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A tricky aspect in the use of all multivariate analysis methods is the choice of the number of
Latent Variables to use in the model, whether in the case of exploratory methods such as
Principal Components Analysis (PCA) or predictive methods such as Principal
Components Regression (PCR), Partial Least Squares regression (PLS). For
exploratory methods, we want to know which Latent Variables deserve to be selected
for interpretation and which contain only noise. For predictive methods, we want to ensure
that we include all the variability of interest for the prediction, without introducing variability
that would lead to a reduction in the quality of the predictions for samples other than those
used to create the multivariate model.
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In the case of predictive methods such as PLS, the most common procedure to determine the number
of Latent Variables for use in the model is Cross Validation which is based on the difference between
the vector of observed values, y, and the vector of predicted values, ŷ.

In this article, we will first present this procedure and its extensions, and then other methods
based on entirely different principles. Many of these methods may also apply to exploratory methods.

These alternatives to Cross Validation include methods based on the characteristics of the
regression coefficients vectors, such as the Durbin-Watson Criterion, the Morphological Factor, the
Variance or Norm and the repeatability of the vectors calculated on random subsets of the
individuals. Another group of methods is based on characterizing the structure of the X
matrices after each successive deflation.

The user is often baffled by the multitude of indicators that are available, since no single criterion
(even the classical Cross-Validation) works perfectly in all cases. We propose an empirical method to
facilitate the final choice of the number of Latent Variables. A set of indicators is chosen and their
evolution as a function of the number of Latent Variables extracted is synthesized by a Principal
Components Analysis. The set of criteria chosen here is not exhaustive, and the efficacy of the
method could be improved by including others.

INTRODUCTION

A tricky aspect in the use of all multivariate analysis methods is the determination of the number of
Latent Variables, both for exploratory methods such as Principal Components Analysis (PCA) and
Independent Components Analysis (ICA), and predictive methods such as Principal Components
Regression (PCR), Partial Least Squares regression (PLS) or PLS Discriminant Analysis (PLS-DA).
For exploratory methods, we want to know which Latent Variables deserve to be selected for
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interpretation and which contain only noise. For predictive
methods, we want to ensure that we include all the variability
of interest for the prediction, without introducing variability that
would lead to a reduction in the quality of the predictions for
samples other than those used to create the multivariate model.

Whatever the type of method (exploratory or predictive), the
most common procedure consists in examining the evolution of a
criterion, as a function of the number of Latent Variables
calculated. In the case of predictive methods such as PLS, the
most common criterion is the Cross Validation error, which is
based on the difference between the vector of observed values, y,
and the vector of predicted values, ŷ. But many other criteria can
be used. In this article, we will first present the cross-validation
procedure and its extensions, and then other methods based on
entirely different principles. The objective of this article is not to
make an exhaustive review of these criteria, but to present some of
those of most interest for chemometrics.

Principal Components Analysis is based on the mathematical
transformation of the original variables in the matrix X into a
smaller number of uncorrelated variables, T.

X � TPT + R (1)

where the matrices T and P represent, respectively, the vectors of
factorial coordinates (“scores”) and factorial contributions
(“loadings”) derived from X.

This method is interesting because, by construction, the PCs are
uncorrelated and it is not possible to have more PCs than the rank
ofX, i.e., min (Nindividuals, Nvariables) if the data are not centered and
min (Nindividuals-1, Nvariables) otherwise. In addition, since the first
PCs correspond to the directions of greatest dispersion of the
individuals, it is possible to retain only a small number of PCs, T*,
in the calculation of the coefficients of a PCR regression model.

B � (T*TT*)−1T*TY (2)

The values of new objects are then be predicted by the classical
equation:

Y
�� TB � XPB (3)

PLS regression (Partial Least Squares regression) also allows to
link a set of dependent variables, Y, to a set of independent
variables, X, when the number of variables (independent and
dependent) is high.

The independent variables, X, and dependent variables, Y, are
decomposed as follows:

X � TPT + E (4)

y � URT + F (5)

where the P and R represent the vectors of the factorial
contributions (“loadings”) and T and U are the factorial
coordinates (“scores”) of X and Y, respectively.

PLS is based on two principles:
1) the X factor coordinates, T, are good predictors of Y;

2) there is a linear relationship between the scores T and U.

In the case of PLS, the model’s regression coefficient matrix is
given by:

B � XTU*(T*TXXTU*)−1T*TY (6)

In the case of PCR and PLS, successive scores and loadings are
calculated after removing the contribution of each vector of
scores from the X matrix, a process called deflation.

To present the different methods of determining the number
of Latent Variables to use in the regression models, we use a
dataset consisting of the near-infrared (NIR) spectra of 106
different olive oils (Supplementary Figure S1A) and the
variable to be predicted is the concentration of oleic acid
(Supplementary Figure S1B) determined by the classical
method (gas chromatography) (Galtier et al., 2007).

It should be stressed that this article is not an exhaustive
review of the possible methods that can be used to determine the
dimensionality of multivariate models, as was for example the
article by Meloun et al. (2000). Here, a limited number of criteria
have been chosen, but based on very different criteria that
characterize the multivariate models. Since these criteria may
not always indicate the same dimensionality, rather than just
examining them all and deciding on a value somewhat
subjectively, we propose here the idea of applying a Principal
Components Analysis (PCA) to the various criteria so as to have a
consensus value.

DIMENSIONALITY

The problem of optimizing model dimensionality comes down to
introducing as many as possible of the Latent Variables
containing variability of interest, and none that contain
“detrimental variability”, which is often due to contributions
from outliers or just different types of noise (gaussian, spike, . . .).

Already a PCA on the spectra shows that the loadings of the
later components are noisier than those of the earlier ones
(Supplementary Figure S2). It is clear that when including
more than a certain number of Latent Variables into a PLS
regression model there is a risk of including more noise than
information.

When establishing a prediction model based on Latent
Variables extracted from a multivariate data table, we must
ensure that we have extracted neither too many nor too few.

Determining the number of Latent Variables can be done
using a number of criteria that could be classified into two
categories: prediction error or model characteristics.

CRITERIA BASED ON PREDICTION ERROR

The methods most often used are based on the quality of the
predictions for individuals which were not used to create the
model - either an independent dataset (test-set validation) or for
individuals temporarily removed from the dataset (cross validation).
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The term “validation” as it is used in “cross validation” is
incorrect, because the objective here is not to validate the model,
but to adjust its parameters optimally. In Figure 1, the
“Calibration” branch contains the “Cross Validation” step that
does this model tuning, while the “Test” branch is for the true
validation of the final model.

The model is adjusted by creating models with an increasing
number of Latent Variables extracted from one set of individuals
and observing the evolution of the differences between observed and
predicted values for another set of individuals. This evolution can be
followed by plotting the sum of squared residuals (RESS Residual Error
Sumof Squares) or the square root of themean sumof squares (RMSE).
When this tuning is done with another single set of individuals (test-set
validation), we have the SEVandRMSEV;when it is done by removing,
with replacement, a few individuals from the data set (cross validation),
we have the SECV and the RMSECV.

RESS � ∑n
1

(ŷi − yi)2

(7a)

RMSEVorRMSECV �

�����������∑n
1 (ŷi − yi)2

n

√√
(7b)

Calculating the model and applying it on the entire dataset
provides an estimation of Y (Ŷ), which is used to calculate the
RMSEC:

RMSEC �

�������������∑n
1 (ŷi − yi)2

n − (nLVs + 1)

√√
(7c)

The RMSEC is intended to estimate the standard deviation of
the fitting error, σ. The division by [n-(k+1)] instead of n (the

number of individuals) is intended to take into account the fact
that the number of degrees of freedom for the estimate of σ is
decreased by the inclusion of k Latent Variables plus the intercept.
The use of this correction is valid in PCR regression, but subject to
much criticism in the case of PLS where the Y matrix influences
the calculation of the Latent Variables (Krämer and Sugiyama,
2011; Lesnoff et al., 2021). It is nevertheless sometimes used as a
“naïve estimate of the RMSEC”.

The principle of cross-validation is presented in Figure 2.
Blocks of individuals are removed from the dataset and are used
as a test set while the remaining individuals form the calibration
dataset to create models which are used to predict the values (Ŷ)
for the test set individuals. The differences between the observed
values (Y) and predicted values (Ŷ) are calculated for the different
models. The test set individuals are then put back in the
calibration dataset and another block of individuals is moved
to be the test set. This process is repeated until all individuals have
been used in the test set. If the size of the blocks is small (large
number of blocks), the number of individuals tested each time is
low and the number used to create the models is high. The
limiting case is called Leave-One-Out Cross Validation (LOO-
CV), where the number of blocks is equal to the total number of
individuals. In this case, the result tends to be optimistic (small
RMSECV) but simulates well the final model, because each
prediction is made using a model calculated with a collection
of samples close to that in the final model.

On the other hand, using large blocks allows us to better assess
the predictive power of the model. In all cases, in order not to
distort the results, it is necessary to ensure that repetitions of
samples (e.g., triplicates) are kept together in the same block.

A fundamental hypothesis of theories on machine learning
from empirical data assumes that the training and future datasets
are generated from the same probability distribution (e.g., Faber,

FIGURE 1 | –The process of calibration (creating and adjusting the model) by cross validation, followed by its validation with a separate test set. “b” is the model
calculated on the calibration set.
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1999; Denham, 2000; Vapnik, 2006; Lesnoff et al., 2021). Under
this hypothesis, it is known that leave-one-out cross-validation
has low bias but can have high variance for the prediction
errors (i.e., variable prediction if the training set would be
replicated) (Hastie et al., 2009). On the other hand, when K is
smaller, cross-validation has lower variance but higher bias.
Overall, five-or tenfold cross-validations are recommended as
a good compromise between bias and variance (Hastie et al.,
p. 284).

There are many ways to build blocks, the choice being based
on the organization of individuals in the matrix.

Consecutive Blocks: (1, 2, . . ., 10) (11, 12, . . ., 20) (21,
22, . . ., 30).

Venitian Blind: (1, 4, 7, . . ., 28) (2, 5, 8, . . ., 29) (3, 6, 9, . . ., 30).
Random Blocks
Predefined Blocks: for example, to manage measurement

repetitions.
Figure 3 presents the evolution of the RMSECV (red circles)

and the “naïve” RMSEC (blue squares) based on the number of
Latent Variables used to create the prediction model. The “naïve”
RMSEC, which quantifies the residual errors for the samples used
to create the models, tends to zero. On the other hand, the
RMSECV often has a minimum, more or less marked depending
on the amount of noise in the data, which corresponds to the
balance between information and noise, indicating the optimal
number of Latent Variables.

Although the minimum in the RMSECV curve is for 6 LVs, this
value is not much lower than that for 3 LVs. Parsimony could
imply retaining only 3 LVs. To visualize more clearly the point
corresponding to the minimum of RMSECV, one can use a rule
that says that, on the one hand, the prediction error (here estimated
by RMSECV) should be close to the fitting error (here estimated by
RMSEC) and on the other hand, the RMSEC curve may present a
break. A way of implementing that rule is to plot the RMSECV
against the RMSEC (Bissett, 2015).

In Figure 3 and many subsequent figures, a vertical line
indicates the number of LVs resulting from a consensus found
by the procedure we propose, i.e., by applying a PCA to the
various very different criteria presented here.

To get a better indication of variability in the estimation of the
optimal number of Latent Variables, repeated cross-validation is
often used. In this case, several cross-validations are made with
few blocks (here 2 blocks) containing randomly selected
individuals each time. It is thus possible to calculate an
average RMSECV and its variability (Figure 4).

Another related procedure is to plot the proportions of variability
extracted from theY vectors, R2, for the calibration samples, and Q2,
for the samples removed during the cross validation, as a function of
the number of Latent Variables. In Figure 5 one can see that the
difference between R2 and Q2 is close to zero for from 4 to 6 LVs.

Other criteria can be calculated based on the values predicted
by cross-validation.

Wold’s R criterion (Wold, 1978; Li et al., 2002) is given by:

PRESS(k) � ∑n
1

(ŷi − yi)2

(8a)

Wold’s R � PRESS(2: k)
PRESS(1: k − 1) (8b)

where PRESS(k) is the predicted residual sum of squares for k
LVs; and Wold’s R is a vector of the ratios of successive PRESS
values. The usual cutoff forWold’s R criterion is when R is greater
than unity. In Figure 6 it can be seen that the maximum R is at 6
LVs but the value is already greater than 1 for 3 LVs.

More recently,Osten proposed the criterion (Osten, 1988), given by:

Osten’s F(k) � PRESS(1: k − 1) − PRESS(2: k)
PRESS(2: k)/(N − (k + 1)) (9)

Figure 6 also shows that Osten’s F confirms the results for
Wold’s R: F is less than 0 at 3 LVs but reaches a minimum at 6 LVs.

When doing a PCA, Cattell’s Residual Percent Variance (RPV)
criterion (Cattell, 1966) assumes that the residual variance should
level off, as in Figure 6, after a suitable number of factors have
been extracted. RPV for the model with k LVs is given by:

RPV(k) � ∑K
i�k+1 λi∑K
i�1 λi

(10)

where λi is the eigenvalue for the ith PC. Here, in the case of PLS,
we have replaced the eigenvalues by the variances of the scores for
each LV.

There are other methods, such as Mallow’s Cp (Mallows, 1973)
and Akaike’s Information Criterion (AIC) (Akaike, 1969), that are

FIGURE 2 | The principle of cross-validation. Blocks of individuals are
removed from the dataset to be used as tests to measure the differences
between their observed values and values predicted by the models created
using the remaining individuals.
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commonly used to select the dimensionality of regression models,
as an alternative to cross-validation (CV). However, the calculation
of Cp andAIC requires the determination of the effective number of

degrees of freedom of the model, which as mentioned above, is not
straightforward in the case of PLS (Lesnoff et al., 2021). For that
reason, these criteria will not be considered here.

FIGURE 3 | Evolution of the RMSECV (red circles) and the naïve RMSEC (blue squares) based on the number of Latent Variables used to create the prediction
model. The minimum for 6 Latent Variables is clearly visible.

FIGURE 4 | Evolution of the RMSECV (red circles) and naïve RMSEC (blue crosses) as a function of the number of Latent Variables in the model for 25 repetitions of
a 2 random blocks cross validation.

Frontiers in Analytical Science | www.frontiersin.org October 2021 | Volume 1 | Article 7544475

Rutledge et al. Dimensionality of Multivariate Models

https://www.frontiersin.org/journals/analytical-science
www.frontiersin.org
https://www.frontiersin.org/journals/analytical-science#articles


FIGURE 5 | Evolution of R2 (blue squares) and Q2 (red circles), for “calibration” samples and “test” samples, respectively, as a function of the number of Latent
Variables in the model; Evolution of the difference between R2 and Q2.

FIGURE 6 | Evolution of Wold’s R; Osten’s criterion and Cattell’s Residual Percent Variance (RPV) criterion, as a function of the number of Latent Variables in
the model.
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CRITERIA BASED ON OTHER PROPERTIES
OF THE MODELS

Cross-validation is sometimes difficult to perform, for example
when there are many individuals and/or variables, so the
calculation time can be excessive. And even when the
calculation is feasible, one does not always observe a clear
minimum in the RMSECV curve (as in Figure 3) or
maximum in the Q2 curve (as in Figure 5), which makes it
difficult to choose the number of LVs.

As well, as indicated by Wiklund et al. (2007) CV handles “the
available data economically, but like any data-based statistical test
gives an interval of results and hence sometimes gives either an
under-fit or an over-fit, that is they reach the minimum RMSEV
for a lower or higher model rank than would be achieved using an
infinitely large independent validation set”. They also stressed the
fact that “One area where CVworks poorly both for PLS and PCR
is design of experiments, where exclusion of data has large
consequences for modeling”. To solve these problems, they
proposed carrying out permutation tests on the Y vector and
then comparing the correlations between the scores of each latent
variable and the true Y vector with the correlations between the
scores obtained for the permuted Ys and the corresponding
true Ys.

It should be noted that all these criteria are based on
comparing the observed and predicted Y vectors. It could

therefore be helpful to use other criteria based on entirely
different characteristics of the models to facilitate the choice of
the number of latent variables.

We will now see a set of such complementary methods, based
on the characteristics of the regression coefficients vectors, b, and
on the characteristics of the X matrix after each deflation.

Characteristics of the Regression
Coefficients Vectors, b
As the number of Latent Variables used to calculate the regression
coefficients vector, b, increases, more and more noise is included.
When the X matrix contains structured signals, such as the near
infrared spectra in Supplementary Figure S1, b coefficients are
initially structured and gradually become random, as can be seen
in Figure 7.

In the case of b-vectors calculated from structured signals in
the rows of the X matrix, a “signal-to-noise ratio” can be
calculated using the Durbin-Watson (DW) criterion (Durbin
and Watson, 1971; Rutledge and Barros, 2002). This criterion
is given by:

DW � ∑n
i�2 (bi − bi−1)2∑n

i�1 b
2
i

(11)

where bi and b(i-1) are the values for successive points in a series of
b-coefficients values. DW is close to zero if there is a strong

FIGURE 7 | PLS regression coefficient vectors, b, based on 1, 3, 6 and 9 Latent Variables plotted with a constant ordinate scale (abscissa: variable numbers).
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correlation between successive values. On the other hand, if there is a
low correlation (i.e., a random distribution), the value of DW tends
to 2.0. DW can therefore be used to characterize the degree of
correlation between successive points, and thus give an objective
measure of the non-random behavior of the b coefficients vectors.
However, if the noise in the data has been reduced by smoothing, the
transition will not be as clear and DW will not increase as much.

Figure 8 shows the evolution of DW calculated for a
succession of regression coefficients vectors, as a function of
the increasing number of LVs used in the PLS model. It is clear
that there is a very sudden increase in DW after 6 LVs.

The Morphological Factor (MF) (Wang et al., 1996) is based
on the same phenomenon as the DW criterion, noisy vectors are
less structured than non-noisy vectors. On the other hand, the
mathematical principle is different:

MF(b) � ‖b‖/(‖MO(b)‖.ZCP(MO(b))) (12a)

MO(b) � bi+1 − bi(for i � 1, 2, . . . n − 1) (12b)

where b is a vector of regression coefficients;MO(b) the vector of
differences in intensity between successive points in b; ZCP
(MO(b)) the number of times MO(b) changes signs, and the
operator ||o|| is the Euclidian norm.

In the case of a noisy vector,MO(b) will contain bigger values
and there will be more sign changes than in the case of a smooth
vector, resulting in lowerMF values. Figure 8 shows the evolution

of MF as a function of the number of Latent Variables extracted.
The log of MF evolves in a similar way to the DW criterion with a
decrease after 6 Latent Variables.

In the case of an X matrix that does not contain structured
signals (e.g., physical-chemical data or mass spectra) DW or MF
should not be used. But other characteristics of the regression
vectors can be used instead.

It can be seen that the range of b vector values initially remains
relatively stable, but beyond a certain number of LVs, the
b-coefficient values increase enormously (Figure 7). By
plotting the variance of the regression vectors it is possible to
see the point at which this phenomenon appears (Figure 8) for
both structured and non-structured data matrices. This is also
true for the standard deviation or the norm of the vectors.

The Variance Inflation Factor of a variable i in a matrix X
(VIFi) (Marquardt, 1970; Ferré, 2009) is equal to the inverse of (1-
Ri2), where Ri2 is the coefficient of determination of the
regression between all the other predictor variables in the
matrix and the variable i. VIFi quantifies the degree to which
that variable can be predicted by all the others. The closer the Ri2

value to 1, the higher the multicollinearity with independent
variable i and the higher the value of VIFi.

As the number of LVs included in a regression model
increases, the structure of the b-coefficients vectors changes
due to the inclusion of more sources of variability, initially

FIGURE 8 | Evolution of the Durbin-Watson (DW) criterion; the log of the Morphological Factor; the Variance; the Variance Inflation Factor (VIF) calculated on the
regression vectors, b, as a function of the number of Latent Variables in the PLS models.
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corresponding to information, and later to noise. There are
initially significant changes in the b coefficient vectors, due to
the fact that the loadings are very different, reflecting different
sources of information. Subsequent loadings correspond more
and more to noise and change less the shape of the b-vectors.

It can therefore be interesting to quantify the correlations
between the columns of a matrix B containing vectors of
b-coefficients calculated with increasing numbers of LVs.

To detect the number of LVs at which point the multi-
collinearities increase, we can plot the VIF values of the
b-coefficient vectors as a function of the number of LVs. In
Figure 8, we see that the VIF values remain low up to 6 LVs, and
then increase.

In a way similar to the Random_ICA method (Kassouf
et al., 2018), one can study whether similar b-coefficients
vectors are extracted from two random subsets of the X
and Y matrices. PLS regressions are performed with
increasing numbers of LVs on the two subsets. Too many
LVs have been extracted when there is no longer a strong
correlation between the pair of b-coefficients vectors. To avoid
the possibility of a bias being introduced by a particular
distribution of the rows into the two blocks, the whole
procedure is repeated k times resulting in different sets of
blocks, producing a broader perspective for the selection of
the number of LVs (Figure 9).

Structure of the X Matrix After Each
Deflation Step.
Most multivariate analysis methods contain a deflation step
where the contribution of each Latent Variables is removed
from the matrix before extracting the next Latent Variables.
This is true for PCA, PCR and PLS. This process of deflation
means that the rows in the deflated matrices contain less and less
information and more and more noise. As well, since the
remaining variability corresponds more and more to Gaussian
noise, the distribution of individuals in the space of the variables
gradually approaches that of a hypersphere.

Several criteria can be used to characterize the evolution of the
signal/noise ratios in the rows and the sphericity of the deflated
matrices so as to determine when all the interesting information
has been removed.

Again, the DW criterion can be used, this time to measure the
signal-to-noise ratio in each row of the matrix following the
successive deflations. Figure 10 shows the evolution of the
distribution of DW values calculated as in Equation 13, for
each row of the X matrix, as a function of the number of
Latent Variables extracted.

DW � ∑n
i�2 (xi − xi−1)2∑n

i�1 x
2
i

(13)

FIGURE 9 | Evolution of the correlations between b-coefficients calculated for 25 randomly selected pairs of subsets of samples for increasing numbers of Latent
Variables.
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There is a sharp increase in the median value and interquartile
interval when 5 latent variables are extracted. The heatmap and
boxplot show that not all rows (samples) evolve in the same way,
some becoming noisy later than most. This is reflected in the size
of the boxplots of the DW values and also in the standard
deviation of the values.

As with the DW criterion, the Morphological Factor can be
calculated for each row of the matrix after deflation. Figure 10
also shows the evolution of the distribution of the MF values, as a
function of the number of Latent Variables extracted. The values
stabilize with the elimination of 6 Latent Variables.

For non-structured data, the variance (or the standard deviation
or the Norm) of the matrix rows can be used (Figure 10).

As the X-matrix is deflated, the sources of variability
corresponding to information are eliminated, leaving behind
only random noise, so that there are less and less correlations
between the variables in the deflated X-matrix. To detect the
moment when there are no more multi-collinearities between the
variables, we can do linear regressions between each variable and
all the others and then examine the corresponding R2 for all
successive models. If the R2 of a variable is close to 1, there is still a
linear relationship between this variable and the others.

The VIF is equal to the inverse of (1-R2). If the VIF of a
variable is greater than 4, there may be multi-collinearities; if
the VIF is greater than 10, there are significant multi-
collinearities.

To determine whether all information has been eliminated
from the X-matrix, the VIFs of all the variables can be plotted as
a function of the number of LVs extracted, as in Figure 10,
where only a few variables still have high VIFs after eliminating
6 LVs.

As the X-matrix is deflated, the dispersion of the samples in
the reduced multivariate space tends to become spherical, as all
the directions of non-random dispersion are progressively
removed. Sphericity tests can therefore be applied to the
deflated matrices to determine how many LVs are required to
remove all interesting dispersions.

Bartlett’s test for Sphericity (Bartlett, 1951) compares a matrix
of Pearson correlations with the identity matrix. The null
hypothesis is that the variables are not correlated. If there is
redundancy between variables, it can be interesting to proceed
with the multivariate analysis. The formula is given by:

χ2 � −[(n − 1) − (2k + 5)6]*log∣∣∣∣R∣∣∣∣ (14)

where:
n is the number of observations, k the number of variables, and

R the correlation matrix of the data in X. |R| is the
determinant of R.

Bartlett’s test in Figure 11 shows that the deflated matrices are
very non-spherical until after 6 LVs have been removed.

Similarly, Hartley and Cochran proposed F-tests based on the
ratio of the maximum variance/minimum variance (Hartley, 1950)

FIGURE 10 | Evolution of the Durbin-Watson (DW) criterion; the Morphological Factor; the Variance calculated for each row of the X matrix during deflation and the
log of the VIF for all X-matrix variables after each deflation.
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and the maximum variance/mean variance (Cochran, 1941),
respectively. The Hartley criterion in Figure 11 shows that the
deflated matrices are very spherical once 5 LVs are removed.

Exner proposed theΨ criterion (Exner, 1966; Kindsvater et al.,
1974) as a measure of fit of a set of predicted data to a set of
experimental data, given by the equation:

ψ �

���������������������⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣∑
nc
i�1 (Xi − X̂i)2

∑nc
i�1 (Xi − �X)2 nc

nc − k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
√√√√√

(15)

where Xi is a data point in the matrix, X̂i is that data point
reproduced using k LVs, n and c are the number of rows and
columns in the data matrix and �X is the grand mean of X.

Here Exner’s criterion (Figure 11) is calculated between the
original X matrix and each successive deflated matrix to
determine at what point there is no longer any similarity
between them.

The KMO (Kaiser-Meyer-Olkin Measure of Sampling
Adequacy) criterion (Kaiser, 1970; Kaiser, 1974) was
developed to determine whether it was useful to conduct a
multivariate analysis of a data matrix. For example, if the
variables are uncorrelated, it is no use to do a PCA.

The KMO index is given by:

KMO �
∑
i
∑
j≠ i

r2ij∑
i
∑
j≠ i

r2ij +∑
i
∑
j≠ i

a2ij
(16a)

where rij is the correlation between variables i and j, and aij is the
partial correlation, defined as:

aij � vij������
vij + vij

√ (16b)

νij being an element of the inverse of the correlation matrix (νij
� rij

−1).

The value of the KMO index varies between 0 (no correlation
between variables, thus useless to do amultivariate analysis) and 1
(correlated variables, thus useful to do a multivariate analysis). A
KMO value of 0.5 is usually considered the cutoff point below
which there is no interest in doing a multivariate analysis. Here
this index was calculated for the variables (columns) and for the
individuals (rows) in each matrix. We can see (Figure 11) that the
values are close to 1 until 6 LVs are removed from the matrix and
that there is a second decrease after removing 11 LVs. This means
that much of the information shared by the original variables and
individuals has been removed by 6 LVs, but there is still some
present to a lesser extent up to 11 LVs.

FIGURE 11 | Evolution of Bartlett’s test for Sphericity; Hartley’s F-test; the Log of Exner’s Phi criterion and the KMO criterion for X-matrix rows and columns, as a
function of the number of Latent Variables in the model.
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In 1977, Malinowski (1977a) developed the idea that there
were two types of Factors (or Latent Variables) “a primary set
which contains the true factors together with a mixture of error
and a secondary set which consists of pure error”. He also showed
that there were three types of errors: RE, real error; XE, extracted
error; and IE, Imbedded error, which can be calculated “from a
knowledge of the secondary eigenvalues, the size of the data
matrix, and the number of factors involved”, the secondary
eigenvalues being those associated with pure noise.

He considered that if k, the number of LVs associated with the
“pure data” is known, the real error is the difference between the
pure data and the raw data, that is the Residual Standard
Deviation (RSD) given by:

RE � RSD �
����������[∑c

i�k+1 λi
n(c − k)]√

(17)

where, n and c are the respective number of rows and columns in
the data matrix; k the number of factors used to reproduce the
data; and λi is the ith eigenvalue.

He stressed that “it was assumed that n > c. If the reverse is true,
i.e., n < c, then n and c must be interchanged in these equations”.

He also proposed that the imbedded error (IE) is the difference
between the pure data and the data approximated by the
multivariate decomposition:

IE �
��
k
c

√
RSD (18)

and that the extracted error (XE) is the difference between the data
approximated by the multivariate decomposition and the raw data:

XE �
�����
c − k
c

√
RSD (19)

Malinowski then proposed another empirical criterion to
determine the number of Latent Variables in a data matrix
(Malinowski, 1977b). This indicator function (IND) is closely
related to the error functions described above:

IND � RSD

(c − k)2 (20)

As can be seen in Figure 12, a plot of these criteria as a function of k,
the number of LVs, canhelp to distinguish “pure data” from “error data”.

Several criteria have been proposed to estimate the correlation
between matrices. Here 3 of them (Dray, 2008) will be used to
compare the original X matrix with each deflated matrix, the
assumption being that these correlations will decrease as the
information is being removed.

The RV coefficient (Escoufier, 1973; Robert and Escoufier
1976) is a measurement of the closeness between two matrices
and is defined by:

FIGURE 12 | Evolution of the 4 criteria proposed by Malinowski after each deflation.
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RV � trace(X1XT
1XkXT

k )������������������������������
trace(XT

1X1XT
1X1)trace(XT

k XkXT
k Xk)√ (21)

In our case, X1 is the original matrix, Xk is the deflated matrix
after removing k LVs.

The numerator of the RV coefficient is the co-inertia criterion
(COI) (Dray et al., 2003) which is also a measurement of the link
between the two matrices:

COI � trace(X1X
T
1XkX

T
k ) (22)

According to Ramsay et al. (1984) and Kiers et al. (1994), the
most commonmatrix correlation coefficient is the ‘inner product’
matrix correlation coefficient, which we will call RIP, defined as:

RIP �
trace

�������(XT
1Xk)√���������������������

trace(XT
1X1)trace(XT

k Xk)√ (23)

Figure 13 shows the evolution of these 3measures of the correlation
between the original X matrix and the matrices after deflation.

CONSENSUS NUMBER OF LATENT
VALUES

Given all the criteria that can be calculated, one needs to find a
consensus value for the number of LVs to retain in the PLS regression

model. Some criteria (RMSEC andRMSECV inFigure 3;R2 andQ2 in
Figure 5; Wold’s R, Osten’s F and Cattell’s RPV in Figure 6)
characterize the proximity of the predicted values to the observed
values, but they can be subject to errors due to the particular choice of
the calibration and test sets. Others characterize the regression
coefficients (B-DW, B_Morph, B_VIF in Figure 8) which should
not be excessively noisy or of too high a magnitude (B_Var in
Figure 8). As well, similar B-coefficients vectors should be extracted
from subsets of the data matrix (mean of the correlations between
regression coefficients vectors in Figure 9). Still others characterize the
noisy structure of the residual variability in the deflatedmatrices (mean
and standard deviations of DW_X, Morph_X, Var_X and VIF_X in
Figure 10 as well as Malinowski’s RE, IE, XE and IND in Figure 12).

These deflated matrices should also tend towards a spherical
structure (Bartlett_X, Hartley_X, Exner_X, KMO_X_rows,
KMO_X_columns in Figure 11). As well, as successive
components are removed, the correlations between the original
matrix and the deflated matrices should decrease (RV, COI and
RIP in Figure 13).

To create a consensus of all these different types of
information, we propose to apply a Principal Components
Analysis to the various criteria.

All the criteria were concatenated so that each row
corresponded to a number of Latent Values and the columns
contained the criteria. Criteria such as DW were used as is while
for criteria like RMSECV the inverse was used, so that in all cases,
earlier LVs are associated with lower values.

FIGURE 13 | Evolution of RV, COI and RIP of the X-matrix after each deflation.
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The matrix was then z-transformed by subtracting the column
means and dividing by the column standard deviations.

The resulting PC1-PC2 Scores plot and Loadings plot are
presented in Figure 14.

The scores plot shows a clear evolution from low
dimensionality models to high dimensionality along PC1,
reflecting the increase in all values as the number of LVs
increases. The evolution along PC2 corresponds to another
phenomenon since the scores are highly positive for both
small and large numbers of LVs, with a very clear negative
minimum for a model at 6 LVs. The loadings plots shows an
opposition between RMSEC, COI, std_Var_X, std_Morph_X and
most of the criteria based on the B-coefficients vectors on the
positive side; while mean_VIF_X, IE, RMSECV, Wold’s R,
Cattell’s RPV, R2-Q2 and most of the criteria based on the
deflated X matrices are on the negative side. This contrast
between the criteria based on the B-coefficients vectors and
those based on the deflated X matrices shows their
complementary nature.

Only the first 2 PCs are presented as the following scores
(corresponding to models with increasing numbers of LVs) did
not have any interpretable structure.

CONCLUSION

PLS regression is a high-performance calibration and prediction
method to link predictive X-variables to the Y-variables to be

predicted, even when variables are highly correlated and in very
large numbers.

However, adjusting the number of latent variables in the model is
crucial. This adjustment should be done on the basis of several criteria.

To do this, various methods can be used:
The most common method is to observe the evolution of

calibration errors (RMSEC) and validation or cross validation errors
(RMSEV or RMSECV); One can also examine the evolution of the
vectors of regression coefficients. This also provides information on the
role of the variables or spectral components in the model; Finally, the
evolution in the structure of the rows and columns as well as the
sphericity of the X-matrix after each deflation step, can be examined.

To do this we have proposed applying a Principal Components
Analysis to a collection of criteria characterizing the different aspects of
models obtainedwith increasingnumbers of LatentVariables. The set of
criteria used in the present study is far from exhaustive, and the efficacy
of the method may even be improved by including others.

Matlab function to calculate most of the non-trivial criteria are
to be found at: https://github.com/DNRutledge/LV_Criteria.
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FIGURE 14 | Plot of PC1-PC2 scores and loadings after applying a PCA to the standardized criteria.
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