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Glycosylation plays an important role in the progression of esophageal

adenocarcinoma (EAC). Being able to image these glycosylation changes

directly in endoscopic resection specimens could provide useful insights into

themolecular mechanisms of the disease progression and potential markers for

EACstaging. For this purpose, both3Dand2.5Dmatrix-assisted laser/desorption

ionization (MALDI)mass spectrometry imaging (MSI) have been employed in this

study to investigateglycosidase-cleavedN-glycans in a total of24 formalin-fixed

paraffin-embedded esophageal local excision specimens spanning all stages of

disease progression, namely from non-dysplastic Barrett’s esophagus to

metastatic EAC. 3D-MSI was first used to estimate the number of sections

needed to sufficiently cover the molecular heterogeneity of each stage of

progression. This analysis showed that a total of four sections out of 20 were

sufficient. This subset of four sectionswasmeasured for all remaining specimens

and is called 2.5D-MSI. Subsequent analyses of the 2.5D-MSI datasets revealed

significantelevationsoffivehigh-mannoseN-glycans (Man3,Man4,Man6,Man7,

and Man8) in EAC and three complex (Hex6HexNAc5, Hex6HexNAc5NeuAc1,

Hex7HexNAc6) N-glycans in metastatic EAC as compared to previous stages of

the disease. The augmented levels of these glycans in EAC could be explained by

publically available geneexpressiondata of enzymes involved in glycan synthesis

and processing. As the role of glycosylation is gaining more interest in MSI and

cancer research, our results show the added value of combining localized

N-glycan levels, as provided by MSI, with gene expression to gain a deeper

understanding of the mechanisms behind N-glycan changes. This gives

evidence at multiple levels that specific N-glycosylation plays an important

role during progression of dysplasia to EAC and could play a role in patient

surveillance.
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Introduction

Esophageal adenocarcinoma (EAC) is an aggressive disease

that is often diagnosed at a late stage and has therefore a dismal

prognosis. Even though advances have been made in both

diagnosis and therapeutics, it still has a poor 5-year survival

rate of 15–25% (Enzinger and Mayer, 2003; Domper Arnal et al.,

2015; Lin et al., 2016). Moreover, the incidence of esophageal

adenocarcinoma has risen dramatically over the last decades

(Runge et al., 2015).

The only known precursor lesion is Barrett’s esophagus (BE),

a condition in which the squamous epithelial lining of the distal

esophagus is replaced by columnar epithelium containing

intestinal metaplasia because of chronic gastroesophageal

reflux (Spechler, 2002). Esophageal adenocarcinoma can

develop by gradual progression from non-dysplastic BE

(NDBE) over low-grade dysplasia, high-grade dysplasia,

intramucosal cancer to eventually invasive adenocarcinoma

(Shaheen and Richter, 2009). When discovered in early stage

(i.e., dysplasia or intramucosal cancer) a local curative treatment

using endoscopic resection is possible (van Munster et al., 2021).

Hence, a correct staging of the disease is of crucial importance for

the therapy.

The progression from NDBE to EAC is accompanied by a

large number of alterations in oncogenic pathways and tumor

suppressor genes that play a role and vary individually in EAC

development (Caspa Gokulan et al., 2019). The complexity of

EAC is also reflected in its molecular heterogeneity at the spatial

tissue level (Talukdar et al., 2018;Walker and Underwood, 2018).

Understanding the local molecular alterations underlying adeno-

carcinogenesis in the context of tissue-based molecular and

cellular heterogeneity will aid in understanding the

mechanisms of cancer onset, its prevention, and the

development of personalized therapy (Talukdar et al., 2018).

Especially, since EAC precursor lesions are very locally confined

events, gaining insight into the molecular sequence of events that

lead to EAC requires an in situ molecular analysis.

One technique, that allows both the label-free detection of

molecular species and records their spatial distribution, is mass

spectrometry imaging (MSI) (Vaysse et al., 2017; Cressman and

Spraggins, 2018). It allows the simultaneous detection of a large

number of compounds from a broad range of molecular classes

(small molecules, lipids, peptide, proteins, and modifications

thereof). In cancer research, it has already been used to

determine metabolite and lipid profiles in therapy-resistant

tumors (Barre et al., 2018), to reveal tumor heterogeneity

(Schone et al., 2013; Balluff et al., 2015), as well as to aid in

classifying tumors (Mascini et al., 2018).

In EAC research, MSI has already been employed for the

identification of specific peptide profiles for EAC stages in

300 patient tissues assembled into tissue microarrays (Quaas

et al., 2013). In two other studies on intact proteins, MSI

identified several proteins that could be linked to EAC

development, EAC metastases, patient prognosis, and

chemotherapy response (Elsner et al., 2012; Aichler et al.,

2013). A study using desorption ionization MSI investigated

lipid profiles of metastatic and non-metastatic primary

tumors, which allowed to predict with 98% accuracy the

metastatic status of patients (Abbassi-Ghadi et al., 2016).

Glycosylation is one of the most important post-translational

modifications of proteins (Wang et al., 2019) and aberrant

glycosylation has been found implicated in various types of

cancers, including EAC during malignant transformation,

albeit the latter on a serum level (Mechref et al., 2009).

N-linked glycans have already been studied by MSI in ovarian

and breast cancer. It allowed the differentiation between tumor

and non-tumor regions (Everest-Dass et al., 2016) and identified

N-glycans specific for late-stage compared to the early-stage

ovarian cancer like sialylated structures and oligomannose

N-glycans (Briggs et al., 2019) In breast cancer, MSI found

the specific presence of polylactosamine glycans in triple-

negative, metastatic, and advanced HER2+ patients (Scott

et al., 2019a) and a core-fucosylated tetra-antennary glycan

correlated with poor clinical outcome (Herrera et al., 2019).

The aforementioned studies provided evidence for the added

benefit of MSI in differentiating different stages as well as finding

new potential markers. Although these results are encouraging,

most MSI studies limit themselves to one section per sample.

However, cancer is a molecularly heterogeneous disease, and

analyzing only a single section can lead to discrepancies with a

full tissue analysis (Guo et al., 2018). It is important to overcome

the sampling bias and analyze either the whole 3D volume or

measure a representative subset of sections of the whole tissue

(2.5D), as we have shown previously (Paine et al., 2019; Vos et al.,

2019).

The aim of this study is to investigate N-glycan changes in

human esophageal adeno-carcinogenesis (Figure 1) using 3D

matrix-assisted laser/desorption ionization MSI (MALDI-MSI)

followed by 2.5D MALDI-MSI of 24 formalin-fixed paraffin-

embedded (FFPE) esophageal endoscopic resection specimens

with complete coverage of all steps of the esophageal adeno-

carcinogenesis.

Material and methods

Patient material

24 formalin-fixed, paraffin-embedded (FFPE) tissue blocks

obtained from endoscopic mucosal resection specimens of

24 patients were retrieved from the pathology archives of the

Amsterdam Medical Center (Amsterdam, Netherlands). All

samples were anonymized for further use and did not require

approval from the relevant Institutional Ethics Committee under

applicable local regulatory law (‘Code of conduct’, FEDERA).

These 24 tissue blocks covered the following consecutive stages of
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disease progression: three with non-dysplastic Barrett’s

esophagus, six with low- or high-grade dysplasia, five with

intramucosal cancer, and ten with esophageal

adenocarcinoma, of which six were of patients who developed

distant metastasis during follow-up. From each tissue block,

20 consecutive sections with a thickness of 5 µm and spaced

10 µm apart were cut on indium tin oxide-coated conductive

(ITO) glass slides (Rs 4–8Ω/sq, Delta Technologies Ltd.,

Loveland, Colorado, United States) with two sections per slide.

Sample preparation

Materials. Xylene, HPLC grade ethanol, UHPLC grade

water, ULC/MS - CC/SFC acetonitrile, and ULC/MS - CC/

SFC grade methanol were purchased from Biosolve Chimie

SARL (Dieuze, France). Citric acid monohydrate, α-cyano-4-
hydroxycinnamic acid (CHCA, C10H7NO3), and trifluoracetic

acid (TFA, Chromasolv®, for HPLC), and RNAse B

(Glycoprotein Standard from bovine pancreas) were

purchased from Sigma-Aldrich (Zwijndrecht, Netherlands).

PNGase F was purchased from N-Zyme Scientifics, LLC

(Doylestown, Pennsylvania, United States). Eosine-Y,

Alcoholic was purchased from Avantor® Performance

Materials B.V. (Deventer, the Netherlands). Hematoxylin

solution modified according to Gill and Entellan® new were

purchased from Merck KGaA (Darmstadt, Germany), and

coverslips were purchased from Thermo Scientific (Waltham,

Massachusetts, United States).

N-glycan MALDI-MSI preparation. Sections were pre-

heated on a heating plate at 60°C for an hour to melt the

paraffin. Immediately after, the sections were washed with

xylene for 1 × 5 min and 2 × 10 min to remove the paraffin,

followed by subsequent washes with ethanol (3 × 2 min) to

remove the lipids and with water (2 × 5 min) to rehydrate the

sections. Antigen retrieval was subsequently performed to undo

the cross-linking of proteins induced by the formalin fixation

with a 10 mM citric acid solution at pH 6.0 using the Antigen

Retriever 2100 (Aptum Biologics, Southampton,

United Kingdom) at 121°C for 20 min. Sections were then

washed with water (2 × 1 min) and after drying of the slides

1 µL of 1 μg/μL RNAse B was spotted on the slides as quality

control. This was followed by application of 15 layers of 200 ng/

μL water-dissolved PNGase F using a SunCollect pneumatic

sprayer (SunChrom Wissenschaftliche Geräte GmbH,

Friedrichsdorf, Germany) at a flowrate of 10 μl/min, nozzle

speed of 900 mm/min, nozzle height of 25 mm, and a track

spacing of 1 mm where the slides were randomized. This was

followed by incubation of the slides for 3 h in an air-tight

incubation box containing 50% methanol at 37°C. Afterward,

the sections were coated with 8 layers of 5 mg/ml CHCA in a 50%

acetonitrile solution containing 0.2% TFA using an automated

FIGURE 1
Schematic overview of the different experimental steps involved for a single stage of the esophageal adenocarcinoma progression sequence.
First, 3D matrix-assisted laser/desorption ionization mass spectrometry imaging (MALDI-MSI) is employed on one tissue sample and outliers are
removed on a slide- (using a RNAse B spot on every slide as quality control) and section-basis (using regression analysis across z-dimension). After
outlier removal, the number of sections needed to be representative of the whole volume is determined using a correlation analysis from
section subsets to the full 3D stack consisting of 20 sections. This subset is used is for subsequent 2.5DMALDI-MSI of the remaining patients and used
for further analyses where the resulting images are overlaid with their annotated H&E stains (lower row). This process is repeated for all stages of EAC
progression.
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TM-sprayer (HTX Technologies, LLC, North Carolina,

United States) at 30°C with a flowrate of 0.05 ml/min with no

drying time in between the layers. All slides underwent sample

preparation in randomized order.

Data acquisition

Mass spectrometry imaging. All sections were measured on

a rapifleX MALDI-ToF/ToF instrument (Bruker Daltonik

GmbH, Bremen, Germany) in positive-ion mode at a spatial

resolution of 50 µm in the m/z range of 800–4,000 by scanning

the laser across a 45 × 45 µm2 area and summing 200 shots per

pixel. To obtain reproducible results, detector checks were

performed at the start of each measurement day and laser

intensity and height were optimized on the matrix intensity

off tissue to obtain similar intensities for the matrix (~3–4E4).

Before each measurement, the instrument was calibrated using

red phosphorus as a calibration agent. During acquisition, the

data were automatically processed with Savitzky-Golay

smoothing (0.01 m/z width, a cycle), TopHat baseline

subtraction, and centroid peak detection (0.05 m/z peak width,

S/N ≥ 5, and height 78%).

Hematoxylin and Eosin (H&E) staining and annotations.

Following MSI analysis, sections were H&E stained by first

washing off the matrix from the slides in 70% ethanol for 2 ×

3 min, followed by a 3-min wash with MilliQ. Slides were stained

with hematoxylin (3 min), washed for 3 min with tap water to

remove excess hematoxylin, then stained with eosin (30 s),

washed again for 3 min to remove excess eosin, followed by a

1-min ethanol wash and a 30 s xylene wash before attaching

coverslips to the slides using Entellan as a mounting medium.

After 24 h drying, optical images of the H&E tissue sections were

acquired using a microscopic slide scanner (Mirax Desk, Zeiss,

Jena, Germany). For each sample, one unmeasured, digital H&E

section was annotated in high detail by a pathologist allocating

individual regions of the tissue a specified grade of dysplasia or

cancer. These annotations were then manually transferred onto

the scanned and H&E stainedMSI sections. Annotations for each

section were grouped to obtain an average spectrum for every

patient and section.

3D-MSI N-glycan analysis

Data preparation. In total five complete 3D-MSI datasets

were acquired representing the different EAC progression stages:

one for non-dysplastic Barrett’s esophagus, one for (low- and

high-grade) dysplasia, one for intramucosal cancer, one for

adenocarcinoma, and one for adenocarcinoma with metastasis.

These 3D datasets were imported into separate SCiLS Lab 2022b

(Bruker Daltonics, Bremen, Germany) files for representativity

analysis using a 200 data points precision for the TopHat baseline

subtraction. Spectra were normalized on their total-ion-count

(TIC) and a ± 0.2 Da interval width per peak was chosen for

further analysis. The overall average mass spectrum was exported

to mMass (Strohalm et al., 2008) for peak picking to reduce the

amount of data prior to processing. Peak picking in mMass was

preceded by 35 precision baseline correction, Gaussian

smoothing with a 0.3 Da window size and 1 cycle, crop from

m/z 920 to 3000, and a de-isotoping with a 70% intensity

tolerance and 0.2 Da isotope mass tolerance. Peaks were

picked that had an S/N ≥ 5 at maximum height in the mean

spectrum and matrix peaks were removed by expelling those

peaks up to m/z 2,500 that had a mass defect ≤ 0.3. The resulting

list was imported back into SCiLS Lab and used for further

analysis. Maximum intensities for each peak interval (0.2 Da) in

the peak list for every section was afterward exported from SCiLS

Lab in tabular form for sequential outlier detection and

representation analysis in R (version 4.1).

MSI data from the RNAse B quality controls were imported

into separate (per 3D dataset) SCiLS Lab files for outlier detection

employing a 200 precision TopHat baseline subtraction. All

spectra were normalized to TIC for subsequent analysis and

peak picking was performed in mMass on the exported overall

average mass spectrum employing the same pre-processing as for

the 3D-MSI data except for the following settings: peaks were

picked that had an S/N ≥ 3 and a relative intensity threshold ≥ 1%

(with respect to the base peak) at maximum peak height. The

resulting list was imported back into SCiLS Lab and used for

further analysis.

Outlier detection. Outlier slides or sections were identified

based on two outlier strategies that were previously reported by

our group (Vos et al., 2019). For identifying outlier slides, a

principal component analysis (PCA) was performed on the TIC-

normalized mean spectra of the RNAse B quality control spots

per slide using a 95% error ellipse in the first two-component

space. All RNAse B measurements outside this ellipse were

considered outliers and corresponding slides were removed

from further analysis. To identify outlier sections, we use a

method that investigates the intensity gradient of single m/z

values in the z-directionality within a 3D model. Per m/z value a

regression is fitted to a linear or quadratic function, depending on

which one fits best according to the Akaike information index,

and the section with the maximum residual is recorded. This is

repeated for all m/z values and the sections that have a residual

count higher than a set threshold (i.e. ≥ 99% confidence interval

of expected by-chance mean frequency, Eq. 1) are considered

outliers. A combination of these two outlier detection methods

resulted in a list with outlier sections that were not considered for

further analysis.

Representation analysis. Based on the 3D-MSI data after

outlier detection it was determined how many sections per

patient are sufficiently representative of the whole volume.

This was done as described previously by our group (Vos

et al., 2019). Briefly, an average spectrum is created for the
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whole 3D volume and each section. The mean spectrum of the

whole 3D volume is then compared to the average spectra

obtained for a subset of n random sections and repeated

100 times. Subsequently, this is repeated with n+1 sections

until all 20 sections have been used. For each combination a

Pearson correlation coefficient is calculated and the first number

of sections that reaches 0.99 defines the minimum number of

sections required.

residual frequency treshold � #ofN ̵̶glycanmasses

#of sections

+ 2.58 ×
SD (#of residualmasses per section)����������

#of sections
√

(1)

2.5D-MSI N-glycan analysis

Spectral recalibration. In total 19 2.5D-MSI datasets were

acquired that included RNAse B quality controls for each measured

slide. All sections were individually recalibrated by selecting one

spectrum per section containing N-glycans covering the whole

spectral range. These spectra were then manually recalibrated in

flexAnalysis (Bruker Daltonik GmbH, Bremen, Germany) using a

mass list containing knownmolecular signals fromm/z 860 up tom/

z 2,540 (Supplementary Table S1) and a 500 ppm tolerance to be

able to recalibrate the low-intensity masses at the higher end of the

spectrum. The calibration constants of each recalibrated spectrum

were automatically copied and pasted to all other spectra from the

same dataset.

Outlier detection. MSI data from all RNAse B quality

controls was also imported into SCiLS Lab for outlier

detection employing a 200 precision TopHat baseline

subtraction. All spectra were normalized to TIC for

subsequent analysis and peak picking was performed in

mMass on the exported overall average mass spectrum with

the same settings as for the 3D-MSI RNAse B data (see above).

The resulting list was imported back into SCiLS Lab and used for

further analysis. The RNAse B quality controls were checked for

outliers in the 2.5D-MSI data as described above. Outliers were

replaced by the measurement of consecutive slides.

Data preparation. The recalibrated MSI datasets were

manually co-registered with their annotated H&E images and

imported into SCiLS Lab 2022b using TopHat baseline subtraction

with a window width of 200. Spectra were TIC normalized and

a ±0.2 Da interval width per peak was chosen for further analysis.

The overall average mass spectrum was exported to mMass

(Strohalm et al., 2008) for peak picking to reduce the amount

of data prior to processing. Peak picking in mMass was preceded

by a cropping of the mass range to m/z 920–3,000, by applying a

baseline correction (precision = 35), and a 1-cycle Gaussian

smoothing with a 0.3 Da-sized window. Peaks were picked that

had an S/N ≥ 3 at maximum height and the resulting peak list

underwent de-isotoping with a 70% intensity tolerance and 0.2 Da

isotope mass tolerance. This was followed by a manual clean-up to

remove false-positive peak detections.

N-glycan identification. The remaining peaks were

tentatively identified by mass-matching them with a

maximum tolerance of 60 ppm to N-glycans reported in the

MSI literature (Heijs et al., 2016; Drake et al., 2017; West et al.,

2018) (Supplementary Table S2). The resulting list was imported

back into SCiLS Lab and used for further analysis.

The identities of statistically significant N-glycan signals, as

determined by the next step (“Data Analysis”) were corroborated

by additional high-mass resolution MALDI MS (Supplementary

Material S1A) and MALDI-based MS/MS (Supplementary

Material S1B) experiments directly from tissue.

Data analysis. For every technical replicate, the SCiLS Lab

data of annotated areas was exported using the “maximum peak

intensity” (mean spectrum statistics) of every peak interval to

investigate if N-glycans show significant differences in

abundance over the different stages. Statistical analyses were

performed in R (version 4.1.0). Analysis of Variance (ANOVA)

was employed, for which the data were log-transformed to

comply with the requirement of normally distributed data. As

the data is composed of 19 patients with 4 technical replicates

each, a repeated measurement design was used in the ANOVA

model. The obtained p-values were corrected for multiple

testing using the Benjamini-Hochberg method. p-values <
0.05 were considered strongly significant and between

0.05 and 0.1 weakly significant. Post-hoc pairwise

comparisons were performed using the emmeans (“estimated

marginal means”) package in R.

Meta-analysis on enzyme expression levels. The publically

available gene expression datasets from the NCBI GEO DataSets

repository (https://www.ncbi.nlm.nih.gov/gds) on esophageal

cancer GSE1420 (Kimchi et al., 2005) and GSE2444 (Gomes

et al., 2005) were searched for enzymes that are involved in the

synthesis of N-glycans observed in this study (Supplementary

Table S4) (Hemmoranta et al., 2007; Nettleship and Petrescu,

2012). In case of dataset GSE1420, the reported p-values of the

enzymes were re-scored to be 0 (p-value>0.06), 0.5 (0.

04≤p-value≤0.06), or 1 (p-value<0.04).

Results

Determination of minimum number of
sections per patient using 3D MALDI-MSI

Imaging the tissue blocks of all endoscopic resection

specimens reconstructed in 3D is time-consuming and merits

the question whether it provides significantly more information

over a subset of sections. We set out to determine the minimum

number of sections statistically representative of a whole 3D

volume made out of 20 consecutive sections. For this purpose,

five full 3D-MSI dataset were acquired: one for non-dysplastic

Barrett’s esophagus, one for low- and high-grade dysplasia, one

for intramucosal cancer, one for esophageal adenocarcinoma
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(EAC), and one for EAC with metastasis; thereby spanning the

whole sequence of EAC progression (Figure 1).

Outliers slides were detected and removed based on RNAse B

quality controls that were present on every slide. Performing a

PCA on the RNAse B spectra with a 95% error ellipse threshold

in the first two principal component space showed that the

sample preparation was similar on all slides with the

exception of one slide in the low- and high-grade dysplasia

dataset, which exhibited a lower digestion efficiency and was

therefore removed (Supplementary Figure S1A). Individual

outlier sections were determined by investigating deviations

from the steady intensity gradients in the z-direction (Vos

et al., 2019). On average 2.6 sections were classified as outliers

per 3D-MSI dataset through the application of this criterion

(Supplementary Figure S1B).

For each of these 3D-MSI datasets, the aim was to

subsequently find a set of representative sections (2.5D) for

the whole tissue. An average spectrum was calculated as a

reference for every 3D-MSI dataset for this purpose. Then this

reference spectrum was compared to the average spectrum

calculated from an increasing number of randomly chosen

sections by determining the similarity between these two

profiles using Pearson correlation. Taking a minimum

coefficient of 0.99, on average 2.6 and maximum 4 sections

were found to be sufficiently representative for a 3D-MSI

dataset (Figure 2A), which is 20% of the total sample size of

20 sections. To have a consistent amount of sections for all stages

of progression to EAC, we decided to include 4 sections for all

remaining patients, also because two sections had always been

placed on one single slide (Figure 2B).

Mapping N-glycan changes during
esophageal adenocarcinogenesis

Based on the previous representativity analysis, we measured

slides 3 and 8 (or alternatively slide 4 and 9, respectively, in case a

slide was found an outlier according to RNAse B quality control)

from the remaining 19 patients with different stages of the

esophageal adenocarcinogenesis (Table 1): 2 non-dysplastic

Barrett’s esophagi (NDBE), 5 dysplasias (DYS), 4 intramucosal

cancer (IMC), 3 esophageal adenocarcinoma patients without

FIGURE 2
Examples of 3D and 2.5 mass spectrometry imaging (MSI) data. (A) 3D visualization of an esophageal adenocarcinoma (EAC) dataset consisting
of 20 sections with 10 µm spacing (left hand side). A representativity analysis can be performed (right hand side) using Pearson correlation to estimate
the minimum number of section to reach a minimum level of correlation to the full stack. (B) Overall average spectrum with zoom-in on an m/z
signal corresponding to an N-linked glycan Hex7HexNAc2 and its visualization in one of the 2.5D EAC MSI datasets consisting of 4 sections
(numbered 1–4) along with the pathologist-annotated hematoxylin and eosin (H&E) stained tissue section, which shows the specific co-localization
of the glycan in the tumor region (red-outlines).
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(EAC) and 5 EAC patients with distant metastases (EAC + M).

Annotations by an experienced pathologist were used to extract

the N-glycan profiles from the respective relevant tissue areas.

After peak picking, 64 of the 146 detected signals (44%) could

be assigned, based on literature, to known N-glycan species which

are commonly detected with a single sodium adduct in positive-

modeMALDI-MSI (Supplementary Table S2) (Powers et al., 2015;

Heijs et al., 2016; West et al., 2018). To determine if there are

differentially expressed N-glycans between the different EAC

stages, a statistical model was calculated for every N-glycan that

considered the four technical replicates per specimen. This analysis

revealed three strongly significant (corrected p-value ≤ 0.05) and

five weakly significant (corrected p-value ≤ 0.1) altered N-glycans,

all of which were found at higher abundances in EAC ormetastatic

EAC as compared to previous stages of the disease (statistics in

Supplementary Table S3 and boxplots in Supplementary Figure

S2). Table 2 summarizes the ANOVA statistics and the type of

these N-glycans. While there was a significant bias of female

subjects in the advanced stages (Table 1), as revealed by a

Fisher exact test (p-value = 0.05, Supplementary Table S3), all

of the eight N-glycans were independent of the factor gender (all

p-values>0.6, Supplementary Table S3). There was no significant

effect for age (Supplementary Table S3).

With respect to the types of N-glycans, high-mass resolution

and tandemMS experiments corroborated the assumed identities

of the eight N-glycan signals (Supplementary Material S1). Of

these, the signals belonging to five high-mannose glycans with

three, four, six, seven, and eight mannoses were detected and

found to be elevated in EAC (including metastatic EAC) as

compared to earlier stages (Figure 3A, Supplementary Figure

S2), amongst them two statistically significant between dysplasia

and EAC (Supplementary Table S3): Hex4HexNAc2 (m/z

1095.37) and Hex7HexNAc2 (m/z 1581.53). This is confirmed

by the visualizations that show a co-localization of the high-

mannose signals with the tumor annotations (Figure 2B).

Based on literature, the remaining three N-glycans were all of

complex type (m/z 2028.73 = Hex6HexNAc5, m/z 2,341.84 =

Hex6HexNAc5NeuAc1,m/z 2,393.9 = Hex7HexNAc6). While the

signal intensity of the tetra-antennary Hex7HexNAc6 was found

to steadily increase with the disease stage with its signal intensity

culminating in metastatic EAC (Figure 3C), the two tri-antennary

N-glycans Hex6HexNAc5 and Hex6HexNAc5NeuAc1 exhibited

especially higher levels in already metastasized EAC as compared

to non-metastasized EAC and precursors (Figure 3B,

Supplementary Figure S2).

Finally, we investigated two publically available gene

expression datasets related to esophageal cancer, GSE1420

(Kimchi et al., 2005) and GSE2444 (Gomes et al., 2005), for

alterations in enzymes that play a role in the synthesis of the

found N-glycans in EAC onset or progression (Figure 4B)

(Hemmoranta et al., 2007; Stanley et al., 2015). These studies

reported most of these enzymes increased in EAC compared to

non-dysplastic Barrett’s esophagus or normal esophageal

epithelium (Figure 4A, Supplementary Table S4).

TABLE 1 Summary of patient characteristics for the 2.5D analysis.

Patient ID Gender Age at diagnosis T-stage N-stage M-stage Classa

SW male 68 Tis 0 0 NDBE

SZ male 80 T0 0 0 NDBE

SE male 56 Tis 0 0 DYS

SM male 51 T1a 0 0 DYS

SS male 63 Tis 0 0 DYS

SCA male 71 Tis 0 0 DYS

SDA male 70 Tis 0 0 DYS

SF male 61 Tis 0 0 IMC

SL male 65 T1a 0 0 IMC

SR male 71 T1a 0 0 IMC

ST male 61 T1a 0 0 IMC

SBA male 69 T1b 0 0 EAC

SEA female 61 T1b 0 0 EAC

SK female 72 T1b 0 0 EAC

SAA female 57 T1b 1 0 EAC + M

SG male 70 T1b 1 0 EAC + M

SH male 69 T1b 1 0 EAC + M

SJ female 69 T1b 1 0 EAC + M

SX female 73 T1a 1 0 EAC + M

aThe categories are based on the most advanced Barrett’s esophagus related histological areas that could be annotated in a sample and the N (regional lymph node metastases) parameter. Abbreviations used: NDBE (non-dysplastic Barrett’s esophagus, green), DYS (low- and high-

grade dysplasia), IMC (intramucosal cancer), EAC (esophageal adenocarcinoma), and EAC + M (metastatic EAC).
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Discussion

This study is the first of its kind aiming to find N-glycans

related to the stages of progression in esophageal

adenocarcinoma (EAC) using MALDI mass spectrometry

imaging (MSI). To achieve this we analyzed 24 tissue samples

of endoscopic resections specimens covering the complete

sequence of progression from non-dysplastic Barrett’s

esophagus over dysplastic tissue to neoplastic lesions.

Moreover, this study has also a prognostic angle since also

EAC samples of patients were analyzed that developed local

metastasis during follow-up time.

TABLE 2 Summary of N-glycans showing differential abundances between stages of esophageal carcinogenesis.

Detected
m/z

Corrected
ANOVA
p-value

Adduct Glycan
composition

Glycan type Difference to
theoretical
m/z
[ppm]1

MS/MS2

933.33 0.053 1 Na Hex3HexNAc2 high-mannose Man3 0.354 Yes

1095.37 0.047 1 Na Hex4HexNAc2 high-mannose Man 4 −0.630 Yes

1419.44 0.069 1 Na Hex6HexNAc2 high-mannose Man 6 −0.627 Yes

1581.53 0.053 1 Na Hex7HexNAc2 high-mannose Man7 −0.873 Yes

1743.56 0.047 1 Na Hex8HexNAc2 high-mannose Man8 −0.872 Yes

2028.73 0.093 1 Na Hex6HexNAc5 non-fucosylated tri-antennary complex −2.489 Yes

2341.84 0.047 2 Na - H Hex6HexNAc5NeuAc1 non-fucosylated tri-antennary complex
with a single sialic acid

−0.807 Partially (sialic acid
unstable)

2393.90 0.061 1 Na Hex7HexNAc6 non-fucosylated tetra-antennary complex 0.505 Yes

asee Supplementary Material S1A
bsee Supplementary Material S1B

FIGURE 3
Significant alterations in three N-glycan abundances between the different stages of esophageal adenocarcinoma progression as determined
by 2.5D mass spectrometry imaging: boxplots (upper row) and tissue visualizations (lower row) are shown for the mass channels m/z 1095.4 (A),
2,341.8 (B), and 2,393.9 (C), which have been assigned to high-mannose Man3 (Hex4HexNAc2), and to the tri- and tetra-antennary N-glycans
Hex6HexNAc5NeuAc1 and Hex7HexNAc6, respectively. p-value significance coding: ***, p < 0.01; **, p < 0.05; *, p < 0.1. Abbreviations and
color coding: NDBE (non-dysplastic Barrett’s esophagus, green), DYS (low- and high-grade dysplasia, orange), IMC (intramucosal cancer, blue), EAC
(esophageal adenocarcinoma, red), and EAC + M (metastatic EAC, dark red).
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As EAC is a heterogeneous disease, one sample per stage was

imaged in 3D first to determine the number of sections needed to

be representative for the whole volume. Before that, we

performed a previously established 2-step outlier detection

procedure (Vos et al., 2019), which determined that in total

15 sections out of the 100 sections measured had to be removed,

giving an 85% reproducibility rate (Supplementary Figure S1).

This was considered an acceptable dropout rate since previous

and similar enzyme-based experiments on bladder cancer gave a

lower reproducibility rate of 80% (Vos et al., 2019).

The representativity analysisdetermined thatmaximum4sections

could be considered sufficiently (Pearson correlation > 0.99)

representative for the stack of 20 consecutive sections (Figure 2). It is

clear that this stack is itself not fully representative for the entire tissue

sampleor thepatient, but the reduction inexperimentalworkload from

10to2slides(termedhere2.5D)issignificantwhilemaintainingmostof

the information. Sampling bias will continue persisting as long as

invasive sampling methods are being used.

The acquired 2.5D data was subsequently used to discover

differentially expressed N-glycans between the different EAC

stages. A total of 146 signals were detected in the mass range

typical for N-glycans of which 44% could be tentatively assigned

to previously described N-glycans (Supplementary Table S2),

which is alike other studies with equivalent instrumentation

(Boyaval et al., 2022).

Eight N-glycans were found significantly altered between EAC,

dysplasia, intramucosal carcinoma or non-dysplastic Barrett’s

esophagus (Table 2, Figure 3, Supplementary Figure S2, and

Supplementary Table S3). Of these glycans, five were high-

mannose and three complex N-glycans as confirmed by high-mass

resolution mass spectrometry and MS/MS experiments

(Supplementary Material 1)

Theclassofhigh-mannoseN-glycansrepresentsanearlystagein

the N-glycan synthesis pathway (Figure 4B) and elevated levels of

high-mannose and pauci-mannose glycans have been detected in

many tumors usingMSI (Drake et al., 2017;McDowell et al., 2021).

For instance, high-mannose glycans have been reported as

progression and prognostic markers in early-stage colorectal

cancer patients (Boyaval et al., 2022) and liposarcoma,

respectively (Heijs et al., 2020). In line with that, we observed a

steady escalation of signal intensities belonging to several high-

mannose N-glycans with three (Man3), four (Man4), six (Man6),

seven (Man7), and eight (Man8)mannose units along EAC disease

advancement. Interestingly, Man5, which is an important

intermediate for the production of hybrid or complex N-glycans

(Hossler et al., 2017), has been the only high-mannose glycan in our

study (although detected atm/z 1257.40, Supplementary Table S2)

that has not been found to be significantly associated to (metastatic)

EAC. This points towards a fast turn-over to complex N-glycans

once the Man5 state has been reached (Figure 4B).

FIGURE 4
Meta-study analyses of enzymes involved in the synthesis of N-glycans. Two publically available gene expression datasets on esophageal
adenocarcinoma (EAC) were considered: GSE1420 and GSE2444, which contained data on EAC vs. non-dysplastic Barrett’s esophagus (NDBE) and
EAC vs. metastatic EAC (EAC + M), respectively. (A) Horizontal barplots show the up- or down-regulation of enzymes involved in the synthesis of
high-mannose and non-fucosylated multi-antennary N-glycans for both datasets. (B) Schematic overview of the role of the enzymes involved
in the synthesis of the N-glycan types observed in this study.
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In general, we observe a considerable shift from an equilibrium

between complex and high-mannose glycans in NDBE (ratio high-

mannose/complex: 1.01, Supplementary Table S3) towards high-

mannose signals in EAC (ratio high-mannose/complex: 15.77),

followed by a reversal of the shift towards complex glycans in

metastatic EAC (ratio high-mannose/complex: 0.88). Consequently,

the complex N-glycans displayed their highest abundance in

metastatic EAC, with the single-sialylated, tri-antennary N-glycan

Hex6HexNAc5NeuAc1 (m/z 2,341.84) at a significant level as

compared to non-metastatic EAC (p = 0.037, Supplementary

Table S3). Tri-antennary complex-type N-glycans have also

recently been reported to be indicative of a significantly reduced

disease-specific survival in liposarcomas (Heijs et al., 2020). The

tetra-antennary Hex7HexNAc6, which was also found especially

increased in metastatic EAC, has been previously reported to be at

higher abundances in hepatocellular carcinoma with almost no

presence in normal tissue (Powers et al., 2015).

Interestingly, none of ourN-glycans has been found fucosylated,

whereas 62% of our mass matching database actually contained

fucosylated N-glycans. Fucosylation has been associated with

cancer progression and poor prognosis in several cancer types

(McDowell et al., 2021) and we have observed several fucosylated

N-glycanstobepresentandcharacteristicforchangesthataccompany

esophageal carcinogenesis in non-dysplastic tissue in proximity to

dysplasticorcanceroustissue(SupplementaryMaterialS2).Scottetal.

have observed necrotic regions in tumors to be characterized by the

absenceof fucosemodifications(Scottetal.,2019b).Tumornecrosis is

a common pathological feature of rapidly growing tumors and

associated with hypoxia which in turn promotes metastatic

behavior (Spill et al., 2016). While visually we cannot observe

necrotic areas within the annotated tumor regions, the lack of

fucosylated glycans might be an event that precedes the

morphological changes and indicates a metabolic reaction to

necrotic or hypoxic conditions (Silva-Filho et al., 2017).

These glycans have therefore potential to serve as indicators

for shorter follow-up times with the gastroenterologist in order to

discover metastatic disease in time.

However, a rigorous validation in larger patient cohorts and

independent laboratories is necessary since our study is statistically

limited by a low number of samples. To obtain an estimation of the

number of samples required for such as validation, we performed a

power analysis with a minimum power of 0.8 and for every mass

channel separately (SupplementaryMaterial S3). This analysis showed

that at least 137 (alpha = 0.1) would be needed in total, which is seven

times the current sample size. In mass spectrometry imaging, these

numbers are still rarely achieved unless tissue microarrays are used,

which are very limited in representing the biological variation within a

sample. But the latter was one of the core aims of our study.Hence less

patients were involved but more sample material for every patient.

In addition, we strived for shedding more light into the

synthesis mechanisms of the glycans observed in our study. To

do so, we investigated two publically available gene expression

datasets on esophageal cancer for alterations in enzymes that play

a role in the production of high-mannose and multi-antennary

N-glycans without fucosylation but with sialylation. In the study

that compared EAC vs. NDBE (Figure 4A, GSE1420), gene

expression indicates higher levels of almost all the detected

mannosidases (MAN) in EAC. The MAN1 enzymes are in

first instance responsible for trimming down N-glycans

starting from a structure with nine mannoses (Figure 4B),

which could therefore explain the higher presence of high-

mannose glycans in tumor areas as observed in our study.

Metastatic EAC sampleswere characterized by the presence of

specific complex N-glycans whose synthesis is initiated by the

acetylglucosaminyltransferase (MGAT) enzymes. In the second

gene expression study (Figure 4A,GSE2444),which focuses on the

comparison of non-metastatic vs. metastatic EAC, all detected

MGATenzymes(MGAT1andMGAT2)exhibited increased levels

in metastatic EAC. This is also in line with the up-regulation of

MAN2 enzymes which act in between MGAT1 and MGAT2

(Figure 4B). The observed shift from high-mannose glycans in

EAC tomore complex type glycans inmetastatic EAC (ratio high-

mannose/complex: 0.88) could be caused by the reduction of

MAN1 enzyme expression in metastatic EAC. Further on, all

significant complex N-glycans of our study were terminated by

galactosyltransferases with the exception of one tri-antennary

N-glycan (Hex6HexNAc5NeuAc1), which was additionally

sialylated. Due to variation in up- or down-regulation of

functionally similar galactosyltransferases and

sialyltransferases, no conclusion can be made on the

preferred linkage site and therefore on the resulting structure

of theseglycans. Interestingly,MGAT3andMGAT4were found

up- and down-regulated in EAC, respectively, which indicates

that the tri-antennaryN-glycan could be of bisecting type (Reily

et al., 2019), although this is not very likely since terminal

modifications are suppressed in bisecting N-glycans (Nakano

et al., 2019). In that context it is to mention that our mass

matching database might introduce a bias towards the

underrepresentation of bisecting N-glycans in our results

since only (but at least) ten entries (11.7%) corresponded to

the bisecting type. Ultimately, only tandemmass spectrometry

combined withNMR can fully elucidate the precise structure of

glycans.

Nevertheless, this study demonstrates that N-glycan MSI

data can be largely contextualized with gene expression data

from studies with similar research questions. It also gives

evidence that specific N-glycosylation clearly reflects the

different stages of esophageal carcinogenesis and prognosis,

which therefore has the potential to aid in patient surveillance

(Powers et al., 2014).
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