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Applying machine learning strategies to interpret mass spectrometry data has

the potential to revolutionize the way in which disease is diagnosed, prognosed,

and treated. A persistent and tedious obstacle, however, is relaying mass

spectrometry data to the machine learning algorithm. Given the native

format and large size of mass spectrometry data files, preprocessing is a

critical step. To ameliorate this challenge, we sought to create an easy-to-

use, continuous pipeline that runs fromdata acquisition to themachine learning

algorithm. Here, we present a start-to-finish pipeline designed to facilitate

supervised and unsupervised classification of mass spectrometry data. The

input can be any ESI data set collected by LC-MS or flow injection, and the

output is a machine learning ready matrix, in which each row is a feature (an

abundance of a particular m/z), and each column is a sample. This workflow

provides automated handling of large mass spectrometry data sets for

researchers seeking to implement machine learning strategies but who lack

expertise in programming/coding to rapidly format the data. We demonstrate

how the pipeline can be used on two different mass spectrometry data sets: 1)

ESI-MS of fingerprint lipid compositions acquired by direct infusion and, 2) LC-

MS of IgG glycopeptides. This workflow is uncomplicated and provides value via

its simplicity and effectiveness.
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1 Introduction

The value of machine learning is best realized with large amounts of data; thus, a

prime data type for machine learning is generated by mass spectrometry experiments.

Applying machine learning strategies to mass spectrometry has yielded many

advancements in the realm of human health; early detection of cancer, (Huang et al.,

2020; Manzi et al., 2021; Sho et al., 2021), clinical decision support, (Acharjee et al., 2017;

Zhang et al., 2020a; Mészáros et al., 2020; Sho et al., 2021), monitoring treatment response,
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(Zhang et al., 2020b; Hua et al., 2020), facilitating the discovery of

novel drugs (Barthélemy et al., 2020; van Oosten and Klein,

2020), identifying microbial strains and screening for antibiotic

resistance (Weis et al., 2020), and classifying single-cell types (Xie

et al., 2020).

A significant challenge, however, is the reproducible and

comprehensive transfer of the data from the mass spectral files to

the machine learning algorithm. In most of the above-mentioned

cases, researchers first select a class of compounds of interest

within the sample, identify and quantify them, then build data

sets that are amenable to machine learning. But this process

requires that researchers know in advance which peaks to select

for analysis. Alternatively, all the MS data can be extracted for

study, without identifying compounds of interest a priori.Due to

the sheer amount of data, the required memory, and the need for

interpretable results, mass spectrometrists have struggled to

implement machine learning strategies into their workflow

(Liebal et al., 2020). Preprocessing methods tend to omit large

parts of the valuable data, often using peak picking to reduce the

number of features and increase interpretability (Stanstrup et al.,

2019; Xie et al., 2020). By this omission, cryptic patterns and

slight, nevertheless important, changes between sample types can

be lost, and the purpose of machine learning is defeated. If the

goal is to detect subtle differences between highly similar samples

(i.e., healthy vs early-stage disease) in a high-throughput manner,

a pipeline for mass spectrometry data from spectral files to a

machine learning-ready format could be preferrable in contrast

to doing learning on a vastly slimmed-down data set. To support

mass spectrometrists in implementing machine learning into

their workflows, we developed a start-to-finish pipeline to relay

hundreds of mass spectral files from their native format to a

machine learning-ready format in a matter of minutes using a

binning approach where every peak in the mass spectrum is

included in the data matrix.

The functionality of the tool described herein is most similar

to XCMS (Smith et al., 2006), but it differs in many notable ways.

In many cases, our approach will provide a significant benefit to a

fraction of theMS community that wants a rapid solution to their

data formatting problems. XCMS has functionality to align LC-

MS data by retention time, identify molecular features within

each LC-MS chromatogram, and export the identified features

into a data matrix, which can then be used for machine learning.

However, each of these steps requires its own code input, making

the XCMS package a set of functions accessible to experienced

programmers, rather than a tool designed for mass spectrometry

experts (who have beginner skills in programming) to readily use.

Furthermore, the approach that XCMS uses to build its data

matrices is fundamentally different than what is described here;

in the former tool, the product attempts to define “features”,

which are compounds with a unique mass and retention time.

This approach requires the chromatograms and spectra be

aligned in both the time and m/z dimensions. As a radically

simpler tool, “LevR” defines bins in the m/z domain, and each of

these bins becomes a feature in the data matrix; no spectral

alignment is done in advance, as the tool is predominantly

envisioned to be used on either direct infusion experiments or

LC-MS experiments where a short time segment is chosen for

study.

Initially, this pipeline was developed for ESI-MS data of

extracted lipids from latent fingerprint samples. Analysis of

latent fingerprints by mass spectrometry is an emerging

research area showing potential, particularly in the field of

forensics (Atherton et al., 2012; Ifa et al., 2008; Mirabelli et al.,

2013; O’Neill and Lee, 2018; Tang et al., 2015; Tang et al., 2010;

Yagnik et al., 2013; Zhou and Zare, 2017). By taking advantage of

the natural chemical changes that occur over time, the age of a

fingerprint can be determined with analysis bymass spectrometry

(Pleik et al., 2016). For example, unsaturated lipid molecules

present in sebum are susceptible to ozonolysis and over time,

their amount decreases (Archer et al., 2005; Pleik et al., 2016;

Pleik et al., 2018; Hinners et al., 2020). Additionally, fingerprints

may be able to assist law enforcement in developing a profile, as

their composition can possibly indicate identifying characteristics

like age, sex, and lifestyle (Zhou and Zare, 2017; Hinners et al.,

2018; O’Neill et al., 2020; Bouslimani et al., 2016; van Helmond

et al., 2019; Ferguson et al., 2012). Fingerprints have also been

considered for clinical applications (Shetage et al., 2018), such as

assays for diagnosing and monitoring metabolic disorders like

diabetes (O’Neill et al., 2020; Hyde and Runyon, 2020). To

harness the full power and potential of fingerprint analysis,

machine learning tools need to be incorporated into the

analysis workflow.

From a machine learning method development perspective,

fingerprints are also an appealing sample type because they are

dynamic and heterogenous. They can be used to generate many

samples, and their biochemical composition can be modulated

by, for example, varying the amount of time exposed to ambient

air conditions prior to their extraction into organic solvents. The

use of fingerprints enables non-invasive collection of a dynamic

biological sample, easy preparation, and a relatively high-

throughput MS method using direct infusion. These are ideal

characteristics enabling the acquisition of samples that are highly

similar with subtle differences (Hua et al., 2019; Desaire and Hua,

2020), thereby mimicking the key challenges faced in

classification problems today.

Following the development of the pipeline for direct infusion

mass spectral data, we sought to enhance the approach to also

accommodate LC-MS files, which are larger files and have the

added complexity of peaks eluting at various retention times;

these aspects necessitate significantly higher memory on a

computer. After adapting the pipeline, we tested it using a

data set of IgG2 glycopeptides that were present in two

different forms, a native form and one that was slightly

altered via the use of a glycosidase enzyme, to mimic the

changes that occur in a glycosylation profile in the beginning

stages of disease (Hua et al., 2019).
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Here, we present the pipeline and show its utility using two

different data sets. The output is compatible with machine

learning strategies, like the Aristotle Classifier (Hua et al.,

2019; Desaire and Hua, 2020; Hua et al., 2020; Desaire et al.,

2021), which makes use of the many features within a spectrum

that can all contribute to identifying a disease state. This tool will

aid mass spectrometrists who have previously lacked accessibility

to apply machine learning strategies to their data sets. LevR will

enable enhanced data analysis and advance mass spectrometry

research as a means for improving human health.

2 Experimental methods

2.1 Fingerprint samples

2.1.1 Fingerprint collection and preparation
The collection and preparation of fingerprint samples was

performed by adapting previously described methods (Pleik

et al., 2016; Hinners et al., 2020; Pleik et al., 2018; Archer

et al., 2005; Hinners et al., 2018; O’Neill et al., 2020). A single

donor was used, and prior to fingerprint deposition, the donor

swiped her fingertips over regions of the face that typically have

high sebum secretion prior to depositing the fingerprints onto

aluminum foil. These groomed fingerprints were collected over a

series of days, limited to 6 fingerprint deposits (3 from each

hand) per collection period, where two collection periods

occurred ~1 h apart. For each collection period, half of the

samples were prepared immediately, while the other half were

placed on a large watch glass for 24 h on the lab bench, exposed to

ambient air.

Immediately after fingerprint deposition or after the 24-h

aging period, the aluminum foil squares containing the

fingerprints were rolled loosely using clean tweezers and

placed into individual 2 ml screw thread sample vials. 200 µL

dichloromethane was added to each, and the vials were vortexed

for 1 min, followed by 1 min of rest, and removal of the foil.

Then, to each vial, 200 µl deionized water was added, vortexed for

1 min, followed by 1 min of rest, prior to liquid-liquid extraction.

The aqueous layer was removed, and the organic layer was kept

in the vial with an additional 200 µl dichloromethane. All

samples were stored −20°C until analysis, such that only one

thaw cycle occurred. Gas-tight Hamilton syringes were used

throughout the experiment. For analysis, an aliquot of 88 µl of

the fingerprint sample solution described above was diluted with

500 µl dichloromethane and 400 µL NH4OAc in MeOH to

achieve 5 mM ammonium acetate in the final solution.

2.2 Electrospray ionization-MS conditions

Direct infusion ESI-MS analysis of the extracted fingerprint

lipid samples was performed using an Orbitrap Fusion Tribrid

mass spectrometer (Thermoscientific, San Jose, CA). The mass

spectrometer was operated in negative ion mode with a sample

injection flow rate of 3 μl/min. The heated-electrospray source

was held at −2.3 kV while the ion transfer tube temperature,

sweep, aux, and sheath gas flow rates were set at 300°C, 2, 5, and

10 Arbitrary units, respectively. The full MS scans for the m/z

range of (150–600) were acquired in the Orbitrap with a

resolution of 60 k. The AGC target value for the full MS scan

was 5×104, and the maximum injection time was 100 ms. For

each sample, 30 scans were averaged for each file. Between

analysis of every sample, a methanol/dichloromethane mixture

was injected at 10 μl/min for approximately 10 min or until the

total ion count had returned to its baseline, established at the

beginning of the experiment.

2.3 Glycopeptide samples

2.3.1 Materials and reagents
Human serum IgG, ammonium bicarbonate, guanidine

hydrochloride (GdnHCl), dithiothreitol (DTT), iodoacetamide

(IAM), formic acid and HPLC grade acetonitrile and methanol

were purchased from Sigma Aldrich (St. Louis, MO). Sequencing

grade trypsin was from Promega (Madison, WI), and α1-
2,3,4,6 fucosidase, 10X glycobuffer (pH 5.5), 100X BSA, was

from New England BioLabs (Ipswich, MA). Ultrapure water was

obtained from a Direct-Q water purification system

(MilliporeSigma, Darmstadt, Germany).

2.3.2 Preparation of native and partially
defucosylated IgG tryptic digests

IgG glycoprotein (160 µg) was dissolved in 50 mM

NH4HCO3 buffer at pH 8.0, to give a 4 mg/ml concentrated

glycoprotein solution; then, the glycoprotein solution was

denatured by adding GdnHCl (at 6 M final concentration). To

reduce the disulfide bonds, DTT was added to the glycoprotein

solution to a 10 mM final concentration, followed by sample

incubation at room temperature for 1 h. Thereafter, disulfide

bonds were alkylated by adding IAM to a final concentration of

25 mM, and this reaction was carried out in the dark, at room

temperature for 1 h. After the alkylation step, the excess IAMwas

neutralized by adding DTT to the reaction mixture (at a 30 mM

final concentration), and the reaction was continued for 30 min

at room temperature. The resultant glycoprotein solution was

filtered through a 10 kD MWCO filter and buffer exchanged two

times with the NH4HCO3 buffer at pH 8.0. Subsequently, the

glycoprotein concentrate was collected through reverse spin

(1,000 g × 2 min) and diluted with the buffer to give a 1 μg/μl

final concentration prior to the trypsin digestion. Then, trypsin

was added to the glycoprotein solution at a protein-to-enzyme

ratio of 30:1 and incubated for 20 h at 37 C. After the trypsin

digestion, the pH of the IgG tryptic digest was adjusted to

pH 5.5 by using 0.01% formic acid; then, the tryptic digest
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was filtered through 10 kDMWCO filters to remove trypsin, and

the filtrate was collected. The filtrate that contains a mixture of

IgG glycopeptides and peptides was aliquoted into two fractions;

both aliquots (67 µl each) were treated with equal volumes (7.6 µl

of each) of 10X glycobuffer and 10X BSA (Bovine serum

albumin), which was diluted from 100X BSA stock solution.

To obtain partially defucosylated IgG, α1-2,3,4,6 fucosidase

enzyme (10 µl) was added to one treated aliquot, while the

other fraction was treated with an equal volume (10 µl) of

10X glycobuffer to obtain a native (control) sample. Both

aliquots were incubated at 37 C for 1 week. The aliquots were

filtered through 10 kD MWCO (molecular weight cut-off) filters

separately, to remove BSA and fucosidase enzyme. Then, the

filtrates were collected and acidified with 0.1% FA. Both aliquots-

native and partially defucosylated-were diluted to result in IgG

glycopeptide stock solutions of concentration 0.9 μg/μl and were

then stored at −20 C prior to analysis.

2.3.3 Preparation of native and mixed samples
for analysis

Native IgG glycopeptide samples at 0.1 ug/µl were prepared

by simply diluting the 0.9 ug/µl IgG native glycopeptide stock

solution, prepared in the previous section, with deionized water.

The IgG partially defucosylated glycopeptide stock solution, also

prepared in the previous section, was diluted three-fold with

deionized water to obtain a stock solution at 0.3 μg/μl. Then,

appropriate volumes of this solution (0.3 μg/μl) and the original

IgG native glycopeptide stock solution (at 0.9 μg/μl) were mixed

to generate IgG 20% defucosylated sample, with a final

glycopeptide concentration of 0.1 μg/μl.

2.3.4 Liquid chromatography-mass
spectrometry analysis of IgG glycopeptide
samples

IgG glycopeptide samples were separated in a reverse phase

C18 capillary column (3.5 µm, 300 µm i. d. ×10 cm, Agilent

Technologies, Santa Clara, CA) connected online to a Waters

Acquity high performance liquid chromatography system

(Milford, MA) followed by mass spectrometric (MS) data

acquisition using an Orbitrap Fusion Tribrid mass spectrometer

(Thermo Scientific, San Jose, CA). For each run, 3 µl of sample

volume was injected into the C18 column with a mobile phase flow

rate of 10 μl/min. A gradient elution was performed to separate IgG

glycopeptides with mobile phase A and mobile phase B; mobile

phase A consists of 99.9% of water with 0.1% formic acid while the

mobile phase B consists of 99.9% acetonitrile with 0.1% of formic

acid. The gradient included column equilibration by running 5% of

mobile phase B for 3 min, followed by linear increase of B from 5%

to 20% in 22 min to separate the glycopeptides. Then B was ramped

to 90% in 20 min for glycopeptide elution, followed by decrease of B

to 5% in 5 min, and re-equilibrating the column at 5% B for another

10 min.

2.3.5 Mass spectrometry conditions
Electrospray ionization (ESI)-MS in the positive ion

mode with a heated ion source, which was held at 2.3 kV

was used. The temperature of the ion transfer tube and the

vaporizer was set as 300 and 20°C, respectively. Full MS scans

were acquired with the Orbitrap resolution at 60 k (at m/z

200) and the scan range was set at m/z range of 400–2000.

The AGC target and the maximum ion injection time were set

at 4 × 105 and 50 ms, respectively. Data dependent MS/MS

data were acquired to confirm the glycopeptide

compositions; collision-induced dissociation (CID) data

were collected by selecting the first five most abundant

peaks from the full MS run. CID spectra were collected in

the ion trap with a rapid scan rate, exclusion duration was set

at 30s with a repeated count of one. For CID, AGC target of

2 × 103 and maximum injection time of 300 ms was used.

Furthermore, during the MS/MS data acquisition, 2 Da

isolation width was used for parent ion selection, and the

selected precursor ions were fragmented by applying 35% of

collision energy for 10 ms.

The data were acquired on two different days over a period

of three weeks. For group 1 (IgG native glycopeptides) and

group 2 (IgG 20% defucosylated glycopeptides) samples, a

small data set with five sample runs for each group were

acquired on the first day. Blank runs were included in between

each sample run. A larger data set was acquired 3 weeks later,

where 14 sample runs were included for each group, and blank

runs were performed after each pair of sample runs.

2.4 .RAW file handling

The data, in .RAW format, was converted to .MS1 files using

RawConverter (Scripps, Version 1.2.0.1) (He et al., 2015). The

settings used were the default selections after launching the

software. The number of decimal places was set to match the

output from the mass spectrometer. Once the files were in.

MS1 format, they were relocated to a single folder in the

working directory. This conversion process was the same for

both data sets.

2.5 Pipeline construction

The pipeline was built to run in R, and all code is confirmed

to function in RStudio (version 1.4.1106-5) and R (version 4.0.3)

(R Core Team, 2020). The pipeline relies on the following

packages to function: here (Müller, 2020), tidyverse (Wickham

et al., 2019), readr (Wickham andHester, 2020), dplyr (Wickham

et al., 2021), data.table (Dowle and Srinivasan, 2021), and ggplot

(Wickham, 2016). These dependencies are included in the script

to be installed and loaded.
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2.6 Description of binning method

Software Overview: The code used for all analyses in this

manuscript is accessible via the .txt files attached in the

Supplementary Materials. The entirety of the file can be pasted

into the RStudio IDE as an RMarkdown (.Rmd) file. Included are

basic operating instructions and guidelines. The script has six key

sections: 1) reading in the data files, 2) cleaning up the files, 3)

compiling all data from all files in a single list, 4) creating bins whose

size is specified by the user, 5) binning all data, and 6) outputting the

binned data in a matrix format. From this output, the data can be

submitted to the Aristotle Classifier or other analysis methods, like

PCA, or other supervised or unsupervised classification algorithms.

A descriptive overview of each component follows, as well as

suggestions for appropriate parameters to input.

Housing the files: A file folder within the working directory in

the R environment should contain all. MS1 files the user intends to

use during the experiment. Each file must contain at leastm/z values

and their corresponding peak intensities and/or relative abundances;

however, additional information, such as scan headers, can also be

present in the text files, and they will not interfere. This script is

written specifically to process the standard output from

RawConverter, which leaves header information in the file. The

lines at the header, and between each scan are removed during file

processing. For optimal results, the data housed in any single folder

should have identical acquisition parameters, including the m/z

range, resolution, and other parameters described below. This

ensures that the data’s variability is not an artifact of a difference

in experimental conditions.

Adjusting parameters: After the user has moved the data files

into a folder within the working directory, the parameters specific

to the experiment are entered. When the user opens the RStudio

window and opens the .Rmd file, a Knit button with an arrow will

appear on the top bar above the script window; in the dropdown

menu, the user selects “Knit with Parameters.” A graphical user

interface (GUI) then appears that is self-explanatory, requiring

no programming or coding experience to operate. Parameters

that are data-specific can be input, like them/z range, the number

of empty observations allowed for any given feature, and the bin

width. The input parameters used in the experiments herein are

reported in the specific settings section, below.

After all the parameters are set as desired and the MS files are

present in the working directory, the user selects the “Knit”

function and the software script will proceed to produce the

requested data matrix.

2.7 Specific settings used for fingerprint
samples

The settings used for the analyses in this manuscript were as

follows: 25% empty cells allowed, 20 lines in header, Lower m/z:

150, Upper m/z: 600, Bin width: 0.0125 Da.

2.8 Aristotle classifier settings and
submission to the Aristotle classifier

The settings for the Aristotsle Classifier include K (repeats),

which was set to 1,000, and X, which was set to 6.

2.8.1 Extracting features by high scores
After analyzing the fingerprint and glycopeptide data with

the Aristotle Classifier, the highest-contributing features were

identified. To do this, the absolute value of each feature score for

each sample was extracted. Then, the total score for each feature

was calculated by summing by row. This gives the total

magnitude each feature contributed to distinguishing the

samples. Next, the features were sorted in descending order.

This process can be particularly useful for cases in which no a

priori knowledge of the samples exists. Using the process outlined

here, the feature scores can be extracted from the Aristotle

Classifier; they can then be used retroactively to determine

which features best distinguish between the samples.

2.8.2 Workflow accommodation for LC data
The original pipeline was modified to accommodate LC data,

by the simple addition of two lines of code, to handle the

significantly larger data files and dictate a narrow retention

time range.

2.9 Specific settings for glycopeptide
samples

The settings used for the analyses in this manuscript were as

follows: 50% empty cells allowed, 20 lines in header, Lower m/z:

800, Upper m/z: 2000, Bin width: 0.10 Da, Retention time start:

21.3, Retention time end: 22.6.

2.10 Using the aristotle classifier to classify
samples

The binned data, in the matrix format output from the LevR

pipeline, was submitted to the Aristotle Classifier. (Hua and

Desaire, 2021). The parameters were K value (repeats) = 1,000,

and X value = 4.

2.11 Identification of features associated
with glycopeptides

A table of possible IgG glycopeptides, both native and

partially defucosylated, was built. Included were the glycan

composition and the theoretical m/z values for the first

8 isotopic peaks expected to appear in the spectrum. Bins

were created to capture each m/z value present in the table,
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then, the data from the glycopeptide experiment were binned

according to m/z value. Only the data that fit within the bins

(associated with glycopeptides) were retained. This subset of data

only contains data from the original matrix whose m/z values fit

into glycopeptide bins.

2.12 Classification of samples using subset
of data

Only the data associated with the glycopeptides was retained,

which was then submitted to the Aristotle Classifier. The

parameter inputs were not changed from the previous

classification of the same data set.

2.13 Using principal component analysis as
a comparison

The factoextra (Kassambara and Mundt, 2020) package was

used to generate all PCA plots in this work.

3 Results and discussion

3.1 Overview and interface

The overall goal of this research is to develop a pipeline for

performing supervised classification and other machine learning

techniques on ESI-MS data. While we (Hua et al., 2019; Hua and

Desaire, 2021) and others (Zhou and Zare, 2017; Ishii et al., 2020;

Sho et al., 2021) have already demonstrated that machine learning

on ESI-MS data is possible, and indeed, quite useful, one of the

major bottlenecks is processing the mass spectral data files into a

data matrix, which is a prerequisite for applying these advanced

mathematical techniques to the data. Normally, the data matrix is

developed by users who first identify interesting features in their MS

data and then quantify the relevant peaks in each of the samples. For

example, we identified all the glycopeptides for IgG from two

different glycosylation states then quantified each relevant

glycoform across a set of samples prior to machine learning.

While this approach was effective for generating a data set that

could be classified by machine learning tools, the data set generation

process is laborious and has inherent limitations. Alternatively,

particularly in the field of metabolomics, many researchers turn

to existing open-source software like XCMS, which can build a

machine-learning ready data matrix from the mass spectrometry

files. Yet, learning to correctly use and apply this complex academic

software, which does not come with user manuals, requires a

considerable up-front time investment. Furthermore, we aimed to

retain all of the data, avoiding feature identification as is used in tools

like XCMS. We envisioned an alternative route forward, where the

data matrix preparation could be done in a single step, after users

selected a few parameters from a graphical user interface; this

process would require little to no time investment. The resulting

datamatrix would be generated containing all the samples of interest

and all the mass spectral peak intensities for those samples. If such a

tool could be developed, researchers from a variety of backgrounds

could focus on the analysis and machine learning questions that

interest them, without having to invest their efforts into the data

extraction and formatting aspects of the process.

The data formatter we developed is simply called LevR; its

approach to processing the MS data and the GUI that controls it are

shown in Figures 1, 2. The mass spectral data are used directly to

populate a datamatrix, where each column in thematrix is a sample,

a single mass spectrometry data file, and each row in the matrix is a

feature. Each sample and feature pair contains the sum of the peak

abundances that appear in a narrow slice (m/z bin) of the mass

spectrometry data. For example, the mass spectrometry data could

be binned to include features for each 0.1 Da present in the spectra,

as shown in Figure 1A. In this case, a portion of the mass spectrum

that covers a range of 1.3 Da is represented by 13 bins, and four of

the bins are populated with peaks. Figure 1B shows the data for the

sample in Figure 1A, populating the first column in the data table. In

this case, since only four peaks are present in the spectrum, only four

of the features (m/z bins) are populated with numerical data. The

tool also has the capacity to remove bins that are not populated by a

certain percentage of the samples; this parameter is fully adjustable

by the user. Furthermore, while the trivial example in Figure 1 shows

the processing of just a single spectrum, and the subsequent

processing of four other samples (spectra not shown), the script

additionally processes as many high-resolution scans as the user

chooses–either all the scans in the data file or all the scans in a

selected elution range. Finally, while the resulting data matrix is not

normalized by default, users can choose to normalize their data prior

to applying their desired machine learning tools. This step could

potentially improve classifications in situations where researchers

are studying samples of unknown or uncontrollable concentration.

No normalization was used in the examples below.

Figure 2 shows the interface the users see. The name of the

folder with the data present is input, along with the mass range

desired, the bin width, and the percent of empty bins allowable.

After selecting the desired conditions, the software builds the

data matrix of interest.

3.2 Test set one: Fingerprints

To test the utility of this approach for generating useful

machine-learning ready data sets, we developed a challenge data

set in-house by acquiringmass spectrometry data of fingerprints that

had been subjected to two different storage conditions. While all the

fingerprints were deposited onto aluminum foil, half the foil samples

were immediately subjected to extraction with organic solvent. The

other half of the samples were left to sit for 24 h prior to extraction.

Previous researchers (Archer et al., 2005; Pleik et al., 2016; Pleik et al.,
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2018; Hinners et al., 2020) have indicated that some of the lipids in

the fingerprints that are not immediately processed can undergo

chemical changes, and this difference causes changes in a few peaks’

intensities in the mass spectrometry data. The fingerprint samples

for the data set were acquired over numerous days and the MS data

was acquired in two separate analyses more than a week apart. No

effort was made to control other variables that may impact the lipid

distribution, such as the depositor’s diet or exercise status or the

laboratory conditions (e.g., heat, humidity, light). This was

intentional so that the data would be sufficiently variable and

challenging to classify. We sought to know whether it would be

possible to classify the fingerprints’ age by simply extracting the full

mass spectral data, binning it, as described above, and conducting

supervised classification on the output matrix. If the classification

were feasible in this paradigm, this outcome would demonstrate that

the difficult up-front work of identifying the changing compounds

may be eliminated. Furthermore, it would show that LevR could be

applicable to a variety of other problems where researchers do not

knowwhether a successful classification would be possible with their

samples. This tool would enable screening of data for good

classification outcomes prior to going through the laborious

process of identifying the features that might be useful.

The data in Figure 3A clearly show that fingerprint age can be

determined with a reasonable degree of accuracy using the data sets

generated by LevR and classified by the Aristotle Classifier, a new

classifier developed by our group. In Figure 3A, the output data from

the Aristotle Classifier shows that a total of 70 samples are classified

and about 85% are correctly assigned to their group. Using a leave-

one-out cross-validation method, so test samples are never included

in their training set, most of the (aged) samples, which are the first

35 samples shown, have Results of greater than zero, indicating that

they are assigned to the aged group. By contrast, the non-aged

FIGURE 1
Visual depiction of the binning process. (A) 2 Da Range of spectrum from glycopeptide data set, with bin width set to 0.1 Da. Each colored slice
of the spectrum represents a bin. (B) Data table depicting how data is arranged by LevR. The m/z value is the experimental m/z value from the
spectrum. The feature is the narrowm/z range (bin) assigned to the experimental observation. Each sample occupies a column, and each sample-m/
z pair contains the intensity of the m/z peak from the spectrum.
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samples, which range from Sample number 36 to 70 in the data set,

mostly receive Results of less than zero, indicating that they are part

of the non-aged group. A minority of the samples, which appear in

red quadrants, were misclassified.

The data in Figure 3B show a PCA plot of the same data used

for supervised classification in Figure 3A. In this case, the two sets

of samples, which are colored either orange or blue, are

completely intermixed on the PCA plot. This Figure indicates

that the difference imparted by leaving the samples out on a

benchtop for a day was a small and difficult-to-detect difference,

and other attributes contribute significantly more to the

variability within the data. The samples would have separated

into their respective groups (aged or not aged) had the difference

in the samples due to the aging process been one of the most

significant contributors to sample variability. Rather, the first two

principal components represent more than 50% of the variability

within the samples, and this variability is not attributable to the

two different sample types.

In summary, the simple data processor, LevR, was useful for

rapidly rendering a data matrix for 70 different lipidomics

samples from deposited fingerprints. By coupling this software

with a new machine learning tool, the Aristotle Classifier, the

samples could be discriminated as either being aged or

immediately processed, with reasonable accuracy (~83%), even

though the target differences in the sample were minor compared

to other properties that contributed to the samples’ variability

and features were not pre-selected for classification. This proof of

concept, therefore, demonstrates the possibility of performing

supervised machine learning directly on the full mass

spectrometry data file for samples acquired by direct infusion

experiments, without first identifying peaks of interest and

quantifying them across a sample set.

FIGURE 2
Graphical user interface (GUI) from LevR.
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3.3 Test set two: Glycopeptides

In a second analysis challenge, LC-MS data of glycopeptides

from IgG were interrogated. In this case, the classification challenge

was to determine whether the IgG glycoforms matched a native

glycosylation profile or a non-native form, which was intentionally

generated in the laboratory by modifying IgG with fucosidase, an

enzyme that trims fucose off the IgG glycans.More details describing

the samples and their preparation are in the Experimental section. In

using LevR in a case like this, the retention time of interest needs to

be determined a priori during a discovery experiment; the

implementation of this tool assumes that the user has identified

a chromatographic region of interest already and seeks to compare

data in multiple samples at the given retention time.

The full mass spectral data including the elution window for the

IgG glycoforms was used to build the data matrix, but only a small

number of peaks within the data set carry the information content

necessary to distinguish the two groups: Any bin that did not include

peaks corresponding to glycopeptides would be uninformative. The

data set contains 12,000 features (each corresponding to a 0.1 Da

bin), in which only 120 features could be possibly associated with

glycopeptides. (There were 15 identified glycopeptides, each

populating up to eight bins with different isotopic peaks). Thus,

the vastmajority of the features would not be useful for classification.

So, we again sought to determine whether extracting the MS data

over the entire elution window for the glycopeptides, without

including an identification step where the potentially relevant

features were selected first, would lead to a viable data set that

could be classified correctly.

The data in Figure 4 show the results of supervised (4a) and

unsupervised (4b) classification of this data set. Figure 4A clearly

shows that classification with the Aristotle Classifier was

successful, and about 90% of the samples are correctly

classified as either possessing a native or modified

glycosylation profile. Likewise, the data in Figure 4B show

that, as expected, the glycosylation difference is not the factor

that generates most of the variability within the sample set. A plot

of the first two principal components shows no ability to

distinguish the native (blue) samples from the non-native

(orange) ones. The fact that the samples were not readily

separable by their principal components in Figure 4B is not

surprising, because the change in glycosylation was subtle, and

FIGURE 3
Comparison of Aristotle Classifier and PCA results for the fingerprint data set. (A) Results from the Aristotle Classifier for 70 fingerprint samples:
35 of each group (not aged and aged). Correctly classified samples are highlighted in the green quadrants. (B) PCA results of the same 70 fingerprint
samples from panel (A)
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the vast majority of the features in the data set did not correspond

to glycopeptide masses. Even considering the fact that the

glycosylation difference is slight and that only a fraction of

the peaks in the data set were impacted by this difference, the

combined workflow of first extracting all of the MS data using

LevR and then subjecting it to the Aristotle Classifier shows

promise for machine learning applications on MS data, even in

the case where the differences in the data set are subtle and

lurking in a background of many uninformative peaks.

The results in Figure 4A are exciting, but a logical next

question is: could we have done better at classifying the data by

limiting the analysis to only the glycopeptide peaks? Supervised

learning methods, like the Aristotle Classifier, achieve their

enhanced predictive power over unsupervised methods, like

PCA, by weighting the features that best discriminate the two

states more heavily than the uninformative features. (Although

too many uninformative peaks can negatively impact the model’s

performance.) We wanted to determine whether the

classification would have been more successful had those

uninformative features been removed in advance.

Furthermore, we sought to verify that the glycopeptide peaks

were, in fact, the ones that had been selected by the classifier as

the “important features” in the classification shown in Figure 4A.

Determining whichm/z regions in the spectra were weighted

most heavily in the resulting classification is straightforward: The

version of the Aristotle Classifier used for this work, AC.2021

(Hua and Desaire, 2021), includes a built-in matrix called

FeatureCount which includes how each feature was weighted

for the final result score for each sample. The feature counts can

be positive, if the feature indicates the sample of interest is more

like one sample type or negative, if the feature indicates that the

sample is more like the alternative sample type. Therefore, to

determine which features most impacted the classifier’s

weightings overall, the absolute values of the feature counts

were summed across the sample set. The resulting data is

shown in Table 1 showing 19 of the top 20 features were

associated with IgG glycoforms. For each of the IgG-related

features, the relevant glycoform, FeatureCount, and bin are

included. This result indicates that the embedded feature

selection and weighting component of this particular classifier

is effective at identifying the relevant features in the presence of

many uninformative ones. (Note: because each feature is

FIGURE 4
Comparison of Aristotle Classifier and PCA results for the full IgG glycopeptide data set. (A) Results from the Aristotle Classifier for 38 IgG
glycopeptides: 19 of each group (native and partially defucosylated). Correctly classified samples are highlighted in the green quadrants. (B) PCA
results of the same 38 IgG glycopeptide samples from panel (A)
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comprised of the ion counts from a small bin in the m/z space of

the spectrum, each charge state of an ion, and indeed, each ion in

every isotopic cluster, occupies its own bin and is therefore a

unique feature.)

But could the classification be more successful if only the

glycopeptides had been included in the first place? To answer this

question, we first identified all the relevant m/z bins that would

contain glycopeptide peaks, as described in the experimental section,

and reclassified the data using only those features. The results appear

in Figure 5A, for supervised classification, and Figure 5B, where the

unsupervised PCA plot is provided. The PCA plot clearly shows that

removing all the bins that do not contain glycopeptide information

reduces the overall variability in the data, and the two sample types,

natively glycosylated or modified, are now somewhat separable using

this unsupervised method.

This outcome is consistent with the well-known principal

that removing uninformative features generally improves one’s

ability to discriminate the different biological states. Yet, the data

in Figure 5A, showing the supervised classification of this data set

with reduced features, is essentially identical to the result

obtained in Figure 4A, where 12,000 uninformative features

were still present in the data set. The fact that Figures 4A,5A

TABLE 1 Top 20 highest scoring features (m/z bins) as determined by the Aristotle Classifier.Within each glycoform section, features are ordered from
highest to lowest scores, based on the sum of the absolute value of the FeatureCount. All features but one matched to an expected glycoform.
Note, the m/z value includes the IgG2 peptide (EEQFNSTFR).

Rank m/z bin Feature score Glycan composition

1 (1,024.73,1024.74) 20,274 (HexJ4(HexNAc]4(NeuAc]1

2 (1,025.07,1025.08) 19,408

4 (1,024.4,1024.41) 17,168

8 (1,025.4,1025.41) 11,986

10 (1,024.74,1024.75) 11,128

3 (970.38,970.39) 17,558 (HexJ4(HexNAc]4(NeuAc]1

7 (970.72,970.73) 12,620

16 (971.05,971.06) 6,688

17 (970.71,970.72) 6,662

6 (1229,1229.01) 14,866 (Hex]3 [HexNAcJ4

11 (1,228.5,1228.51) 10,412

13 (1,229.5,1229.51) 8,284

18 (820.34,820.35) 6,456

19 (819.33,819.34) 5,404

20 (820,820.01) 5,226

19 (1,126.96,1126.97) 11,620 (Hex]3 [HexNAc]3

15 (1,127.46,1127.47) 6,718

12 (887.36,887.) 9,556 (Hex]3(HexNAc]5

14 (887.7,887.7) 7,684

5 (900.41,900.42) 16,620 unidentified

Frontiers in Analytical Science frontiersin.org11

Pfeifer et al. 10.3389/frans.2022.961592

https://www.frontiersin.org/journals/analytical-science
https://www.frontiersin.org
https://doi.org/10.3389/frans.2022.961592


look so similar is a desirable result: It unequivocally demonstrates

that, when using the right kind of classifier, the data set need not

be preprocessed to remove unnecessary, uninformative features.

Rather, both the glycopeptide example and the fingerprint

example in Figure 3, show that when a measurable difference

is present in two different sample groups, machine learning and

mass spectrometry can be exploited to identify that difference

and classify samples into their respective groups, using the

straight-forward workflow shown here.

4 Conclusion

The combined functionality of LevR and the Aristotle

Classifier yields exciting results for mass spectrometrists and

researchers studying biomarkers. LevR is a plain, yet effective,

solution for formatting large amounts of mass spectrometry

data. Its coupling to the Aristotle Classifier, a new machine

learning tool, results in a powerful workflow that can be

accessed by all researchers regardless of coding experience.

This workflow and tool will be useful for biomarker

discovery, in which biological samples can be analyzed by

mass spectrometry, the data can be formatted automatically,

and the classifier can render results to indicate if there are

detectable differences between the healthy and disease state of

the biological samples. Further, the classifier’s results can be

leveraged to identify which features contribute most to the

difference between sample types.
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