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Estimating the time since deposition (TSD) of a bloodstain can provide

important medico-legal information for crime scene investigation. Research

in this area primarily investigates the degradation of either hemoglobin or

genetic material over time. In this work, we present a comprehensive meta-

analysis on bloodstain TSD research. Our results are interpreted from

25 quantitative studies used to probe the effect of biomolecule studied,

analytical technique used, substrate porosity, environmental conditions, and

blood source on TSD estimates. There was an overall strong effect of time

across studies (Fisher’s Zr = 1.66, r= 0.93), and generally, we found that the type

of biomolecule studied (e.g., hemoglobin, DNA) had equal effect sizes for TSD

estimation. Differences in the mean TSD effect size were also observed

between substrate porosity. Interestingly, the blood source does not

significantly influence the magnitude of the effect sizes in TSD estimation.

Despite the clear effect of time, forensically relevant prediction of bloodstain

TSD remains complicated by inter-donor variability, type of substrate and

environmental conditions. We recommend that future bloodstain TSD

research increase sample size, include summary statistics and standardize

experimental methodologies so that we can develop a quantitative

understanding of the physicochemical processes involved in whole blood

degradation in ex vivo conditions.
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Introduction

Crime scene investigators are tasked with determining the events of a crime. This

normally consists of answering forensically relevant questions like who, what, where, how,

and, when, regarding the observed and collected evidence at the crime scene. Biological

material such as tissue and bodily fluids left at a crime scene can assist in answering these

questions. A commonly encountered type of biological evidence at a crime scene is blood

(Box 1). As blood dries, it forms bloodstains with a variety of morphologies largely
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depending on formation mechanics and target surface properties

(Adam, 2012). Source identification of a bloodstain is conducted

through DNA profiling (Butler, 2006; Verdon et al., 2011, 2013)

while bloodstain pattern analysis (BPA) provides potential

interpretations of the physical events that created the

bloodshed (Adam, 2012).

Both DNA profiling and BPA are important to an

investigation, yet they do not provide an estimate of when

the crime occurred. Determining the amount of time that has

elapsed since a bloodstain was deposited, or time since

deposition (TSD), could provide important context to

investigators. This is especially useful in cases where blood

is the only biological evidence present; a timeline could be

established and used to corroborate physical evidence, witness

testimonies and the suspect alibis (Bremmer et al., 2012;

Zadora and Menzyk, 2018). Alternatively, TSD can be used

to determine whether a bloodstain is relevant to the current

investigation (Zadora and Menzyk, 2018). Bloodstain TSD is

typically estimated by modelling the physicochemical

degradation of blood biomolecules over time; experimental

methodologies generating spectroscopic (Hanson and

Ballantyne, 2010; Doty et al., 2016; Zhang et al., 2017),

genetic (Anderson et al., 2011; Fang et al., 2019; Salzmann

et al., 2021b) and photographic (Thanakiatkrai et al., 2013;

Shin et al., 2017) metrics have been developed and used to

estimate bloodstain TSD. Factors like individual variation,

type of substrate and environmental conditions influence the

timewise degradation of bloodstains and their biomolecules,

resulting in large variability in the accuracy and precision of

TSD estimation models (Zadora and Menzyk, 2018; Weber

and Lednev, 2020; Menżyk, 2021).

Commonly analyzed biomolecules for TSD estimation

models include hemoglobin (Hb) from red blood cells (RBCs)

and genetic material from white blood cells (WBCs).

Spectroscopic techniques, such as Raman (Premasiri et al.,

2012; Doty et al., 2016, 2017; Sun et al., 2017b; Takamura

et al., 2019; Menżyk et al., 2020), infrared (Botoniic-Sehic

et al., 2009; Lin et al., 2017; Zhang et al., 2017; Hassan et al.,

2019), reflectance (Bremmer et al., 2011a, 2011b; Li et al., 2011;

Edelman et al., 2012a, 2016; Sun et al., 2017a) and UV-Vis

absorbance (Hanson and Ballantyne, 2010; Hanson et al.,

2011; Agudelo et al., 2015; Bergmann et al., 2017, 2021; Kaur

et al., 2020; Stotesbury et al., 2020; Cossette et al., 2021)

spectroscopies have all probed the timewise degradation of

Hb. Photography (Thanakiatkrai et al., 2013; Shin et al., 2017;

Choi et al., 2019) and hyperspectral imaging (Edelman et al.,

2012b; Li et al., 2013; Majda et al., 2018) have measured the

colour changes in blood while electron spin resonance and

electrochemistry analyzed the conformational changes of the

heme groups (Miki et al., 1987; Matsuoka et al., 1995; Fujita

et al., 2005). Atomic force microscopy has investigated the

changes in RBC physiology over time (Strasser et al., 2007;

BOX 1

Blood is a non-Newtonian fluid responsible for the maintenance of homeostasis in vivo by providing transport of oxygen, carbon dioxide,
minerals, and electrolytes, among others, to and from every part of the human body. Plasma, which makes up approximately 55% of whole blood, is
mostly water but does contain some proteins, minerals, and electrolytes while the cellular components, whichmake up the remaining 45% of whole
blood, include erythrocytes (red blood cells; RBC), leukocytes (white blood cells; WBC) and thrombocytes (platelets) (Bremmer et al., 2012). The
cellular components and plasma proteins perform specific physiological functions in vivo that are disrupted when the blood leaves the body (ex vivo).

Hemoglobin (Hb), an important protein in RBCs that is responsible for the transport of oxygen in the body, consists of two α and two β chains
(Zadora and Menzyk, 2018). Each subunit or chain contains a heme group, with a centralized iron atom in a protoporphyrin ring, directly capable of
reversibly binding oxygen (Bergmann et al., 2021). Oxygen-bound hemoglobin is referred to as oxyhemoglobin (oxyHb) while Hb without oxygen is
referred to as deoxyhemoglobin (deoxyHb) (Bergmann et al., 2021). In vivo, every day roughly 3%of oxyHb is autoxidized tomethemoglobin (metHb),
a derivative incapable of binding and carrying oxygen (Bonaventura et al., 2013; Zadora and Menzyk, 2018). In deoxyHb, iron is present in its ferrous
state (Fe2+); upon oxidation to oxyHb, the iron is in either its ferrous or ferric state (Fe3+) (Yamamoto and Palmer, 1973; Spiro and Strekas, 1974;
Kitagawa, 1987; Ferraro et al., 2003; Nagatomo et al., 2011). This differs from the autoxidized metHb in which iron is solely present in its ferric state
(Doty et al., 2016; Zadora and Menzyk, 2018; Bergmann et al., 2021). In vivo, internal reduction mechanisms including enzymes glutathione
peroxidase and methemoglobin reductase are responsible for maintaining low levels of metHb by converting Hb to its healthy derivative
(Bonaventura et al., 2013; Zadora and Menzyk, 2018). Ex vivo, when blood is deposited, the combination of environmental stressors and loss of
the internal reduction mechanisms lead to accelerated oxidative changes in Hb derivatives (Bonaventura et al., 2013; Doty et al., 2016; Zadora and
Menzyk, 2018). Continued degradation creates further conformational changes to the structure of Hb, leading to the formation of hemichromes
(HCs) (Bergmann et al., 2021). The iron in this Hb derivative binds a distal histidine residue rather than oxygen or water (Doty et al., 2016; Zadora and
Menzyk, 2018). This ex vivo degradation pathway has been of great interest to bloodstain TSD research due to the continuous structural and redox
changes in the Hb (Weber and Lednev, 2020).

Other important molecules in blood include DNA and RNA present in WBCs; DNA is double-stranded while RNA is single-stranded and can form
extensive secondary and tertiary structures (Nowakowski and Tinoco, 1997; Fordyce et al., 2013). RNA encompasses larger ribosomal RNA and the
shortermessenger RNA (mRNA) andmicro RNA (miRNA), among others (Wu et al., 2014). Ex vivo, DNA and RNA are both degraded similarly; enzymes
cleave their phosphodiester bonds most effectively in hydrated environments (Fordyce et al., 2013), which occurs before desiccation of the
bloodstain. Reactive oxygen species, alkylating agents andUV irradiation damage the nucleotides and can induce crosslinking, pyrimidine dimers and
chain breaks (Wurtmann and Wolin, 2009; Fordyce et al., 2013; Rahi et al., 2021). As a result, base-pairing is disrupted, leading to fragmentation and
unstablemolecules. However, shorter RNAs likemRNA andmiRNA have been shown to persist for long periods in desiccated environments (Fordyce
et al., 2013; Salzmann et al., 2021b), suggesting that the degradation means suggested above are biased towards larger fragments of nucleic acid.
Although RNA might provide insight for long-term studies and complement the short-term degradation of hemoglobin, they have yet to be
combined to estimate bloodstain TSD.
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Wu et al., 2009; Cavalcanti and Silva, 2019) while mass-

spectrometry (Seok et al., 2018; Rankin-Turner et al., 2019),

chromatography (Inoue et al., 1991, 1992; Andrasko, 1997;

Arany and Ohtani, 2011; Acar et al., 2020) and fluorescence

spectroscopy (Guo et al., 2013; Mc Shine et al., 2017; Weber et al.,

2021) have measured changes in metabolites and protein

composition of deposited bloodstains. DNA (Kohlmeier and

Schneider, 2012; Sirker et al., 2013, 2016; Rahikainen et al.,

2016; Stotesbury et al., 2020; Cossette et al., 2021), total RNA,

mRNA and miRNA (Bauer et al., 2003; Anderson et al., 2005,

2011; Simard et al., 2012; Qi et al., 2013; Alshehhi et al., 2017;

Fang et al., 2019; Fu and Allen, 2019; Mayes et al., 2019; Alshehhi

and Haddrill, 2020; Asaghiar and Williams, 2020; Salzmann

et al., 2021b; Heneghan et al., 2021; Li et al., 2021;

Manasatienjig and Nimnual, 2021; Zhao et al., 2021)

degradation have also been targeted in longer time series.

Recently, microbial profiling of bloodstains has described the

timewise changes in microbial communities inhabiting the

bloodstains (Salzmann et al., 2019; 2021a). Most of these

works are summarized in greater depth in the recent reviews

by Zadora and Menzyk and Weber and Lednev (Zadora and

Menzyk, 2018; Weber and Lednev, 2020). Interestingly, some

studies have attempted to determine the time of day of deposition

by evaluating circadian biomarkers (Ackermann et al., 2010; Lech

et al., 2016, 2018) and the age of the donor by examining changes

in methylation (Zbieć-Piekarska et al., 2015; Thong et al., 2017)

or signal joint T-cell receptor rearrangement excision circles (Ou

et al., 2012; Yamanoi et al., 2018).

The type of substrate on which the bloodstain is deposited

also influences TSD estimates due to differing degradation

pathway kinetics (Zadora and Menzyk, 2018). The rate of

biomolecule degradation in bloodstains is partially dictated by

substrate porosity; for example, hemoglobin oxidation is a faster

process in dried states than in liquid states (Marrone and

Ballantyne, 2009). Substrates range from common materials

like glass, plastic and textiles to less common materials like

soil (Hassan et al., 2019), wallpaper (Shin et al., 2017), leather

(Kohlmeier and Schneider, 2012) and brick stones (Wang et al.,

2019). The same applies to environmental conditions; warmer

environments catalyze biomolecular degradation while colder

environments preserve the biomolecules in their native states,

slowing the degradation (Zadora andMenzyk, 2018). A variety of

environmental conditions have been studied in bloodstain TSD

research; this includes exposure to outdoor environments (Lin

et al., 2017; Salzmann et al., 2021a, 2021b; Li et al., 2021; Zhao

et al., 2021), varying temperatures (−20–61°C) and a wide range

of humidity values (10–99% RH) (Hanson and Ballantyne, 2010;

Mayes et al., 2019; Cossette et al., 2021; Heneghan et al., 2021; Li

et al., 2021; Zhao et al., 2021). Statistical analyses also differ

between studies; regressions are common, but the type of fit

varies (linear (Fu and Allen, 2019), polynomial (Cavalcanti and

Silva, 2019), logarithmic (Sun et al., 2017b), exponential (Gautam

et al., 2020), multivariate (Cossette et al., 2021)) depending on the

observed time-series trends. A number of studies used

dimensionality-reduction tools for their analyses (Sun et al.,

2017a; Doty et al., 2017) while others incorporated cross-

validation to obtain prediction accuracies (Bremmer et al.,

2011b; Edelman et al., 2012b). The inter-study variability in

experimental conditions and statistical analyses raises two

fundamental questions: how do we interpret all this research

together and what is the best way forward for bloodstain TSD

research?

We present a meta-analysis that examines the association

between the degradation of biomolecules and cellular elements

found within blood and its TSD. The primary goals here are to

determine the strength of these relationships and whether

certain analytical techniques and biomolecules provide more

robust blood TSD estimates. Specifically, we 1) determined the

mean effect size–a quantitative value measuring the strength of

a relationship–of bloodstain TSD studies, 2) explored how

effect sizes varied by class of biomolecule, analytical

technique, substrate porosity, blood source, temperature, and

type of summary statistic, and, 3) searched and analyzed

compiled data for a publication bias. By using a meta-

analytic approach, we synthesized quantitative data on blood

TSD estimates, complementing recent qualitative reviews

(Bremmer et al., 2012; Zadora and Menzyk, 2018; Weber

and Lednev, 2020). The combination of quantitative and

qualitative data provides a holistic overview and way forward

for bloodstain TSD research and ultimately, crime scene

implementation.

Materials and methods

This meta-analysis was conducted using the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) guidelines for reporting articles in systematic

reviews and meta-analyses (Page et al., 2021b). The process

for this reporting system is normally reflected in a step-by-

step flowchart indicating the number of articles that were

screened for inclusion in the meta-analysis.

Literature search and strategy

Literature searches were conducted in two databases: Web of

Science and Scopus. The searches included full-text articles,

summaries, and abstracts. Searches were conducted in English

and did not include a restriction for the year of publication.

Following the searches, which were completed 12 May 2021,

databases were searched using a combination of the following

keywords: “DNA,” “RNA,” “time since deposition,”

“bloodstains,” “hemoglobin,” “taphonomy,” “blood,”

“degradation,” “forensic,” “spectroscopy,” “metabolites,”

“proteins,” “plasma proteins,” “aging,” “volatile organic
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compounds,” “transcriptome,” “methylation.” The combination

of keywords was done through the Boolean operator “AND” and

resulted in 26 searches. The number of hits for each search is

found in Supplementary Table S1. Hits were imported into

EndNote citation manager for eligibility assessment.

Eligibility criteria and data collection

Articles were first screened by title, followed by abstracts

and finally full text. Articles selected were peer-reviewed

English publications quantitatively examining the TSD of

blood. The following articles were excluded: 1)

commentaries, editorials, reviews, opinions; 2) articles

examining the TSD of other biological fluids, 3) articles

providing a qualitative assessment of blood TSD in which

there were no convertible summary statistics (r, R2, F), 4)

articles in which blood was not deposited on a substrate, 5)

articles not in English; and 6) articles where the full text was

not available. Data from retained articles were extracted and

inserted into a summary table. Data collected, if reported,

included summary statistics (r, R2, F, t, p-value), the number

of biological replicates, the class of biomolecule examined

(whole blood and cellular elements, genetic material,

proteins), the analytical technique used to analyze the

timewise trends, blood source (e.g., human, bovine), the

temperature, substrate porosity, length of time series, and

author affiliation (country).

Three-level meta-analysis

All statistical analyses were conducted in R version 4.0.3. The

R script and datasets for this study are publicly available and

deposited at “https://gitlab.com/f4301/TSD.git”. Reported

summary statistics from each article were first converted to

the correlation coefficient r if not provided in the texts and

used to calculate effect size (Fisher’s Zr) and standard error (SEz)

with the following formulas (Fisher, 1921):

Zr � 0.5loge
(1 + r)
(1 − r) (1)

and

SEz � 1�����
n − 3

√
,

(2)

where n is the sample size, represented by the number of

biological replicates. Summary statistics reported in the

retained articles included r, R2, and p-values. For studies

reporting R2, conversion to r was completed using the following:

r �
������������
R2 − i(1 − R2)

n − i − 1

√
, (3)

where i is the number of independent variables in the regression

model (e.g., time and/or temperature) (Nakagawa et al., 2007).

Effect sizes were only computed from models evaluating the

timewise degradation trends of biomolecules. For studies

reporting p-values, we disregarded the less than signs (<) and
used the absolute values, converted them to the normal deviate Z

and estimated r with the following (Coltman and Slate, 2003):

r �
�����
Z2/ n√

, (4)

In some scenarios, values above 1 were obtained for the

correlation coefficient r; effect sizes could not be computed in

those instances. For studies stating that the p-values were non-

significant without reporting the numerical value, they were

assigned a conservative value of 0.5 (Shafer and Wolf, 2013).

Effect sizes (Fisher’s Zr) can range from −5 to 5,

corresponding to correlation coefficients r of −0.9999 and

0.9999, respectively. Effect sizes closest to 0 demonstrated no

correlation with time, while those furthest away in both

directions represented stronger relationships (e.g. Fisher’s Zr =

0.5 (r = 0.46), Fisher’s Zr = 1.5 (r = 0.91)). We computed effect

sizes using the absolute values of the reported summary statistic

as we were interested in the magnitude and strength of the

observed relationship rather than the directionality of the trend

(we note that 98% were positive).

A three-level meta-analytic model was conducted using the R

package metafor (Viechtbauer, 2010). Levels 1, 2 and 3 represent

the individuals, within-study variances, and between-study

variances, respectively (Cheung, 2014). Most articles included

in this meta-analysis provided multiple summary statistics; a

three-level model allowed for the computation of an overall mean

effect size while accounting for between-study and within-study

heterogeneity. We reported the overall effect size of the three-

level meta-analytic model and the Higgins and Thompson’s I2,

the amount of variation that is not attributed to sampling error,

for between-study and within-study heterogeneity variances

(Higgins and Thompson, 2002). An ANOVA was computed

to compare two and three-level models to ensure that the model

selected provided the best fit for the data. To investigate a

potential publication bias, effect sizes were plotted against

sample size. Egger’s regression was employed where an

intercept differing from 0 in this test indicates asymmetry and

possible publication bias (Egger et al., 1997).

Subgroup analyses

Subgroup analyses were conducted to assess differences in

the effect sizes of the different classes of biomolecules, analytical

techniques, substrate porosity, blood source, temperature and

type of summary statistic reported. This was completed using

three-level mixed-effects models specifying the subgroup to be

evaluated (Harrer et al., 2021). Unless indicated otherwise in the
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studies, ambient temperature was regarded as room temperature

(18–25°C). Effect sizes and confidence intervals for each

subgroup were plotted for visual comparisons; F statistics and

p-values were recorded.

Sample size allowed us to divide our dataset by substrate

porosity and construct linear mixed-effects models using data

from a single porosity to explore potential drivers of Zr: we

regressed Zr values against a combination of quantitative

variables (e.g., blood source, temperature, and class of

biomolecule) which served as fixed effects and individual

studies were included as a random effect.

Results

We collected data from 33 articles where summary statistics

between biomolecule degradation and TSD of bloodstains were

reported; however, effect sizes were only computed from

25 articles due to insufficient sample size in eight of the

retained articles (Figure 1 and Supplementary Table S2). A

sample size below four cannot produce the required standard

error based on Eq. 2. Most studies reported more than one

summary statistic; the 25 articles reported 109 effect sizes

(Fisher’s Zr) with a mean sample size of 9.7. R2 was the most

reported summary statistic, accounting for 70 of the 109,

followed by correlation coefficients with 21 and p-values with

18. The mean effect size (Fisher’s Zr) of our three-level meta-

analytic model was 1.66 (r = 0.93, 95% CI: 0.88–0.96,

p-value <0.001; Figure 2); crudely, this means that 86% of the

variation is explained by time. The estimated between-study

variance was 0.74 (I2 = 74.8%), while the estimated within-

study variance was 0.15 (I2 = 14.9%). We noted that the

three-level model provided a better fit than the two-level

model which did not account for clustering (χ2 = 63.04,

p-value < 0.001, three-level: AIC = 208.4, BIC = 216.4; two-

level: AIC = 269.4, BIC = 274.8).

A total of 107 effect sizes were divided into three subgroups

consisting of proteins, genetic material and whole blood and

cellular elements. Whole blood and cellular elements had the

highest effect size and correlation with TSD, followed by genetic

material and proteins (Figure 3A and Supplementary Table S3),

but no significant differences were found between subgroups (F =

0.35, p-value = 0.71). Although whole blood and cellular elements

had the largest effect size, it also demonstrated the largest

FIGURE 1
Article inclusion based on the PRISMA flow diagram for new systematic reviews which included searches of databases, registers, and other
sources.
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FIGURE 2
Effect sizes (Zr) plotted against log-transformed (natural logarithm) sample size, representing the number of biological replicates. The solid line
at 1.66 indicates the overall mean effect size. The dashed line at 0 indicates an effect size of zero (no relationship between biomolecule degradation
and TSD of bloodstains).

FIGURE 3
Forest plots of bloodstain TSD effect sizes for (A) class of biomolecules; (B–D) analytical techniques used in the 25 retained studies, separated by
the biomolecule investigated. Diamonds indicate the mean effect size of that biomolecule or technique and the horizontal lines represent the 95%
confidence interval. The red and grey dashed lines represent an effect size of 0 and the overall mean effect size of the meta-analysis, respectively.
Note that the x-axis is scaled differently for (A) than (B–D). The pie chart is divided according to the number of summary statistics that
contributed to each class of biomolecule; colours match those used in (A).
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standard error, likely arising because of the small sample size

(Figure 3A and Supplementary Table S3). For analytical

techniques, 109 effect sizes were divided into 14 subgroups;

mean effect sizes varied between techniques but no differences

were found (F = 1.33, p-value = 0.21, Figures 3B–D). Most

techniques exhibited broad confidence intervals because of

mean effect size computation using a small number of effect

sizes (Supplementary Table S3).

Effect sizes were divided into porous and non-porous

substrates (Supplementary Table S3). 71% of time-series

experiments were conducted using porous substrates

(Figure 4A) and the effect sizes differed from non-porous

substrates (F = 22.37, p-value <0.001), with the latter

demonstrating a greater mean effect size (Figure 4A).

Blood sources were divided into six subgroups; 84% of

statistics were computed from studies using human blood

(Supplementary Table S3 and Figure 4B) and no difference

was found between subgroups (F = 1.15, p-value = 0.34).

Temperature was divided into four subgroups

(Supplementary Table S3 and Figure 4C) and no

differences were observed (F = 0.45, p-value = 0.72).

Nearly 90% of experiments were conducted at room

temperature (18–25°C). Timepoints sampled in the retained

studies varied, with most studies analyzing blood after one

and 2 weeks of deposition (Supplementary Figure S1). Studies

that analyzed genetic material typically had longer time series

than protein-based approaches (Supplementary Figure S1).

We observed minimal overlap between experimental

conditions for porous and non-porous substrates, especially

for the analytical techniques (Supplementary Table S4). Mixed

models aimed at understanding variation in porosity Zr values

showed the fixed effects for non-porous Zr often displayed

significant slopes compared to porous models. Of note,

conditional R2 values were noticeably higher—approximately

35% – than the marginal values, suggesting high interstudy

variation (Supplementary Table S5).

Egger’s regression test produced an intercept of 2.51 (95% CI:

2.43–2.58), which was significantly different than 0 and

indicative of asymmetry in our data (t = −5.74,

p-value <0.001), a finding consistent with the presence of a

publication bias. A significant difference in reported summary

statistics was found between subgroups (F = 7.65, p-value <
0.001). Even with the conservative approach taken to calculate

effect sizes, R2 had the greatest mean effect size of the three

subgroups and was reported 64% of the time (Supplementary

Table S3 and Figure 4D). p-values had the lowest mean effect size

and the entire 95% confidence interval fell below the overall mean

effect size (1.66).

Discussion

Our meta-analysis is the first quantitative and

interdisciplinary review of bloodstain TSD and revealed that

FIGURE 4
Forest plot of bloodstain TSDmean effect sizes, divided by: (A) substrate porosity, (B) blood source, (C) temperature and (D) summary statistics.
Piecharts are divided according to the number of effect sizes in each subgroup. Colours from the piecharts correspond to those in the forest plots.
NOTE: the scale for the x-axis differs for each subgroup.
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there is a strong relationship between protein, genetic material,

and cellular degradation in bloodstains and its TSD (Fishers Zr =

1.66, r = 0.93). We also demonstrated that blood deposited on

non-porous substrates displayed greater relationships between

degradation and TSD than their porous counterparts.

Subgroup analyses

While this indicates bloodstain ageing has clear, measurable,

and interpretable degradation patterns, there was a high degree of

variation among studies–this is reflected by the random effect of

study explaining an additional 35% on average (Supplementary

Table S5). Likewise, the within-study individual variation of TSD

signals can be strikingly high (Cossette et al., 2021). This leads to

the TSD paradox: the overall effect time has on blood is large, but

the predictive power of TSD models is small. Our meta-analysis

suggests near uniformity in effect sizes related to the class of

biomolecule studied, analytical technique used to measure

degradation, the temperature the bloodstain was aged in, and

the type of blood source used. While differences exist in the

molecular properties of mammalian blood sources (Windberger

et al., 2003; Kim et al., 2016; Kapusta et al., 2017; Windberger,

2019; Sparer et al., 2020; Ecker et al., 2021; Farré et al., 2021), the

findings of our meta-analysis suggest that they share similar

timewise physicochemical degradation pathways of the

biomolecules. This leads to a first key takeaway: most readily

available mammal blood sources can be used as a human blood

substitute in proof-of-concept TSD studies.Moreover, addition of

anticoagulants allows for important experimental flexibility,

mirrors human properties (Sparer et al., 2020; Orr et al.,

2021) and in at least one TSD study, had minimal effect on

the recorded metrics ((Elliott et al., 2022) but see (Bergmann

et al., 2021)). While a variety of suitable mammal alternatives

exist (Windberger et al., 2003; Ecker et al., 2021; Orr et al., 2021)

and would facilitate expanded TSD research, we still recommend

that for integration into forensic casework, experimentation with

human blood will be required for validation.

Another noteworthy pattern is that both biomolecule and

analytical techniques showed robust effect sizes, suggesting a

holistic TSD approach incorporating multiple metrics is likely

warranted, and in some cases, will improve model fit

(Stotesbury et al., 2020), which leads to some important

statistical recommendations discussed below (Table 1). The

degradation of hemoglobin displayed strong timewise trends

within the first weeks of deposition (Bergmann et al., 2021);

the slowed rate of change once hemichromes formed limits the

long-term utility of hemoglobin for bloodstain TSD estimates.

mRNA and miRNA degradation appeared to be a slower

process; both persisted for a long time after deposition,

TABLE 1 | Summary of the meta-analysis results and recommendations for future work regarding each quantitative variable.

Data type Interpretation Recommendation

Class of
biomolecule

Large, variable effect sizes with no significant differences among studies • Expand biomolecule targets

• Consider interdisciplinary research that integrates multiple
analytical techniques

Blood source Large, variable effect sizes with no significant difference between studies • Use the most readily available mammalian blood source for proof-
of-concept TSD studies

• Validate with human blood prior to crime scene implementation

Target surface Large, variable effect size with significant difference between porous and non-
porous surfaces. Greater relationship between TSD and bloodstains deposited on
non-porous than porous substrates

• Account for substrate porosity while developing experimental
methodologies

• Focus research on non-porous substrates due to their larger effect
size (i.e., appears most promising)

• Target non-porous substrates for the greatest probative value

Environmental Large, variable effect size, with temperature being the only variable with sufficient
summary statistics to model and analyze

• Include additional environmental variables in TSD models (e.g.,
humidity, light exposure)

• Report exact environmental conditions for room/ambient
temperature and humidity

• Conduct experiments at different temperatures

Analytical
technique

Variable effect sizes with large confidence intervals – techniques probing the same
biomolecule displayed similar effect sizes

• Apply multiple analytical techniques where possible

Statistical Design Variable effect sizes with significant differences between reported summary
statistics – large effects sizes from R2 and r, small effect sizes from p-values

• Report full summary statistics

• Include beta coefficients (slopes) and equations for lines of best fit

• Provide cross-validation metrics

Publication bias Asymmetry in data suggests publication bias, however, removal of studies with
sample numbers less than 4 could indicate this is artificial

• Publish negative results to address potential for inflation of effect
size

• Increase sample size including number of biological replicates to
quantify individual variation
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sometimes up to 1 year (Weinbrecht et al., 2017; Fang et al.,

2019; Salzmann et al., 2021b). A combination of spectroscopic

and genomic techniques, probing hemoglobin, and nucleic

acid degradation, respectively, could provide key information

for bloodstain TSD research and should be combined moving

forward.

Substrate porosity
We observed a difference between substrate porosity but

could not attribute a specific experimental cause to the observed

discrepancy (Supplementary Table S5). We suspect that the

strong TSD signature observed on non-porous surfaces is

linked to environmental exposure and a lack of protection

from and affinity towards the surface. Marrone and Hanson

(Marrone and Ballantyne, 2009; Hanson and Ballantyne, 2010)

both suggested that hemoglobin oxidation occurs at faster rates

in dried states compared to liquid states—since desiccation and

clotting of blood take longer to occur on porous substrates than

on non-porous substrates (Laber and Epstein, 2001), conversion

between hemoglobin derivatives are expected to occur sooner for

blood deposited on non-porous surfaces. This faster process is

expected to demonstrate stronger relationships with TSD than

the slower occurring processes on porous substrates, which is

corroborated by the larger slopes observed for non-porous

substrates in our modelling. Porous substrates might also

protect the blood and biomolecules within from

physicochemical degradation; greater amounts of DNA could

be extracted from porous substrates than their non-porous

counterparts (Verdon et al., 2011). Based on the findings of

our meta-analysis, we suspect that the choice of substrate

porosity is dependent in part on the proposed analytical

technique, which inherently influenced experimental

conditions and results. However, this leads to a second key

takeaway: TSD signatures are strongest when the fluid is

deposited on non-porous surfaces. To have real-world and

probative value, TSD studies should focus on these types of

surfaces (e.g., Doty et al., 2016; Fang et al., 2019; Cossette et al.,

2021). Additionally, recently proposed relative dating approaches

- in which a bloodstain from the same individual as those from

the crime scene are aged under identical conditions–might

mitigate many sources of variability present in absolute dating

techniques and should be further explored (Menżyk, 2021).

Future directions

TSD research often has disparate experimental

methodologies, particularly around sample number, type,

instrumental analysis, target biomolecule, environmental

ageing conditions and statistical analysis.

Despite the large effect sizes, we are far from a predictive TSD

model and implementation into casework. To help address these

issues, all metadata have been made available on a public

repository (https://gitlab.com/f4301/TSD.git). All summary

statistics describing the relationship between relevant response

variables and bloodstain TSD should be reported (r, R2, p-values,

beta coefficients), and we encourage a move toward predictive

modelling, cross-validation, and independent replicates. We

must also increase sample sizes to fully capture variance,

particularly among individuals, and report key variables like

temperature and humidity values used during the study.

Larger sample sizes are required for predictive modelling

approaches like cross-validation. In addition, the reporting of

summary statistics and use of larger sample sizes would allow for

a greater percentage of studies to meet the inclusion criteria of

future meta-analyses (Figure 1). Lastly, particularly regarding the

development of predictive models and applications to casework,

there needs to be a place for confirmatory and negative results.

Our meta-analysis suggests a publication bias, not uncommon

(Coltman and Slate, 2003; Shafer and Wolf, 2013; Page et al.,

2021a), but in the context of developing predictive TSDmodels is

problematic. We encourage the community to submit results to

the above repository to build a database similar to DNA-Trac

which documents DNA transfer studies (Gosch and Courts,

2019). Ultimately, tools are being developed to increase the

precision and accuracy of bloodstain TSD estimates; these

could eventually be combined with techniques estimating the

time of day of deposition and the age of the donor, providing a

holistic framework for all bloodstain time-related matters.
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