the western ratsnake. (A) Tracing of transverse CT scan showing connection of the stapes (s) and its connection
to the quadrate (q). There is no visible middle ear cavity. The stapedial footplate is in the same plane as the brain case (dark green), while the stapes
and quadrate are located in more caudal sections (light green). Illustration based on CT data acquired by the University of Texas High-Resolution X-
ray CT Facility for the black racer (Coluber constrictor), a close relative of the western ratsnake (Pyron et al., 2013). Data made available courtesy of
Jessie Maisano, Alan Resetar, and DigiMorph.org. (B) Transverse view of nucleus angularis (NA; dashed line), stained with cresyl violet. Scale bar =
100 mm. Inset: Location of NA. Scale bar = 500 mm.
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exhibit some directional sensitivity in air (Capshaw et al., 2021, 2022).

The further development of tetrapod auditory systems may reflect the

increased sensitivity and frequency range conveyed by the acquisition

of tympana among different lineages. The ancestral atympanate
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diapsids may have had a short, low-frequency sensitive papilla

(Manley, 2023) much as is the case in extant atympanate

amphibians, tuatara and snakes (Gans and Wever, 1976; Christensen

et al., 2012; Womack et al., 2017; Capshaw et al., 2020; Han and Carr,

2023). Bone conduction might have conferred some directional

sensitivity upon these low frequency auditory responses. It is unclear

what form binaural comparisons might have taken in these early

tetrapods. It is clear, however, because of the strong phase-locking to

low-frequency stimuli, that interaural time differences would have been

well represented in the auditory input to the binaural neurons. The

configuration of early tetrapod second order nuclei may have begun

with binaural comparisons between such low frequency inputs, either

excitatory (EE) or excitatory/inhibitory (EI). In early archosaurs, the

NM-NL configuration may have evolved from low-frequency

comparisons to computation of ITD.
Central computation of sound source
direction in lepidosaurs

In lepidosaurs, the emergence of tympanic hearing appears to

have been marked by a period of “experimentation” in the

organization of the lizard papilla (Köppl and Manley, 1992; Miller,

1992; Manley, 2002). Both lepidosaurs and archosaurs evolved longer,

differentiated basilar papillae. Manley has proposed that lepidosaurs

retained the ancestral low frequency (below 1 kHz) sensitive papilla

and added new areas with responses to frequencies above 1 kHz

(Manley, 2023). Typical high-frequency hearing limits of lepidosaurs

do not exceed 7 kHz, although high frequency hearing (up to 18 kHz)

has evolved in the pygopod geckos (Manley and Kraus, 2010). These

new high best frequency regions of the papilla may have exerted a

reorganizing effect on the first order nuclei, with unique cochlear

nerve projections to a high best frequency region of NA (Szpir et al.,

1990; Tang et al., 2012). Lower best frequency regions project to both

NA and NM, in the canonical vertebrate pattern discussed above

(Ryugo and Parks, 2003). Lepidosaur first-order cochlear nuclei show

an increase in the size of NA in the tokay gecko and green iguana

examined here, consistent with a role for NA in processing high best

frequency sound.

The increased size of the brainstem cochlear nuclei in

lepidosaurs with respect to, for example, turtles, may reflect the

increased importance of sound and growth of the papilla (Manley,

2023). The increase in size of NA may have been driven by an

increased number of high best frequency hair cells in the papilla.

Lizard ears are coupled across the mouth cavity and therefore

cochlear nerve responses are inherently directional, obviating the

need for central computation of sound source location

(Christensen-Dalsgaard et al., 2021). Furthermore, the typical

archosaur circuit (see below) would not work. The archosaur

circuit has excitatory delay line axons from NM that synapse

upon binaural coincidence detectors in NL. The coincidence

detection model supposes equivalently strong ipsi- and

contralateral NM inputs converge, while the strongly lateralized

neural input in the lizards should only produce weak coincidence at

the frontal angles (Christensen-Dalsgaard and Carr, 2018). By

comparison, binaural comparisons that use EI processing with
FIGURE 7

Scaling of neuron number in non-avian reptiles compared to birds.
Scaling of neuron number with body weight. Scatter plots of the
logarithm of neuron number of (A) nucleus angularis (NA), (B)
nucleus magnocellularis (NM) and (C) nucleus laminaris (NL) plotted
as a function of log brain weight. Each data point represents an
individual species. The species surveyed in this study are colored red
and green and annotated. Bird data (except the barn owl) is colored
grey. Dataset for brain weight is from Kverková et al. (2022),
supplemented by dataset compiled in Font et al. (2019). Neuron
counts are from Winter (1963) and Winter and Schwartzkopff (1961).
Solid lines indicate least squares linear regression line from bird data
(including the barn owl), extended to intersect with x=101(dotted
line). Dashed line indicates 95% confidence intervals.
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inhibition from one side and excitation from the other, should yield

directional information. This logic supports the likelihood of an NA

(E) – Superior Olive (I) pathway for the binaural processing of

directional information generated by the coupled ears.

While western ratsnakes lack the coupled middle ear and

specialized high-frequency hair cells of lizards, their NA is relatively

well-developed, which may reflect symplesiomorphy with their lizard

relatives (Rieppel, 1988; Gauthier et al., 2012; Pyron et al., 2013). It is

unclear whether snakes have directional sensitivity to airborne sound

mediated by bone conduction, however it has been hypothesized that

the snakes can localize the source of substrate vibration by computing

time differences from differential vibration of the two sides of the lower

jaw (Friedel et al., 2008). Behavioral evidence in the horned viper

(Cerastes cerastes) supports this hypothesis (Young and Morain, 2002).

While Young and Morain (2002) concluded that the horned viper uses

vibrational cues to locate prey, they did not investigate which sensory

systems were involved. Considering that there is poor anatomical

support for ITD computation - both NM and NL are small in the

western ratsnake - somatosensory pathways may provide a plausible

route for vibration detection (Hartline, 1971).We note that there is also

considerable variation within snake species regarding the size of

acoustic tubercle, more so than other reptile clades (personal

observations; Miller, 1980), and cochlear nuclei are often poorly

differentiated. A survey of different snakes using neuronal tract

tracing combined with behavioral and physiological testing would

help to evaluate a role for directional responses to vibrational stimuli.
Central computation of sound source
direction in archosaurs

In archosaurs, sensory hair cells are tonotopically organized along

the basilar papilla. Crocodilians have a 5 mm-long papilla, and a

relatively low upper frequency limit around 4 kHz (Klinke and Pause,

1980; Higgs et al., 2002). Avian papillae are 3 to 5 mm in length, being
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shorter in small species; owl papillae exceptionally reach 12 mm with

an upper limit above 10 kHz (Gleich andManley, 2000). The cochlear

nerve forms a tonotopic projection from the sensory hair cells to both

NA and NM (Carr and Boudreau, 1991; Köppl, 2001), and we assume

that the large size of the first and second order nuclei in archosaurs is

related to the increased frequency range in this group.

Archosaur middle ears are acoustically coupled through cranial

cavities (Witmer, 1990; Witmer and Ridgely, 2009; Bierman et al.,

2014; Kettler et al., 2016; Larsen et al., 2016) and are thus able to

function in part as pressure difference receivers (van Hemmen et al.,

2016). Depending on the degree of coupling, interaural sound

transmission may increase the physiological ITD range by a factor

of 3, as shown experimentally in birds (Moiseff and Konishi, 1981;

Calford and Piddington, 1988; Hyson et al., 1994; Larsen et al., 2016)

and alligators (Carr et al., 2009; Bierman et al., 2014; Bierman and

Carr, 2015; Kettler and Carr, 2019). Extant archosaurs, birds and

crocodilians use ITDs for sound source localization in azimuth

(Bala et al., 2003; Papet et al., 2020). In those birds (barn owl,

chicken, and emu) examined, and in alligators, best ITDs of ITD-

sensitive neurons in NL vary systematically (MacLeod et al., 2006;

Köppl and Carr, 2008; Carr et al., 2009, 2015; Kettler and Carr, 2019).

The similarities between birds and alligators suggest that an ordered

representation of ITD might also have been found in their common

archosaur ancestor. Additionally, the size of the brainstem cochlear

nuclei may reflect the requirements for computation of ITDs in

archosaurs. Overall, NM and NL were largest in the archosaurs, and

among birds, largest in auditory specialists like the barn owl and

songbirds (Kubke et al., 2004).

Turtles are a sister group to archosaurs (Wang et al., 2013;

Field et al., 2014), and do not have coupled middle ears. Instead,

their middle ears are connected to the buccal cavity by thin

eustachian tubes (Willis et al., 2013; Foth et al., 2019). Laser

vibrometry studies further show very little directionality to the

turtle and tortoise eardrum (Courte-Pinault and Christensen-

Dalsgaard, 2024). The hearing range is small, from about 50 to

700 Hz (Wever and Vernon, 1956; Manley, 1970; Christensen-

Dalsgaard et al., 2012; Willis and Carr, 2017) in all turtles and

tortoises studied so far, including pleurodirans (Courte-Pinault and

Christensen-Dalsgaard, 2024) that have high-frequency

vocalizations. The low frequency hearing range can constrain

sound localization, since many turtles have small heads in

addition to their weakly coupled middle ears and therefore weak

ILD cues. Turtles are, however, sensitive to ITDs. Physiological

recordings from both NM and NL reveal ITD sensitivity, responses

from the NL are binaural, and within their range of physiological

ITDs (Willis and Carr, 2017). We note, however, that the cochlear

nuclei of red-eared slider turtle and the Hermann’s tortoise are

proportionally smaller than those of the snapping turtle, and

smaller than alligators. A review of the fossil record suggests that

the modern turtle ear evolved during the Early to Middle Jurassic in

stem turtles broadly adapted to freshwater and terrestrial settings

(Sobral et al., 2016a). Previous studies suggest that tympanic

hearing in turtles evolved as a compromise between land and

underwater hearing (Foth et al., 2019). It is also likely that the

major modifications of the skull of turtles have constrained the

evolution of their auditory apparatus.
TABLE 2 Summary of the auditory periphery and cochlear nuclei
of reptiles.

Feature Lepidosaurs* Archosaurs Testudines

Papilla Distinct high and
low frequency
regions

Tonotopic
papilla

Small

Middle ear Open, connected
through pharynx

Connected to
contralateral side
by sinuses

Connected through
pharynz by narrow
Eustachian tubes

Tympanum Thin, large Thin, large Inflexible disk
(Cryptodira)
Flexible
membrane
(Pleurodira)

NA Large Smaller
than NM

Small

NM Small Large Small

NL Small Large, map ITDs Small, ITD sensitive
*Except atympanate species.
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