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Introduction: One of the main challenges in bioinformatics has been and still is,
the comparison of entities through the development of algorithms for similarity
scoring and data clustering according to biologically relevant aspects.
Glycoinformatics also faces this challenge, in particular regarding the
automated comparison of protein and/or tissue glycomes, that remains a
relatively uncharted territory.

Methods: Low and high throughput experimental glycomic and glycoproteomic
results were collected, revealing a bias toward N-linked glycomes. Then, N-
glycomes were considered and represented as networks of related glycan
compositions as opposed to lists of glycans. They were processed and
compared through a java application generating graphs and another producing
a similarity matrix based on graph content. Several scoring schemes (e.g., Jaccard
index or cosine) were tested and evaluated using the Matthews Correlation
Coefficient, in order to capture a meaningful protein and tissue N-glycome
similarity.

Results: Assuming that a glycome corresponds to a well-connected graph of
glycan compositions, graph comparison has revealed gaps that can be interpreted
as inconsistencies. The outcome of systematic graph comparison is both formal
and practical. In principle, it is shown that the idiosyncrasy of current glycome data
limits the definition of appropriate estimates for systematically comparing N-
glycomes. Yet, several potentially interesting criteria could be identified in a series
of use cases detailed in the study.

Discussion:Differentially expressed glycomes are usually comparedmanually, but
the resulting work tends to remain in publications due to the lack of dedicated
tools. Even manually, cross-comparison is challenging mostly because different
sets of features are used from one study to the other. The work presented here
enables laying down guidelines for developing a software tool comparing
glycomes based on appropriate definitions of similarity and suitable methods
for its evaluation and implementation.
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1 Introduction

With the increased attention expressed in proteomics towards the identification of
proteoforms (Aebersold et al., 2018), glycoproteomics has recently been spreading, leading to
a boost in glyco-data production. The co-existence of many different techniques, even
though now dominated by mass spectrometry (MS) used in both glycomics and
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glycoproteomics, gives rise to heterogeneous data on intact
glycoproteins, particularly in terms of glycan structure resolution.
This is reflected in glycan and glycoprotein databases [chapter 52 of
(Varki et al., 2022)] that include information extracted from
published studies in glycomics as well as decade-old glycoscience
technologies along with low resolution glycan compositions
generated in glycoproteomics experiments. But, as the differential
analysis of glycomes remains an important goal of glycobiology,
glycoinformatics tools that are necessary to achieve comparability,
are challenged by glyco-data heterogeneity.

Numerous protocols to study glycan differential expression in a
wide array of applications have been published in the past decades.
This is, for example, the case of cancer glycan biomarker
identification, as summarised in [chapter 47 of (Varki et al.,
2022)], of immunoglobulin differential glycosylation in ageing
(Gudelj et al., 2018) or of inflammation (Loke et al., 2016),
among others. Often enough, differences are expressed in heat
maps [e.g., (Boyaval et al., 2022),(Chatterjee et al., 2021)] or
alternative statistical charts capturing the correlation between
glycan expression and a set of glycan properties (e.g., boxplots
Dotz and Wuhrer, 2019). The non-standardised status of the
latter hinders cross-studies comparison. Glycan properties usually
encompass structural features beginning with types/cores that
represent a widely accepted classification of N- and O-linked
glycans [chapter 9 and 10 of (Varki et al., 2022)]. Then, these
broad categories are possibly refined with attributes such as
biantennary, "(core)-fucosylated”, or bisecting in N-glycans or
“sialylated” in both N- and O-glycans, with or without linkage
specification such alpha2,3/alpha2,8 to qualify sialic acids further.
This set of categories is rarely the same from one publication to the
other even though some overlap can be observed and it is then
possibly complemented with selected glycan epitopes. This selection
is again highly variable and can include blood types, Lewis antigens,
and/or other glycan motifs such as LacNAc or LacdiNAc, that
belong to a list with a loose extent. These non-systematic
categorisations challenge the automation of comparative studies
because of the limited overlap of glycan feature selections. In the
end, glycome comparison is achieved within one publication at a
time, possibly across two or more publications by the same authors
using their own set of glycan features. Whether small or large scale,
the resulting studies involve different and often incompatible
approaches, so that a comparison process cannot be generalised.
Manual adjustment is needed and automation is hampered.

A second major issue limiting glycome automated comparison,
is the usual presentation as lists of independent glycan structures
while these structures are often contained in one another. This is yet
another hindrance to capturing similarities and differences in whole
glycomes since the structural relatedness between structures reveals
parts of the biosynthetic machinery at stake. Furthermore, from a
bioinformatics point of view, a traditional list representation makes
database query results difficult to read and, most importantly, to
interpret especially as the amount of glycomics and glycoproteomics
data is steadily growing. This issue was partially solved through the
implementation of a piece of software called GlyConnect
Compozitor. From any set of glycans representing a protein, a
cell or a tissue glycome, the tool automatically detects the
relatedness of glycan compositions through their shared numbers
of monosaccharides and plots them in an interactive graph (Robin

et al., 2020). The first intent was to facilitate the biological
interpretation of large data collections through a network
visualization of the glycan compositions found in a glycomics or
glycoproteomics experiment.

The network representation of glycome data is not just
enhancing readability, but is also grounded in biology since it
roughly mimics the biosynthesis underlying the represented
compositions. Indeed, compositions are connected with each
other through directed links symbolising a monosaccharide
residue addition by an enzyme on an existing glycan. This
provides a first consistency check for glycome data. As noted in
the original description (Robin et al., 2020) and specified by some
users (e.g., (Alagesan et al., 2022), where the tool is used “to correct
the sparsity of missing compositions and identify potential outliers”)
GlyConnect Compozitor compensates for the disruption of a
seemingly continuous path when only one step is missing by
introducing so-called virtual nodes. In practise, virtual nodes
increase the connectivity of the graph and as such, its
consistency. This can be illustrated with the example of a
disialylated biantennary glycan that is logically connected to its
asialylated form via the corresponding monosialylated biantennary
form (continuous path). However, the detection threshold in mass
spectrometry data may only be exceeded by the disialylated and
asialylated and not the monosialylated forms. Consequently, the
mapping of this data into a network of related structures will create a
gap between the former two, which only the monosialylated form
can fill. Even if sialyltransferases are very efficient, an intermediary
state of sialylation can reasonably be assumed. More generally,
precisely because cazymes are assumed to act sequentially, a
“consistent” glycome represented as a graph, should not contain
many outliers. Nonetheless, systematic gap filling with suspected,
though undetected, data points needs to be strictly controlled.

Of course, pathway modelling or the integration of
transcriptomics data alternatively cover this aspect
bioinformatically (Bao et al., 2021; Dworkin et al., 2022), and this
type of approach is out of the scope of this article. The main goal
here is to open the discussion on the acceptable criteria for
qualifying a glycome with the goal of enabling a systematic and
automated comparison. To that end, the present article describes a
solution prototyped with a Java integration scheme, in order to
calculate a similarity score for each pairwise comparison of
N-glycomes of the GlyConnect database (Alocci et al., 2019). A
minimal number of glycan properties was selected as a starting
point. Several similarity scores were tested and a similarity matrix
that can be used to extract more than three similar glycomes at a
time (three is the current limitation of Compozitor) was built. The
highest scoring comparisons in the matrix are then destined to be
proposed to the user for further exploration. The study is mainly
focused on N-linked glycans as they represent the largest dataset
both in the literature and therefore in the database. It is suggested as
a prospective approach destined to feed the manual interpretation of
glycomics and glycoproteomics results. The various similarity
measures were tested to compare mainly protein and tissue
N-glycomes. Examples reflecting observations are detailed and
used to derive useful features to apprehend the consistency of an
N-glycome in the form of an interpretable graph. In the end, the
search for consistency supports not only the interpretation of MS
identification results but also the tailor-making of a glycan
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composition dataset fed to glycoproteomics search engines, recently
reviewed in (Cao et al., 2021; Hackett and Zaia, 2021) among others.

2 Materials and methods

2.1 Data source

2.1.1 GlyConnect
The GlyConnect platform includes a database of glycoproteins

and glycans (Alocci et al., 2019) hosted on the Expasy server
(Duvaud et al., 2021) of the SIB Swiss Institute of Bioinformatics
as part of the Glyco@Expasy initiative (Mariethoz et al., 2018).
GlyConnect data is curated and centered on glycoproteins, glycosites
and glycans that are all described with specific details regarding
species and tissue sources. By default, all glycan structures are shown
using the SNFG notation (Neelamegham et al., 2019).

2.1.2 Test datasets
Two independent datasets collecting pairs of similar protein

N-glycomes were manually selected from GlyConnect data.
Glycomes with less than six compositions were ignored.
Similarity was set to match the following criteria:

• Comparable graph size: due to significant differences in
network sizes, a maximum node number difference was set
(ratio of sizes <0.3), also imposing a proportionality rule so
that smaller networks have smaller tolerated size difference,
and vice versa.

• Maximised node overlap: the ratio between non-shared and
shared nodes between two graphs reflects the observation that
two glycome networks in which the number of shared nodes is
greater than the number of nodes unique to one graph tend to
be similar. This ratio was set to a minimum of .55.

• Additional experimental evidence: compositions associated
with further structural experimental evidence reinforce the
similarity between a pair of glycomes that share a high
proportion of nodes.

• Comparable glycosylation profiles: the distribution of glycan
properties inferred from the compositions and reported in the
Compozitor bar plot, are comparable.

The first dataset consists of twenty-five desired and twenty
unwanted pairwise protein N-glycome comparisons while twenty-
one desired and nineteen unwanted pairwise protein N-glycome
comparisons compose the second dataset. The selection of pairwise
comparisons was performed to match/not meet the above criteria
for the positive/negative examples. The four lists can be found in the
Supplementary Tables S1, S2.

Further attempts were made with tissue and disease glycomes
but since results were more contrasted with protein glycomes, the
formers were not considered in the present article.

The similarity criteria stated above may bring together unexpected
pairs from a biological point of view such as human lactotransferrin and
the Freestyle 293-F (Cellosaurus ID: CVCL-D603) expressed Sars-Cov-
2 spike protein. Such pairing often reflects biases arising from mass
spectrometry data. As such, they can be of interest. Yet, pairingmay also
match a biological reality when two co-localised proteins are likely to

share glyco-enzyme availability [e.g., secreted human beta-2-
glycoprotein 1 (P02749) and complement factor H (P08603)] or
when glycosylation patterns extend across species (e.g., bovine
(Q3SZR3) and canine (F6Y713) alpha-1-acid glycoproteins). The
latter is not straightforward as, for example, mouse (Q8C129) and
human (Q9UIQ6) leucyl-cystinyl aminopeptidases have very distinct
glycomes in GlyConnect (see Section 3.7.4 for further details).

2.1.3 GlyConnect compozitor
Compozitor is a web application that enables the user to retrieve

contextual information about a set of glycan compositions in the form
of interactive networks (Robin et al., 2020). The interface is subdivided
into subsets organized in tabs each one dedicated to searching a
particular glycome type, whether associated with either a protein, a
cell line, a tissue or a disease. It is available at https://glyconnect.expasy.
org/compozitor/ and integrated in the GlyConnect platform.

A protein or a tissue glycome can be selected from the GlyConnect
database and promptly visualised in Compozitor. The software takes
advantage of glycan compositions in a glycome being frequently related
to one another by the addition of onemonosaccharide. For example, the
N-glycan core is related to the core fucoslyated N-glycan core through
the addition of a fucose and both may co-occur in a glycome.
Compozitor first detects all existing relationships and maps them
into a graph where each node is a unique glycan composition, and
each link represents the addition of a monosaccharide.

Table 1 summarises the range of possibilities, where
monosaccharide compositions of glycans are represented in three
possible common notations: classic abbreviations with semi-colons
(GlyConnect notation) or brackets (Byonic notation) or 1-letter code
(condensed notation). Each node of a Compozitor graph is depicted in
the condensed notation. In the background, this composition has a
unique GlyConnect identifier, which in turn, has a unique GlyTouCan
identifier (Fujita et al., 2020). Cross-links to the GlyConnect database
from within the graph, reflect a variety of information on structural,
physical, taxonomic, pathological and topological properties, all linked
to their respective literature references. The number inside each node is
the number of glycan structures in the network matching the
composition represented by that node, while the size of the nodes is
proportional to the number of publications reporting the composition
(in GlyConnect). Note that graphs and node lists can be saved and the
export function was recently updated with the inclusion of GlyTouCan
IDs as a step closer to data standardisation.

In this environment, software usability and data visualisation are
central and guide the development of interactive resources toward
understanding the relationships between glycans, proteins, tissues,
diseases and taxonomy. Since these data types are indeed
interconnected, retrieving them cannot be limited to lists of
observations as often the case in databases.

Finally, Compozitor offers the option to compare up to three
glycomes and colour-codes the contribution of each graph. The limit
of three was set to avoid an overflow of information that would
challenge the interpretation of the graphical representation. A
glycome graph resulting from a first query is shown with blue
coloured nodes. A second query will generate a glycome graph
that can be superimposed on the first one for comparison purposes.
Common nodes will be shown in magenta and others in red. As it
only maps glycan compositions, Compozitor is a coarse glycome
visualising and comparative tool.
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2.1.4 Implementation
2.1.4.1 JavaScript object notation

Data are organised in JSON, a text-based format for data interchange.
A small set of structuring rules for the portable representation of
structured data are defined, but the semantic and the interpretation of
text conforming the syntax are intentionally not provided by ©Ecma
International. The extreme versatility of the format enables the user to
apply a wide range of processing types and semantics to the JSON syntax.
Compozitor data are processed byDoppelganger.java to return the results
of a query, as explained in the next subsection.

2.1.4.2 Doppelganger
GlyConnect data are obtained indirectly via HTTP through

Compozitor and saved offline by the Java application
Doppelganger. All entries are associated with an identification
number called Compozitor ID allowing unequivocal retrieval.
However, other IDs are also present for those entries cross-linked
with other on-line platforms. For example, Compozitor ID
558 identifies the glycome network of human serotransferrin,
which is also identified by P02787, its UniProt accession number.

Details of the developed packages are provided in
Supplementary data. Doppelganger is encoded in the Java
programming language, using internal Java libraries except for
the Google Gson open-source library to ease the manipulation of
JSON files https://github.com/google/gson. The code is publicly
visible at https://github.com/sabafed/Doppelganger.

2.2 Virtual nodes

A peculiar feature of Compozitor is the introduction of grey
nodes to the graph among the differently coloured real nodes.
These are the virtual nodes that are defined to increase the
connectivity of a graph by connecting two compositions that

differ from two residues. More specifically, a virtual node is
added to a network when the continuity of a path is disrupted
and only one step is missing. Precise definitions can be found in
(Robin et al., 2020) and examples of use in (Mariethoz et al.,
2021). The comparison of all the real nodes (compositions) in the
GlyConnect database with all the virtual nodes generated in
Compozitor graphs it is possible to distinguish:

• Virtual nodes in a network that match at least one
composition (real node) reported as a GlyConnect entry
(called Virtuals Existing)

• Virtual nodes that cannot be matched to a GlyConnect entry
(called Virtuals Created)

• Frequently recurring virtual nodes in the networks
• Virtual nodes that affect similarity scores.

Importantly, the generation of virtual nodes is biologically
agnostic so that if, for example, H5N4 and H6N5 co-occur but
are not connected in a graph then, H6N4 and H5N5 will both be
suggested as virtual nodes for this connection. Whether the hexose
or the hexosamine comes first or second is not pre-set.
Consequently, the two possibilities are kept.

2.3 Similarity measures

2.3.1 Jaccard index
The Jaccard index (JI) is used for measuring the similarity of

finite sets through the ratio of intersection over union, with a set
defined as a collection of unique elements distinguishable from each
other. The measure is defined as:

J A, B( ) � A ∩ B| |
A ∪ B| | �

A ∩ B| |
A| | + B| | − A ∩ B| | (1)

TABLE 1 Monosaccharide notations used in Compozitor.

Residue type Short name GlyConnect notation Byonic notation Condensed notation

Monosaccharide Hexose Hex Hex H

Monosaccharide N-Acetylhexosamine HexNAc HexNAc N

Monosaccharide Deoxyhexose dHex Fuc F

Monosaccharide N-Acetylneuraminic acid NeuAc NeuAc S

Monosaccharide N-Glycolylneuraminic acid NeuGc NeuGc G

Monosaccharide Pentose Pent Pent P

Monosaccharide Hexuronic acid HexA HexAa A

Monosaccharide Ketodeoxyoctonic acid Kdn Kdna K

Monosaccharide Ketodeoxynononic acid Kdo Kdna O

Substituent Acetyl Ac Acetyl a

Substituent Methyl Me Mea m

Substituent Phosphate Ph Phospho p

Substituent Sulfate Su Sulfo s

aThese residues are not mentioned in the official Byonic documentation and replaced by those of the GlyConnect notation.
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and bounded 0 ≤ J(A,B)≤ 1. J(A,B) = 0 corresponds to the event of
two sets not having any element in common and J(A,B) = 1 to the
event of perfectly overlapping sets.

JI was used to explore glycome similarity from the perspective of
nodes (compositions) shared between two graphs. In that case, A
and B are sets of nodes respectively present in each graph. The
information brought by the Node Jaccard Index (NJI) takes neither
the pairs of consecutive compositions nor the type of glycosylation
common to the two networks into account, but is built on the
occurrence of nodes only.

As Eq. 1 requires distinct elements, the Link Jaccard Index
(LJI) is defined by taking the source and target of an edge. If taken
in pairs, LJI reflects information not only on the compositions
reported in a graph but also on how two compositions are
connected to each other. Moreover, considering the edges as
pair of linked nodes also evaluates how many pairs of consecutive
compositions are shared between networks and which glycan
additions are common.

2.3.2 Cosine similarity
Cosine similarity is a measure traditionally used to compare two

sequences of numbers. If the sequences are considered as vectors in a
two-dimensional space, it is the cosine of the angle between the two
vectors, which corresponds to the dot product of the vectors divided
by the product of their lengths.

If A and B are two vectors of attributes (properties), cosine
similarity is represented as:

cosine similarity � A.B
A| || | B| || | �

∑n
i�1Ai Bi������∑n

i�1A
2
i

√ ������∑n
i�1B

2
i

√ (2)

Values of cosine similarity are bounded in [0,1] as for the Jaccard
Index. However, while the latter could only be measured for finite
sets of entities, the former can be applied to numerical vectors.

2.3.3 Network density ratio
Density is the property of a network that expresses its connectivity

by comparing the number of existing edges to the number of potential
edges in a graph of the same size. It is computed as:

D � existing edges

potential edges
� x

N N−1( )
2

� 2x
N N − 1( ) (3)

where N is the number of nodes and x is the number of edges.
The Network Density Ratio (NDR) is an attempt to capture the

similarity in connectivity between two glycomes. The interpretation
relies on cut-off values. Since the ratio between two identical
densities is equal to 1, then the more similar two densities are,
the closer to 1 their density ratio is. The value of 1 is therefore
considered the centre of the range of comparison values. Ratios in
the [0.50; 0.95] range provide the lower bound of the interval inside
which NDR values must fall. The upper bound is then obtained
through estimating:

Upper bound � 1 + 1–lower bound( )
In that way, a cut-off at 0.9 corresponds to an interval bounded

[0.90; 1.10]. This calculation allows to implement the same testing
procedure used for the other methods.

2.3.4 Sequence similarity
Amino acid sequence similarity was considered as a potential

influence on comparison and subsequently as a corrective factor in
order not to overrate graph similarity. This is of course, limited to
protein glycomes and was implemented for correcting possible
biases. However, the effect on scoring proved not to be
significant with the current version of the database that does not
contain a large body of homologous proteins. Consequently, no
further mention of this option is made in this article.

2.4 Method testing

TheMatthews Correlation Coefficient (MCC) is the main metric
chosen to evaluate the performance of the variousmethods explored.
Derived from the phi coefficient, it allows the estimate of the
performance of an algorithm by considering True Positives (TP),
True Negatives (TN), False Positives (FP) and False Negatives (FN).
It is defined as:

MCC � TP × TN − FP × FN�������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ (4)

MCC ranges from −1 to +1 and in this study, the proportion of
expected vs. unexpected glycome comparisons retrieved or not is
used as the parameter to assess the results. In other words, values
around 0 indicate a performance of the method not better than a
random prediction, values around +1 indicate sensitive and specific
results, and values around −1 are worse than a random prediction.

This testing aims to implement one (or a combination) of the
scoring methods to perform a pairwise comparison of the graphs in
Compozitor. Each comparison is given a score, which is then
inserted in a MxM triangular matrix where M is the number of
networks examined. Those having a score above a set cut-off are
finally labelled as similar glycomes and can potentially be used in
Compozitor to recommend similar graphs to its users.

3 Results

In Compozitor, lists of glycan compositions associated with peptides,
proteins, organisms, cells or tissues as reported in the literature, are
shown as nodes in a graph and linked through the sequential addition of
one monosaccharide at the time. It represents a gross approximation of
the enzymatic networks behind a glycome, in an attempt to give some
biological sense to the initial lists. The following describes the exploration
of various similarity measures for comparing N-glycomes. It should be
noted that the reference toGlyConnect creates a clear distinction between
compositions that are associated with resolved structures and those that
remain at a coarse resolution of composition. It is assumed that
confidence in a glycome network is higher when evidence of
structure(s) is available for a large proportion of nodes.

3.1 Similar glycomes

Compozitor represents glycomes as graphs but also generates a
bar plot of glycan properties (e.g., fucosylated, sialylated, etc) meant
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as a rough glycome profiling approach. As a result, similarity was
thought along two distinct lines. First, the nodes of the graph were
given importance in order to track the frequency of glycan
compositions as well as that of their properties and
corresponding similarity measures were defined, thereby
reflecting the content of a glycome. Second, the connectivity of
graphs can be considered as prevalent so that links between
compositions or between properties hold the relevant
information for similarity, thereby reflecting the extent of a glycome.

As mentioned in Section 2.1.2, two datasets were built to evaluate
how different measures tend to capture similarity from both the
perspectives of nodes and links of a network. Each of the desired
comparisons were assigned as positives and the unwanted ones as
negatives. Therefore, in this binary context there are four possible
classifications for each comparison: 1) if an expected similarity is
retrieved, then it is labelled as a True Positive (TP), 2) if an
expected similarity is not retrieved then it is labelled as a False
Negative (FN), 3) if an unexpected similarity is not retrieved, then it
is labelled as a True Negative (TN) and 4), if an unexpected similarity is
retrieved, then it is labelled as a False Positive (FP). This classification is
used to calculate all the metrics evaluating the performance of a scoring
method. Furthermore, specificity is assessed by calculating the True
Negative Rate (TNR = TN/TN + FP) and sensitivity with the True
Positive Rate (TPR = TP/TP + FN). The Matthews Correlation
Coefficient (MCC) was selected as an appropriate estimate among a
broad range of options (Chicco and Jurman, 2020). Mainly, it allows
measuring the quality of binary classifications independently of dataset
size. This is a determinant feature when comparing different methods
that may return a different number of results for the same threshold.
These values are calculated and stored in a so-called confusion matrix
for each type of similarity.

3.2 Content similarity

Table 2 summarises results obtained for this section with the first
dataset.

3.2.1 Counting compositions
The Jaccard Index defined in Section 2.3.1 was used to define a

Node Jaccard index (NJI), counting nodes as entities. Being a

straightforward representation of the ratio of elements shared by
two sets, this similarity measure was applied to evaluate the retrieval
of the expected similar networks, as explained earlier.

The performance of Jaccard Index applied to the nodes is
clearly low since the highest scores are closer to zero than to one.
The left part of Table 2 reveals that Node Jaccard Index is
characterized by a high specificity and a low sensitivity,
making it a scoring method suitable for assigning low values
to irrelevant similarities but not good enough to recognise the
expected ones. Note that the highest value of the MCC is
0.3508232 and appears at the 0.50 and 0.55 thresholds before
dropping below 0.3.

3.2.2 Counting glycan properties
The vectors compared by the cosine similarity measure consist

of decimal numbers that represent the relative frequencies of two
types of information: the glycan properties of the nodes in an
N-glycome, or the type of monosaccharide addition that links
two nodes.

The results given by this measure were filtered at increasing cut-
off levels, i.e., the minimum cosine of the angle between the two
vectors is lowered at each threshold. With this incremental
approach, the lowest MCC value was found for threshold
0.50 and corresponds to 0.1685500, increasing to a maximum of
0.7370286 at the threshold of 0.95. The right part of Table 2 shows
that low MCC values at 0.50 cut-off are due to low TNR causing a
high number of false positives, whereas TPR at the same cut-off
indicates a perfect identification of all the positives. At the highest
threshold, the rise of the MCC is a trade-off of specificity to increase
sensitivity.

3.3 Connection similarity

Table 3 summarises results obtained for this section with the first
dataset.

3.3.1 Counting connections between compositions
As in Section 3.2.1, the Jaccard index was used on the edges of a

glycome network. The source and target of an edge are the most
informative parameters in that case, since they are unique

TABLE 2 Similarity of N-glycome content.

Node jaccard index Node cosine
similarity

Threshold .5 .55 .6 .5 .95

True Positives 6/25 6/25 4/25 25/25 24/25

False Positives 0/20 0/20 0/20 19/20 5/20

True Negatives 20/20 20/20 20/20 1/20 15/20

False Negatives 19/25 19/25 21/25 0/25 1/25

TPR .24 .24 .16 1 .96

TNR 1 1 1 0.05 .75

MCC .35 .35 .28 .17 .74

TABLE 3 Similarity of N-glycome connectivity.

Link jaccard index Link cosine similarity

Threshold .5 .5 .9 .95

True Positives 12/25 25/25 25/25 24/25

False Positives 2/20 19/20 12/20 6/20

True Negatives 18/20 1/20 8/20 14/20

False Negatives 13/25 0/25 0/25 5/25

TPR .48 1 1 .8

TNR .9 0.05 .4 .7

MCC .41 .17 .52 .5
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comparable entities. If taken in pairs, information is not only limited
to compositions reported in a graph but also on how compositions
are connected with one another. Moreover, considering an edge as a
pair of linked nodes also accounts for compositional frequency in

both networks because counting applies to the shared added
monosaccharide as well as associated pairs of consecutive
compositions.

The left part of Table 3 shows that this method has an
extremely high TNR but a much lower TPR, meaning that it is
not suited to recall true positives but very good in identifying
false positives and true negatives. Another limitation of this
method is that close to half of N-linked positives are
mislabelled as negatives (false negatives).

It is ultimately worth mentioning that the best performance of
the method happens at a Jaccard Index threshold of 50% and rapidly
declines if higher values are attempted.

3.3.2 Counting connections between properties
As in Section 3.2.2, the cosine similarity was used but this time,

on the edges of a glycome network. The number of occurrences of
each link over the total number of links in the graph returns the
vector of frequencies used to compute the cosine. As in 3.2.2, an
incremental approach was defined to monitor the values of
the MCC.

The right part of Table 3 reveals that link cosine at low
threshold performs better in identifying the true positives (high
TPR) than in distinguishing between a true and a false positive
(TNR is almost zero). Increasing the minimum score, however,
produces an increase in sensitivity at a cost of a small loss of
specificity.

3.4 Influence of network density

Table 4 summarises results obtained for this section with the first
dataset.

The figures in Table 4 demonstrate that the network density
ratio within the [0.85; 1.15] interval, fails to distinguish positives and
negatives. As can be expected, the network size has a strong
influence on the use of this measure. See Section 3.7.1 for further
illustration and details.

3.5 Evaluation of the different measures

Each comparison of two protein N-glycomes relies on previously
manually classified positive or negative examples. The criteria used
for manual curation are defined in Section 2.1.2. Each comparison
was scored with the range of methods detailed in Section 2.3 and
these results were then compared based on their best performance
and on the threshold at which the best performance occurred, using
the MCC evaluation also described in Section 2.3. A global overview
of the scores for each dataset and for mean values between the two, is
mapped in Figure 1, which shows that the best performing measures
are those based on Node Cosine Similarity (green curves). In
contrast, the plots emphasise the lower performance of Node and
Link Jaccard Indices (pink, orange, purple and yellow curves). This
observation is consistent across datasets cited in Section 2.1.2.
Figure 1 also shows the slight improvement of adding virtual
nodes since all curves corresponding to the inclusion of virtual
nodes in the network tend to be above those where virtual nodes are
ignored.

TABLE 4 Alternative similarity of N-glycome connectivity.

Network density ratio

Threshold .5 .65 .85 .95

True Positives 25/25 24/25 17/25 12/25

False Positives 20/20 20/20 12/20 9/20

True Negatives 0/20 0/20 8/20 11/20

False Negatives 0/25 1/25 8/25 13/25

TPR 1 .96 .68 .48

TNR 0 0 .4 .55

MCC 0 −.13 .08 .03

FIGURE 1
MCC score mapping to threshold values above .5 for each tested
method across the two datasets defined in 2.1.2, including or not
virtual nodes. (A)MCC trend for all methods in the first dataset (B)MCC
trend for all methods in second dataset (C) Mean MCC trend
between first and second datasets. Abbreviations Matthews
Correlation Coefficient (MCC), Link Cosine Similarity (LCS), Node
Cosine Similarity (NCS), Link Jaccard Index (LJI), Node Jaccard Index
(NJI), Network Density Ratio (NDR), Virtual Nodes (VN).

Frontiers in Analytical Science frontiersin.org07

Saba et al. 10.3389/frans.2023.1073540

https://www.frontiersin.org/journals/analytical-science
https://www.frontiersin.org
https://doi.org/10.3389/frans.2023.1073540


3.6 The contribution of virtual nodes

An obvious interpretation of the presence of a virtual node is a
possibly missed composition in a mass spectrometry experiment.
Data accumulated in GlyConnect, hence the increased variety of
possible glycome networks led to assess the nature and the frequency
of virtual nodes introduced by Compozitor, in order to refine the
understanding of the role of virtual nodes. It was previously
observed that some virtual nodes tend to disappear from one
GlyConnect release to the other, for instance, in the frequently
updated N-glycome of human erythropoietin (EPO) (Mariethoz
et al., 2021). Furthermore, the presence of virtual nodes is often a
reflection of data quality, especially in high throughput experiment
results that notoriously contain a higher percentage of false
positives. For example, the human laminin subunit beta-1
(P07942) has been identified as a glycoprotein in two high-
throughput glycoproteomics (cancer) studies; the Compozitor
view of the combined glycomes represents the 33 compositions
stored in GlyConnect, in a particularly disrupted graph in the
absence of virtual nodes and generates a particularly high
number of virtual nodes (20/33, i.e., 60%) to increase
connectivity (Supplementary Figure S1). This type of cases
(strictly high-throughput glycoproteomics studies) contrasts with
N-glycome data cumulated from both glycomics and
glycoproteomics. To illustrate this point, data relative to the
human beta-2-glycoprotein 1 (P02749) in GlyConnect consists of

35 compositions, supported by eleven published articles describing a
range of glycomics and glycoproteomics experiments. In
Compozitor, the introduction of virtual nodes for human beta-2-
glycoprotein 1 is limited to three (<1%). This is a clear illustration of
the notion of consistency set in the introduction. It is definitely a
challenge to make sense of the human laminin subunit beta-1
N-glycome as defined in the current release of GlyConnect while
the continuity of the graph of human beta-2-glycoprotein 1, even
though reported in several distinct body fluids, appears as a well-
connected graph, hence as a consistent set. Attempting to link this
data to enzyme (glycosyltransferase) expression seems a reachable
goal when connected nodes form continuous paths from smaller to
larger structures.

3.6.1 Created vs. existing compositions
Compozitor creates virtual nodes to fill a gap in a glycome

network, irrespective of whether the corresponding composition is
or not in the database. In other words, some inserted virtual nodes
match existing compositions found in other glycomes but some are
just ad hoc compositions, never reported before, therefore not stored
in GlyConnect and possibly unrealistic from a biological viewpoint.
Note that a simple procedure for establishing whether virtual nodes
are created or already reported is described in (Mariethoz et al.,
2021).

Protein and tissue N-glycomes were analysed to track both types
of virtual nodes, existing and created. To begin with, the overall
proportion of generated virtual nodes was comparable between
proteins and tissues, as shown in Table 5. Then, to establish
whether the number of virtual nodes in a network correlates with
its size, the frequency of virtual nodes in each protein glycome
network was calculated. As a trend, it appears that the larger the
network the less virtual nodes are required to enhance connectivity.
Moreover, as observable in Figure 2 where the ratio of virtual nodes in
networks is plotted with the network size, networks with up to
15 nodes have the highest proportion of virtual nodes, reaching

TABLE 5 Occurrence of virtual nodes in N-glycome graphs.

N-glycomes

Tissues Proteins

Total virtual nodes 226 385

Existing Created 144 (64%) 82 (34%) 272 (70%) 113 (30%)

FIGURE 2
Ratio of virtual nodes as a function of network size reflecting the protein data in Table 5. Most virtual nodes correspond to glycan compositions
already recorded in the database as part of a reported N-glycome (272 blue points) while virtual nodes created to preserve the connectivity of a graph
(113 orange points) are less frequent. The exceptional case of the human low affinity immunoglobulin gamma Fc region receptor III-A that produced five
outliers is discussed in the text.
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almost 12% of the total size in some cases, while a stable decline is
clearly shown with the increase of size. This supports the assumption
that the consistency of glycome data in GlyConnect is likely to
improve with increasing the content of the database. The trend is
also reinforced with the similar counts obtained considering tissue
glycomes which produced lower numbers since tissue glycome
networks are significantly larger than that of proteins. Frequently
studied fluids such as blood serum and urine produce networks of two
to three hundred of nodes (backed by many dozens of publications)
while the glycomes of frequently studied proteins such as
serotransferrin or uromodulin are mapped in smaller networks.
For this reason, the following continues with protein N-glycomes
where the contribution of virtual nodes is more pronounced.

In line with the numbers of Table 5; Figure 2 shows that the
majority of virtual nodes added to protein networks already exist in
the database, such that the plots of the distribution of all virtual
nodes and that of existing ones are identical. Figure 2 also highlights
that smaller networks need more virtual nodes. The highest ratio
(upper left side of the plot) is a the CD5 N-glycome composed of
three glycans whose compositions differ from one another by two
monosaccharides. The introduction of four virtual nodes is
necessary to connect the three reported structures. The five
outliers (orange points in Figure 2) correspond to the same

protein, the human low affinity immunoglobulin gamma Fc
region receptor III-A (P08637) described in two published
references (the multiplicity was due to a software bug that is now
fixed and the five entries are merged into one in current release of the
database). Out of the 23 virtual nodes needed to connect the
70 compositions of the human low affinity immunoglobulin
gamma Fc region receptor III-A, 13 were created (~56%).
Supplementary Figure S2 shows the graph with unlabelled virtual
nodes that are in fact connecting compositions described in only one
of the two references. The unusually large compositions reported
(H11N10F1S4 and H12N11F1S4) probably explain the unlikelihood
of the existence of intermediary nodes such as H10N10F1S4 or
H12N10F1S4.

The frequency of the twenty most frequent created and existing
virtual nodes is detailed in Table 6. These figures are reported for
protein N-glycomes, where the Occurrence column indicates the
number of protein networks having the virtual node cited in the
Node column. The presence of these nodes in networks was
scrutinised in relation to meta-data (species, tissue, disease state,
etc), as detailed in the following sections.

3.6.2 Created virtual nodes
The logical rules for inserting virtual nodes in the initial and

current version of Compozitor are simplistic and do not rely on
glycobiology knowledge. That is why some unrealistic nodes are
generated such as H6N2S1 because in most cases, the outcome of the
computation is not one virtual node, but two (see Section 2.2).
H6N2S1 and H6N3 are both at a distance of one residue from the
target node H6N3S1 starting with H6N2. Compozitor generates two
options based on the presence of H6N2 (Man6) and H6N3S1 that
need two monosaccharides to be connected. Logically, the
alternative is either H6N2S1 or H6N3 as intermediary steps.
Biologically, H6N2S1 is absurd since a sialic acid cannot be
added on Man6. In contrast, H6N3 is a valid intermediary
composition, potentially a bisecting GlcNAc, but most likely on a
path to a hybrid N-glycan including a galactose on which the sialic
acid can be added. Note that H6N3 is listed in Table 6 as a common
virtual node in the Existing section. In the end, H6N2S1 present in
45 glycomes across the N-Linked protein dataset, systematically
appears as an alternative to H6N3 and can be dismissed as an absurd
option. In the next version of Compozitor an exclusion rule will be
added to prevent the occurrence of H6N2S1. It will apply to
H5N2S1, the second most common created virtual node raising
the same issue.

Another rule of precedence was uncovered by examining the virtual
node H7N5F1S3 created to connect H6N5F1S3 and H7N6F1S3 as an
alternative to virtual but existing H6N6F1S3. This situation is illustrated
in Figure 3 showing the corresponding excerpt of the graph for the
human integrin alpha-5/beta-1 complex (P08648 + P05556). Figure 3
also reflects GlyConnect content where compositions are associated
with structures reported on the human integrin alpha-5/beta-1 complex
in published work. The path that begins with a tri-antennary
(H6N5F1S3) to end with a tetra-antennary (H7N6F1S3) is
interrupted, but Compozitor proposes to create a H7N5F1S3 node
or to map an existing H6N6F1S3 node (7 optional structures in
GlyConnect) as virtual nodes to bridge the gap. It appears in this
case that a +N followed by a +H is more likely to reflect the real
underlying enzymatic chain of events at play in the formation of the

TABLE 6 Top 20 most frequent existing and created virtual nodes in protein
N-glycomes.

Existing (272) Created (113)

Node Occurrence Node Occurrence

H5N3 104 H6N2S1 45

H4N2 83 H5N2S1 29

H5N5S2 82 H7N5F1S3 14

H6N4S2 81 H4N2F1S1 10

H6N3 70 H6N4F4 9

H7N2 64 H8N6F1S2 7

H6N4 60 H3N5S2 7

H5N5F1S1 57 H5N5S3 7

H6N2 56 H5N5F4 7

H5N4F2 51 H4N8F1 6

H5N5 50 H8N6F1S4 6

H6N4F1S1 49 H10N8F1S4 6

H6N4S1 46 H8N8S1 6

H6N4F1 44 H9N9F1S4 6

H5N4F1S1 42 H4N4S1G1 5

H4N3F1 38 H11N9F1S4 5

H6N4F1S2 36 H4N4F1S2 5

H6N6 35 H10N10F1S4 5

H6N5S1 35 H5N3F4 4

H5N4F2S1 35 H7N7S1 3
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H7N6F1S3 tetra-antennary composition. Considering the associated
structures shown in Figure 3, the GlcNAc residue is indeed needed
before the galactose. This justifies the dismissal of H7N5F1S3 that is
present in 13 other graphs with the same alternate path involving
H6N6F1S3.

Other virtual node creation is more convoluted and seems to
generally involve inappropriate connections. The case of H3N5S2 is
somehow illustrative. H3N5S2 springs from H3N4S2 and a thorough
examination of reports that support refined structures for
H3N4S2 revealed a mistake (that will be corrected in the next
release of GlyConnect), making this composition dubious as an
N-glycan. Several examples of paths stemming from H3N4S2 are
shown in Figure 4. Roughly speaking, two situations are observed.
In many networks, H3N4S2 is a root, meaning that it is not connected
to a smaller composition and only connects to larger ones (orange paths
only in Compozitor). The path can stop a few steps later as in the
human Complement 4A (P0C0L4), at H5N4F1S2 or extend much
further up toH7N6S1F3 in human Biglycan (P21810). In all cases, these
paths go through H5N4S2, a composition that is very frequent in
humanN-glycomes (for example,matchingGlyTouCan IDG84467IZ).
The issue in linking H3N4S2 with H5N4S2 is that the corresponding
paths contain many improbable nodes including H3N5S2 (created
virtual), while H5N4S2 should in fact, only be reachable fromH5N4S1.

WhenH3N4S2 is not a root (orange and cyan paths in Compozitor,
i.e., links in and out), it stems from H3N4S1 that is associated with a
sialylated LacdiNAc motif on one branch only. Complex N-glycan

structure synthesis may diverge from H3N4 onward to accommodate
the extension of one (for example, GlyTouCan ID G85085RX) or two
branches (for example, GlyTouCan ID G39213VZ), as shown in
Figure 4. It is then suspected that the theoretically valid extension of
these structures towardH3N4S2 is likely to be a source of overlinking in
the network, which is built on logical and not biological rules. As the
main criterion for Compozitor is to maximise connectivity, some links
may not make biological sense. These situations will be reviewed to
define new rules in a future version of Compozitor.

Finally, the case of connecting compositions with more than three
fucoslyations is difficult to interpret with the current data in GlyConnect.
Hyperfucosylated structures are sparse and corresponding to
compositions that are often disconnected in Compozitor graphs.
However, these compositions are included in glycoproteomics
software and often enough mapped in experimental results. This, in
turn, overpopulates compositional data in GlyConnect while higher
resolution structures are still missing. Such an imbalance raises more
questions than it answers. The creation of virtual nodes is then almost
impossible to argue and the only solution is to wait for more
hyperfucosylated structures to be solved and integrated in GlyConnect
to draw stronger conclusions from networks where they occur.

3.6.3 Existing virtual nodes
Regarding existing compositions missing in networks and filled

by virtual nodes, the examination of corresponding mass spectra
appears as the main means of justification for including these nodes.

FIGURE 3
Excerpt of the Compozitor graph of the human integrin alpha-5/beta-1 complex (P08648 + P05556) showing the unlikelihood of the existence of
H7N5F1S3 that is not ever reported in GlyConnect while H6N6F1S3 is present in seven other protein N-glycomes. The addition of an hexosamine prior to
that of an hexose on H6N5F1S3 is a more likely enzymatic event, which makes sense considering the structures associated with the compositions.
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Previous interaction with researchers running MS experiments has
led to identify some structures missed in the report but present at
trace levels, thereby justifying the introduction of virtual nodes
(personal communication: Katherine Wongtrakul-Kish). Another
option for assessing the plausibility of virtual nodes is glycome
comparison and this was a side purpose of work described in the
previous section.

Nonetheless, the very frequentlymissed compositionswere examined
with the purpose of interpreting the observed figures of Table 6. The path
that generates oligomannose structures is often incomplete in the
majority of glycomes stored in GlyConnect. Glycoproteomics software
usually offers the range fromMan5 toMan10, possibly up toMan12 and
virtual nodes often bridge gaps in this continuous and linear path. It is
therefore consistent withH6N2 andH7N2 featuring in the top twenty, as
well as H8N2. H4N2 is high in the list potentially as a precursor in this
context. Other frequent existing virtual nodes tend to correspond to
intermediary compositions as illustrated in Figure 5. The top listed
H5N3 and H6N3 are very often reported in the literature in
association with multiple species and multiple tissue sources. The
most defined structures matching these compositions in GlyConnect,
are shown in the figure with their GlyTouCan accession numbers. These
may correspond to intermediary/incomplete structures not abundant
enough to be identified.

The case of H6N4S2 is remarkable in that it is not observed
elsewhere than human, in much fewer samples and with clearly

distinct structure templates (bi-antennary vs. tri-antennary). In
GlyConnect, H5N5S2 is not associated with an alternative to the
bisecting structure shown. However, it may also be an intermediary
stage to a tri-antennary structure. The virtual status of the latter two
cases and the other close compositions listed in Table 6 is difficult to
explain with the current protein glycome data.

3.7 Use cases

Recall that nodes with associated structures in the GlyConnect
database are considered as more reliable than purely compositional
nodes mostly derived from high-throughput glycoproteomics studies.
The following now highlights the use of biological knowledge (meta-
data) associated with nodes. In each case, the information brought by
the different similarity measures is discussed.

3.7.1 Large network comparison
Large networks are best assessed with the cosine similarity of

node properties as well as link cosine similarity. These can be
combined with network density that is expected to perform well
with a more tightly connected network. This is illustrated with an
example of human protein N-glycomes comprising between 45 and
85 nodes. Figure 6 shows the comparable glycan property
distributions as output by Compozitor for four protein

FIGURE 4
Excerpts of three protein N-glycomes shown in Compozitor where H3N4S2 occurs (red ellipses). When H3N4S2 is a root, it cannot be reached from
other nodes (strictly orange paths linking out). In that case, paths go through H5N4S2, a composition that is very frequent in human N-glycomes (shown
here as G84467IZ) but more likely to be reached from H5N4S1. These observations cast doubt on the existence of H3N4S2.When H3N4S2 can be
reached from a smaller composition (cyan paths linking in), typically H3N4 but given the associated structures (G85085RX and G39213VZ),
disialylation appears as an unlikely event.
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N-glycomes in the A panel and five in the B panel. The full details of
similarity score calculations for the pairwise comparisons are
provided in Supplementary Tables S3, S4. The values for network

density are all very close to 1 and similarity values computed from
networks with and without virtual nodes emphasise that the
inclusion of virtual nodes tends to enhance similarity.

FIGURE 5
Structures (displayed in the SNFG notation along with their GlyTouCan ID) and biological context details associated with four frequently missed
compositions shown in Table 6.

FIGURE 6
Bar plots of glycan properties in large N-glycomes (45 ≤#nodes ≤85) of selected human proteins expressed in the same tissues (blood serum as red
drop and milk as white drop). The number of supporting publications is indicated for each protein. Panel (A) shows N-glycomes with dominant
fucosylated and sialylated glycans. Panel (B) shows N-glycomes with dominant fucosylated and neutral glycans. In each case, N-glycome pairs share high
node cosine similarity and network density ratios.
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Figure 6 also specifies the number of citations/references
supporting the glycome data, as well as the common tissues glycans
were identified in, especially in large-scale studies of blood serum (red
drop) and milk/mammary gland (white drop). As pointed out in
Section 3.6, the support of published articles reflecting different
types of experimental results increases the reliability/stability of
glycome data. Moreover, expression in the same tissue is key to
comparison. The distributions of the two panels are distinctive with
a dominant fucosylation in both but co-occurring with sialylation in 1)
as opposed to neutrality in 2). However, the low node Jaccard Index
reveals the poor overlap of compositions across each glycome network
pair. The similarity between these N-glycomes does not match the
initial criteria stated in 2.1.2 for selecting positive examples yet, the
closeness detected by cosine similarity at the level of glycan properties
appears as an appropriate indicator of proximity.

3.7.2 Noise created by large-scale studies
Several references integrated in GlyConnect correspond to high-

throughput glycoproteomics experiments leading to the identification of
hundreds of intact glycoproteins. However, in each case, the presence of
false positives is likely and reflects the uneven performance of
identification software as evaluated recently (Kawahara et al., 2021).

This point is illustrated in Figure 7 where theN-glycomes of three human
proteins are shown to perfectly overlap. These proteins are otherwise not
described in other studies, i.e., no other reference supports the reported
glycosylation events. The perfect overlap is somehow suspicious mostly
because of the peculiarity of some compositions. To begin with, the two
unconnected nodes correspond to compositions that are included in the
default list of most glycoproteomics analysis software but the matching
structures have only been solved in chicken (Gallus gallus) so far. Of
course, this may change over time. Furthermore, H5N4 (shown tomatch
a frequent N-linked whose “generic” frequent structure is mapped in
Figure 7) is in each protein, multiply fucosylated while the singly
fucosylated state is missed in all cases. These compositions are often
seen in human immunoglobulins, therefore their existence in human
cannot be doubted. Finally, H6N3S1 and H6N4S1 both match hybrid
N-glycans possibly found in human milk or blood serum, yet their exact
co-occurrences in three proteins is remarkable since they are less
frequently observed in N-glycomes.

From the protein viewpoint, if laminin subunit alpha-1 and
band 4.1-like protein 3 are potentially glycosylated, it is less likely to
be the case for a microtubule-associated protein 10 that is located in
the cytoskeleton. These accumulated inconsistencies cast strong
doubt on the reality of the perfectly matching glycomes shown in

FIGURE 7
Perfect N-glycome overlap for three human proteins exclusively identified in high throughput glycoproteomics studies. These N-glycomes score
the best similarity with all methods but the biological significance is difficult to argue for many reasons among which the fact that a microtubule
associated protein is unlikely to be glycosylated and that fucosylated glycans have no precursor with only one fucose. H5N4 is the root of the graph and
the generic structure associated with this composition is shown in SNFG with its GlyTouCan ID. Captions specify the existence of solved structures
matching the shown compositions and the species in which they have been found according to GlyConnect.
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Figure 7. Nonetheless, Supplementary Table S5 displays the optimal
values of all similarity scores, thereby confirming their relevance
when N-glycomes are perfectly aligned. In this case, similarity
measures serve to detect likely false positives in high-throughput
glycoproteomics experiments.

3.7.3 Uncharacterised proteins
GlyConnect was developed as a “next-generation” GlycoSuiteDB

(Cooper et al., 2003), the first database in which information on intact
glycoproteins was collected and curated. As such, GlyConnect contains
old entries of GlycoSuiteDB based on many decades-old publications.

FIGURE 8
Compozitor output of the comparison of the N-glycomes of an uncharacterised protein from human blood serum (blue nodes) with human
immunoglobulin alpha 2 - P01877 (red nodes). Magenta nodes represent the 23 shared nodes which represent 95% of the uncharacterised protein. See
Section 2.1.3 for a detailed description of a Compozitor output, especially regarding node colour, label and size.

FIGURE 9
The N-glycomes of homologous proteins in distinct species are (A) radically different for leucyl-cystinyl aminopeptidase in human and mouse
expressed in different tissues or (B) very comparable for alpha-1-acid glycoprotein in cow and dog both expressed in blood serum.
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Some of the experiments undertaken in the 1970s and 1980s did not
benefit from state-of-the-art technology for precisely identifying intact
glycoproteins.When the latter could not be specified, they were listed as
uncharacterised and of course not associated with a UniProt accession
number. Cosine similarity combined with node Jaccard Index have
helped associate a few uncharacterised proteins with likely defined
proteins. An example is provided in Figure 8 that shows the comparison
of the 24 glycans forming the N-glycome of an unknown human
protein found in blood serum reported in one publication, matching
23 out of 73 reported glycans of human immunoglobulin alpha 2
(P01877) collected in 12 publications and stored in GlyConnect. In
other words, only 1 node (H6N5F1S3) which is terminal in the network,
is identified in the uncharacterized protein but not in human
immunoglobulin alpha 2. This 95% overlap in N-glycome content is
a strong evidence of the human protein found in blood serum
presumably being immunoglobulin alpha 2.

3.7.4 Cross-species comparison
According to GlyConnect records, leucyl-cystinyl

aminopeptidase was identified as being glycosylated in two
independent large-scale studies involving two distinct tissues,
mammary gland and brain, in two distinct species, human
(Q9UIQ6) and mouse (Q8C129), respectively. Figure 9 panel A
highlights the totally different glycosylation patterns. The glycan
property distribution could not be more opposed and the graphs are
perfectly disjoint. Node Jaccard Index is obviously a good measure
for such a negative example of 100 percent non-overlapping
glycomes (see Supplementary Table S6 for details of similarity
scores). In contrast, Figure 9 panel B reflects the close
glycosylation patterns of alpha-1-acid glycoprotein shared by cow
(Q3SZR3) and dog (F6Y713), in blood serum. More glycans are
reported in the cow with two published references, than in the dog
with only one reference, but the latter are all included in the former.
Node Jaccard Index is still insufficient, Link Cosine with virtual
nodes is better but clearly Node Cosine (glycan properties) including
virtual nodes performs best (see Supplementary Table S6 for details).
These examples highlight the variety of cases when the glycomes of
orthologous proteins are compared and therefore the challenge of
drawing conclusions automatically.

4 Discussion

Automated glycome comparison is challenged by the heterogeneity,
the scarcity and the imbalance of the data available. First, any
automation depends on the analysis of a critical mass of data. Over
the past decades, published work have created a bias toward
N-glycosylation in collectable datasets, making this subset more
amenable to analysis. Actually, this situation is due to technical
reasons and does not necessarily reflect the reality of biology.
Second, other data biases arise from both technological and
biological interests. For instance, a lot of data on immunoglobulin
glycosylation have accumulated, given the stakes involved in developing
technology, usually high-throughput, with these proteins in medical
research. Third, glycoproteomics complements glycomics and resulting
data may be difficult to reconcile as compositions and site mapping on
the one hand, are not always straightforwardly related to partially or
fully defined structures with a loose link with proteins, on the other

hand. Fourth, high throughput glyco-technology relies on not yet
optimised software and this, in turn, introduces noise in collected
glycome information.

Even though, glycome comparison is considered here in its
simplest form, i.e., considering low resolution compositional data,
limiting to curated N-glycosylation data and ignoring–though
admittedly rare–quantitative data, the present study emphasises
the existence of trends and confirms N-glycome comparability.
Finding support for this statement was an underlying goal of the
present study. Nonetheless, studying glycan property distributions is
a step towards dealing with a form of quantification, especially when
site information is known. In several instances, micro-heterogeneity
depicted as proportions of glycan cores has proven an informative
approach [see, for example, (Watanabe et al., 2018)].

The connectivity of protein N-glycome networks built from glycan
compositions is information-rich, yet not fully consistent. The
introduction of virtual nodes is a means of improving consistency but
it is not sufficient. Other tests to assess consistency, for example, based on
estimating classical network analysis parameters (e.g., measuring node
centrality) were carried out but did not produce interpretable results. So
far, a glycan property-inspired measure such as a profile remains the
most direct means of making sense of glycome data.

A clear consequence of the imbalance in knowledge of
N-glycosylation events is the heterogeneity of glycome sizes and
therefore corresponding network sizes. With the current data, it
appears that the appropriateness of a similarity measure depends
on the network size. Establishing such relationship was out of the
scope of the present study but first indications support the pre-
grouping of data according to glycome size. The examination of the
performance of the various similarity scores proposed, also shows that
those could be combined to strengthen similarity detected with one
particular score. This particularly applies to larger glycomes. The
current score definitions are mainly producing values between 0 and
1, making the combination easy enough to achieve. The next step is
definitely a more systematic approach for combining scores and the
preliminary partitioning of data just mentioned above would also
enable the use of learning methods to generate a more robust scoring
scheme. This is somehow challenged by the sparsity of data (Bojar and
Lisacek, 2022). Another consequence of sparse data is illustrated by
not handling the similarity of O-glycomes. With the same set-up and
smaller datasets, preliminary results with O-glycans were obtained
and reveal comparable trends. These observations emphasise the
crucial need for more data. Larger datasets will level comparison
and eliminate some, if not many, virtual nodes since it was established
that the smaller the network, the higher the dependency to virtual
node introduction. Nonetheless, the customisation of a glycan
composition dataset remains key to analysing results of a
glycoproteomics experiment. Compozitor was also designed with
the concern of tailoring a composition list to feed an identification
software. Exploring the similarity of glycomes is yet another way to
investigate the consistency of a composition dataset.

5 Conclusion

The investigation of protein and tissue N-glycome content as
represented in the GlyConnect database was proposed as a first step
in assessing the worth and feasibility of automated comparison. The
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careful examination of similar protein N-glycomes considered not as
a list of glycans but as a network of related compositions, led to
identify strengths and weaknesses of the Compozitor software that
builds the networks, in the context of similarity interpretation. The
study was originally designed to provide a Compozitor user with the
option of discovering how unique or common a glycome network is.
This feature will be implemented in the future and should enhance
the tailor-making of a composition dataset for glycopeptide
identification. Furthermore, the screening of virtual nodes used
to increase the connectivity of networks as well as the detection
of dubious patterns in results of large-scale studies, reveals
underlying information useful for improving network building
and refinement. This is of course not limited to processing with
Compozitor whose usage only exposes issues. As glycomes are
usually compared manually in differential analysis, without
generic tools the resulting work will remain in publications. Even
manually, cross-comparison is challenging mostly because different
sets of features are used from one study to the other. The lack of
formal agreement on the selection of glycome properties hampers
the development of tools to proceed faster and consistently. With
this article, we have raised some key questions and their answers
should ease automation in the long run.
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