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The integration of mathematical modelling in different scientific domains has
increased dramatically in recent years. In general, modelling involves using
programming languages, manipulating matrices, designing algorithms, and
tracking functions and data to gain new insights and more quantitative and
qualitative information about systems. These strategies have motivated
researchers to investigate numerous approaches to accurately solve a variety
of problems. In this direction, modelling and simulation have been used to create
sensitive and focused detection methods for a variety of applications, including
environmental control. New pollutants, including pesticides, heavy metals, and
medications, are endangering wildlife by poisoning water supplies. As a result,
numerous biosensors that use modelling for effective environmental monitoring
have been documented in the literature. The most current model-inspired
biosensors used for environmental monitoring will be discussed in this review
study. Additionally, each analytical biosensor’s capabilities and degree of success
will be discussed. Finally, present difficulties in this area will be highlighted.
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1 Introduction

Due to the harmful impacts of pollutants on ecosystems and human health,
environmental monitoring is one of the global issues that is becoming more and more
of a worry (Justino et al., 2015). Unfortunately, the majority of these pollutants have a long
half-life, high toxicity, and are non-biodegradable, which increases the risk to living things by
causing bioaccumulation (Bonanno and Giudice, 2010; Teniou et al., 2021). Therefore,
mitigating the harmful impacts of these toxins requires constant environmental monitoring.
For the past few decades, heavy metals have been a significant contributor to environmental
degradation (Majumdar et al., 2008). The food chain incorporates heavy metals, which then
participate in bioaccumulation and biomagnification (Volesky and Naja, 2007). Long-term
exposure to the heavy metals can result in cancer, organ failure, nervous system impairment,
and, in severe cases, even death. Therefore, the bulk of environmental protection authorities
worldwide are quite concerned with heavy metal removal (Abdel Baki et al., 2011).
According to reports, the biological elimination of heavy metals is a safe, effective, and
risk-free method. The approach can be used to treat drinking water since it is more effective
at removing heavy metals from diluted solutions than other methods. Additionally,
biosorbents are easily regenerative and versatile (Wang and Chen, 2009).
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Over the past 10 years, artificial intelligence (AI) has advanced
significantly in a wide range of applications. It has been applied to
address challenging, non-linear, and dynamic issues. Additionally,
modelling, prediction, simulation, and optimization at high speed is
thought of as an alternative to conventional techniques or as a part of
integrated systems (Teniou et al., 2021). Analytical chemistry uses
chemometric procedures frequently, particularly in environmental
investigations, demonstrating the effectiveness of data processing
methods in this area. Chemometric approaches are one of the AI-
based advanced analysis techniques that are frequently employed in
analytical chemistry, particularly in environmental investigations,
demonstrating the effectiveness of data processing methods in
this area.

The main areas of interest in chemometric environmental
studies are quantitative chemical analysis, environmental quality
assessment monitoring, modelling, and the prediction of
toxicological consequences (Gros et al., 2006). Chemometric
techniques are widely employed in environmental monitoring
because they make it possible to identify and describe how
different environmental elements interact. They also make clear
how these factors might affect the environment (Chapman et al.,
2020). Analysis by Principal Components PCA provides the
foundation for many other chemometric techniques and is
thought to be the most effective and well-liked one. This strategy
is an exploratory data analysis using a multivariate statistical method
(Teniou et al., 2021).

2 Emerging contaminants and sources

In recent years, it has become well known that wastewater,
groundwater, and surface waters can contain emerging
contaminants (ECs), such as pesticides, personal care products,
x-ray contrast media, endocrine disruptors, and medications
(Naidu et al., 2016; Wilson and Aqeel-Ashraf, 2018; Rasheed
et al., 2019; Keerthanan et al., 2021). Disruptive endocrine
chemicals (EDCs) are one class of EC that has drawn a lot of
attention recently. EDCs are “an exogenous (non-natural) chemical,
or a mixture of chemicals, that interferes with any aspect of hormone
action,” according to the Endocrine Society. These substances alter
the body’s hormonal balance through a variety of mechanisms,
including hormone production disruption, hormone mimicry,
hormone receptor development, hormone antagonist activity, and
hormone binding modification.

EDCs are a diverse class of molecules known as “endocrine
disruptors” that have been shown to have physiological activity.
Through a variety of pathways, including point sources
(including municipal sewage, industrial wastewaters, and
landfills) and non-point sources (such as landfills), EDCs
accumulate in the environment, particularly in waters (for
example, agricultural runoff and underground
contamination). There have been reports of ECs in
wastewater, groundwater, and surface water. Only a small
number have, however, been found in the natural world.
Volatilization, photolysis, biodegradation, sorption, or a
combined action of these processes usually results in a
higher concentration of these substances at the outflow of
wastewater and sewage treatment plants.

When measured in surface waters, on the other hand, it is
usually lower because of volatilization, sorption, biodegradation,
photolysis, or a combined action of these processes (Gurr and
Reinhard, 2006). whereas effluents from wastewater treatment
plants are typically discharged into surface waters. The
amplitudes and concentration levels measured in surface waters
are generally much higher than in groundwaters since residence
times for surface water are shorter than groundwater (Barnes et al.,
2008). The characteristics of the substance present are influenced by
the source of the ECs. Additionally, physicochemical properties and
environmental factors like altitude, latitude, organic matter content,
pH, polarity, precipitation, water solubility, temperature, and
volatility affect the transport and conversion of ECs. When
estimating an EC’s lifespan in the environment, these factors
must be taken into account. There are many different EC
sources, both in terms of quantity and type. The two main
categories are point and diffuse pollution sources (Lapworth
et al., 2012).

According to Edelstein and Ben-Hur (2018), heavy metals
(HMs) are a class of metals and metalloids distinguished by their
high density (greater than 4,000 kg/m3) and high toxicity, even at
low concentrations. This group of emerging pollutants includes
cadmium (Cd), lead (Pb), mercury (Hg), and arsenic (As). Other
trace elements that are regarded as heavy metals include copper
(Cu), selenium (Se), and zinc (Zn) (Pandey andMadhuri, 2014). The
majority of heavy metals are created during industrial activities such
as automobiles, electroplating, industrial processing, mining,
organic chemicals, pharmaceuticals, and other industrial
wastewater processes (Huang et al., 2007).

By binding to particular proteins and enzymes to form “free
radicals,” heavy metals disrupt the body’s systems and inhibit the
absorption of nutritional minerals by competing with them.
Therefore, HMs have the ability to change certain metabolic
processes, cellular processes, and other substances that are vital
to preserving the equilibrium of the organism (Sharaf, 2019). Heavy
metals are mutagenic, carcinogenic, and immunosuppressive when
exposed repeatedly. The kidneys, reproductive, nervous, and
immune systems are all impacted by high levels of Pb (Cîrtînă
et al., 2019). Heavy metal pollution is a serious issue for farming soil
pollution and product quality because it causes plants to grow in
ways that are not natural (Edelstein and Ben-Hur, 2018).

It has been demonstrated that oxidative stress and reactive
oxygen species are mainly produced by the high concentrations
of Cu in plants (Filetti et al., 2018). A significant rate of Pb in soil has
also been associated with the altered morphology of different plant
species (Kushwaha et al., 2018). Liberation of heavy metals into
aquatic systems may result in various physical, chemical, and
biological processes (Guo et al., 2018). For example, shifts in
physical conditions could affect the pH of the water, the organic
content of the substrate, and the size of the water’s particles, which
would have an impact on plants by lowering species diversity and
densities (Teniou et al., 2021).

3 Source of heavy metals

Heavy metals can be found in our environment from a number
of different sources, including 1) household waste; 2) industrial
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sources; 3) agricultural sources; 4) power plants; 5) electronic waste;
6) mining; 7) natural resources; and 8) other resources. In Scheme 1,
the sources of heavy metals are represented schematically. Many of
the categories discussed below may be debatable when it comes to
separating the source and treatment of heavy metal pollution;
however, some categories, like the remains of manufacturing
facilities and mines, could undoubtedly be combined within a
larger industrial section. Therefore, even though they are part of
a larger whole, we do want to emphasize that we have tried to
address each issue in a specific way.

3.1 Simulation-based approach towards
treatment of emerging contaminants

3.1.1 Heavy metal analysis based on chemometrics
In order to obtain reliable results on the presence of HMs in soil

and food, research in these areas requires not only cutting-edge
analytical techniques with high levels of sensitivity, specificity, and
accuracy but also sophisticated statistical techniques that give an
overall picture of the problem at hand. For some matrices of
complex data, multivariate statistical techniques are the best tool
for viewing and analysis. We can infer how specific variables (metal
concentration, other soil or plant parameters) that characterize
objects (soil, plants) determine their association by using
Principal Component Analysis (PCA) and cluster analysis (CA),
two unsupervised methods. The PCA method estimates the
correlation structure of the variables by identifying hypothetical
new variables (principal components, PC) that account for as much
as possible of the variance (or correlation) in a multidimensional
data set if the CA method is used for sample grouping the original
variables.

The original variables have been linearly combined to create
these new variables (Nayik and Nanda, 2016). With the aid of this
technique, we can group samples (soil or vegetable species) and
variables (such as heavy metal concentrations or even other soil or
plant parameters) based on loadings and scores. The chemometric
technique PCA was used to comprehend the intricate relationship
between soil or plant samples and the contents of heavy metals. It is
founded on the covariance or correlation matrix’s eigen analysis.
Each variable has a loading that indicates how well the model
components are taking that variable into account. They serve to
interpret the relationship between the variables by demonstrating
how significantly each variable contributes to the meaningful
variation (or correlation) in the data.

The size of a variable’s residual variance in a PC model serves as
an indicator for that variable’s significance. This is helpful for the
variable selection process because it allows the removal of a variable
with very little explained variance without making further
adjustments to the PC model. The rule for multiple regressions
that the number of variables must be less than the number of objects
does not apply in PCA cases, so there is no restriction on the number
of variables. PCA can be used to reduce the data set to only two
variables in order to simplify plotting (the first two components).

Chemometrics has developed into a crucial tool for sample
classification and pollution source identification through the use
of various environmental techniques. The application can reveal
intricate relationships in the field of environmental science and

lower the sample collection and analysis costs (Chuan et al., 2022).
In order to further clarify the source of metals, the raw data for
sediment particle size, percentage of total organic carbon, and metal
concentration were computed using principal component analysis.
A method for reducing the multivariate problem dimensions is
Principal Component Analysis (PCA) (Iwamori et al., 2017). By
removing the data dimensions, this analysis defines the correlation
of the variable’s principal components (PCs), which is very similar to
the correlation or regression analysis method. Due to its significant
reduction in the number of variables and ability to identify structure
in the relationships between various variables, PCA is frequently
used by researchers in a variety of fields. The following equation can
be used to generate the PCs for variables:

zij � ai1x1j + ai2x2j + ai3x3j + . . . + ainxnj (1)

Analytical chemistry uses chemometric approaches frequently,
particularly in environmental studies, demonstrating the
effectiveness of data processing methods in this area. The main
areas of interest in chemometric approaches are modelling,
quantitative chemical analysis, prediction of toxicological effects,
and environmental quality assessment monitoring (Otto, 2016;
Teniou et al., 2021). Chemometric techniques are widely used in
environmental monitoring because they make it possible to identify
and describe how different environmental factors interact. They also
make clear how these factors might affect the environment
(Chapman et al., 2020).

To gain a deeper understanding of trace metal patterns, a
chemometric approach was often applied. Both inductively
coupled plasma atomic emission spectrometry and flame atomic
absorption and emission spectrometry were used to examine the
concentrations of Cu, Zn, Mn, Fe, K, Ca, Mg, Al, Ba, and B in
26 herbal drugs. A PCA was then used to emphasize the connection
between the elements. Four important factors were found, and some
of them were attributed to important influencing sources and the
high mobility of some elements, which also alluded to possible
anthropogenic contamination. Chemometric techniques come in a
variety of forms, including cluster analysis (CA), principal
component analysis (PCA), linear discriminant analysis (LDA),
partial least squares regression (PLSR), random forest (RF), etc.
These methods are classified as either supervised or unsupervised
(Teniou et al., 2021).

To rapidly categorize freshwater bacteria that have been exposed
to heavy metals, chemometric approaches are also used.
Chemometric analysis was used by Sajdak and Pieszko (2012) to
determine the concentration of heavy metals like Cd, Cu, Fe, Mn, Ni,
Pb, and Zn. The relationship between element quantity, matrix type,
and sampling location has been identified based on the
concentration assessment, and it has been confirmed and
described that definite element group co-existence exists.
Kurniawan et al., 2022 reported biosorption of heavy metals from
aqueous solutions using Aeromasss hydrophyla, and Branhamella
spp. based on modelling with GEOCHEM.

3.1.2 Environmental monitoring based on artificial
neural networks (ANNs)

A neuron is a type of cell that uses biochemical processes to
receive, manage, process, and transmit information. More than
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10 billion interconnected neurons make up the human brain’s
network (Teniou et al., 2021). Artificial neural networks (ANNs)
were first developed as computational models of the nervous system.
Neural networks were created as a result of McCulloh and Pitts’
initial use of simplified neurons (Teniou et al., 2021). ANNs are
computer programs with biological influences that try to imitate
how the human brain processes information. According to Hassani
et al. (2016), they are viewed as a potential modelling technique,
particularly for data sets with complex non-linear relationships
between dependent and independent variables.

In contrast to other techniques that perform specific tasks
through simple computer implementation (Zurada, 1992), ANNs
are trained through the use of experience-based knowledge as
inputs. Following training, new patterns can be applied directly
to specific tasks like prediction and classification without the need
for programming. Although a single neuron is capable of carrying
out basic information processing, the main benefit of ANNs, which
makes them a potent computational tool, is the ability to connect
neurons in a network. ANNs are easily able to recognize a wide range
of input patterns due to the billion connections between neurons
(Zurada, 1992).

ANN systems enable high-quality, quick, and high-capacity
detection, claim Ferentinos et al. (2012). They have also been
used as a potential technique for tracking and rating
environmental pollution (Ferentinos et al., 2012). A single layer
of an ANN can result in a simple neural network, while multiple
layers can result in a multilayer neural network (MNN). The
multilayer neural network is primarily used for more complex
processes, while the simple neural network is particularly well-
suited for straightforward issues (Figure 1).

According to the following expression, the mean square error
(MSE) as a percentage between the predicted and measured values
was used to assess the neural network prediction performance:

MSE � ∑n

i�0
Xpredicted − Xmeasured

∣∣∣∣
∣∣∣∣

N

2

(2)

Environmental monitoring is very difficult when it comes to
heavy metal biosensing. Environmental monitoring is greatly
hampered by the difficulty of heavy metal biosensing. The
classification of soil, pollutant infiltration properties, organic
content and macronutrient measurements, and soil
contamination prediction have all been studied using ANNs (El
Tabach et al., 2007;Wilson et al., 2015; Emamgholizadeh et al., 2017;
De Souza et al., 2020; Teniou et al., 2021). Anagu et al., 2009
developed a sorption model for estimating heavy metal sorption
from fundamental soil properties and assessing the dangers
associated with their appearance. Nine heavy metals have been
studied in this work: Cd, Cr, Cu, Mo, Ni, Pb, Sb, and Tl (Table 1).

The ANN models performed well, with modelling efficiency
(EF) ranging from 0.79 (Cr) to 0.94 and a root mean square error
(RMS) of 0.04 g/kg (Cd) to 0.1 g/kg (Cr) (Cd, Zn).
Electrochemical biosensing platforms that use different types
of electrodes have also been combined with ANNs for HM
detection in the environment. For instance, a polyvinyl
chloride (PVC) membrane-based electronic tongue approach
has been used in the quick and easy on-site monitoring of a
number of heavy metals (Mimendia et al., 2010a; Mimendia et al.,
2010b). In this case, an artificial tongue (ANNs) combined with a
membrane-selective electrode has been used to resolve a mixture
of three heavy metals (Pb2+, Cd2+, and Cu2+). For the three targets,
a limit of detection of ~1 mg/L was attained with good
reproducibility.

Furthermore, the correlation for the three ions exceeded
0.975 and was significant. Finally, when used on contaminated
soil sample analysis, this system demonstrated good prediction
capability. Even though the results are intriguing, this strategy
is only modified for three HMs. As a result, another team used
the same potentiometric e-tongue and PVC membranes using
ANNs to investigate the simultaneous detection of a mixture of
four HMs. With low root mean squared error values of 1 mmol/
L, the method was successfully used to quantify low levels of
Cu2+, Pb2+, Zn2+, and Cd2+ ions from quaternary mixtures in
rivers, open-air waste streams, and soil. Talib et al., 2019
reported the Cr removal efficiency of Acinetobacter
radioresistens and the application of Artificial Neural
Networks (ANNs) and Response Surface Methodology (RSM)
for modelling the optimization of Cr (VI) removal from
agricultural soil. Altowayti et al., 2020 reported the potential
of mixed dried biomass of three bacterial strains Bacillus
thuringiensis strain WS3, Pseudomonas stutzeri strain
WS9 and Micrococcus yunnanensis strain WS11 in the
removal of As (V) and As(III) and optimization of process
parameters using ANN model. Artificial neural networks
(ANN) were conducted by Elsayed et al., 2022 for modelling
the biosorption of Co(II) by Pseudomonas alcaliphilaNEWG-2.

Other electrodes besides PVC membranes were used in ANN-
based sensing. The simultaneous detection of EP mixtures in the
environment at the ultra-trace level appears to have been
successfully accomplished using electrochemical biosensing
technologies based on ANNs. Additionally, these systems offer a
number of benefits like high specificity, quick response times,
portability, ease of use, and low cost, making them trustworthy
EP monitoring devices (Hernandez-Vargas et al., 2018;
Honeychurch and Piano, 2018).

FIGURE 1
Representation of multi-layered Artificial Neural Network.
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TABLE 1 Summary of various simulation-based methods used for the removal of heavy metals.

S.No. Heavy metal Simulation References

1. Cd — Shi et al., 2018

— Piccirillo et al., 2013

— Cai et al., 2013

— Zhang et al., 2018

Artificial neural network Anagu et al., 2009

Mourzina et al., 2001, Mimendia et al., 2010a, Wilson et al., 2015

Mortensen et al., 2000

Kemper and Sommer (2002)

Gonzalez-Calabuig et al., 2018

Response surface methodology Jaafari and Kamyar 2019, Bhateria and Renu, 2019

Chemometric (Principle component analysis) Milojković et al., 2016, Bhateria and Renu, 2019

2 Zn — Piccirillo et al., 2013

— Zouboulis et al., 2003

Artificial neural network Anagu et al., 2009

Mourzina et al., 2001, Mimendia et al., 2010a, Wilson et al., 2015

Mortensen et al., 2000

Kemper and Sommer (2002)

Gonzalez-Calabuig et al., 2018

Ariza-Avidad et al., 2013

Chemometric (Principle component analysis) Milojković et al., 2016

3 Pb — Cui et al., 2016

— Cai et al., 2013

Artificial neural network Anagu et al., 2009

Mourzina et al., 2001, Mimendia et al., 2010a, Wilson et al., 2015

Mortensen et al., 2000

Gonzalez-Calabuig et al., 2018

Chemometric (Principle component analysis) Milojković et al., 2016

4 Cu — Zouboulis et al., 2003

— Cai et al., 2013

Artificial neural network Anagu et al., 2009

Mourzina et al., 2001, Mimendia et al., 2010a, Wilson et al., 2015

Mimendia et al., 2010a

Ariza-Avidad et al., 2013

Chemometric (Principle component analysis) Milojković et al., 2016

5 Ni — Zouboulis et al., 2003

Artificial neural network Anagu et al., 2009

Ariza-Avidad et al., 2013

Chemometric (Principle component analysis) Milojković et al., 2016

(Continued on following page)
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3.1.3 Heavy metal removal from industrial
wastewater using a response surface
methodological approach

Numerous conventional methods, including chemical
precipitation, electrochemical treatment, electrodialysis, ion
exchange, membrane filtration, reverse osmosis, and adsorption,
have been used to remove heavy metal ions from wastewater. The
adsorption method is superior to the others due to its flexibility in
design, ease of operation, and ease of handling. It is also thought to
bemore efficient and cost-effective (EPA, 1990; Ince and Ince, 2019).
However, the majority of these methods have high operational costs
for the treatment process as well as high capital costs.

Since the adsorption process’ dynamic characteristics are
intricate, ideal working conditions are necessary to achieve the
highest level of pollution removal effectiveness. To achieve the
best obtained response level, which is the value of the design
parameters, process optimization is essential. One of the most
popular techniques is the response surface methodology (RSM),
which develops, enhances, and optimizes processes, particularly
when there are complex interactions present. It is employed to
identify the optimum points of independent variables that function
optimally and to assess how these variables interact (Wantala et al.,
2012).

The fact that fewer experimental trials are needed to interpret
multiple parameters is its biggest benefit. Because of this, the RSM
optimization process consists of three main steps: 1) choosing an
appropriate experimental design; 2) estimating the model
coefficients using analysis of variance (ANOVA); and 3)

validating the final model based on experimental runs and
predictions (Myers et al., 2009; Ince and Ince, 2019). The ability
to track and interpret interactions between variables as well as
describe the overall impact of the parameters on the process
makes this experimental design method for an adsorption
process more useful than alternative methods.

The relationship between the response surface and the
independent variables is typically unknown in RSM analyses
(Suliman et al., 2017). As a result, one of the initial steps in RSM
involves locating an appropriate approximation for the true and
efficient relationship that exists between the response variable and a
set of independent variables. The central composite design is the
response surface design that many researchers favour over other
designs. The response surface designs result in a good fit of the
model to the data, give enough details to test for a lack of fit, and
provide an estimate of the error due to pure experimentation. The
experiment can be carried out in segments thanks to the design,
which reduces costs.

The effects of the control variables on the relevant outcome
variable are also described using linear, quadratic, or polynomial
functions. Utilizing particular measures and independent
variables supplied by the user, certain computer packages,
including R, Design-Expert, and JMP, are available and offer
optimal designs (Montgomery, 2017; Suliman et al., 2017).
Regarding the number of design points and blocks as well as
the experimental runs selected, each design is distinct. The model
is established during data collection, and the model’s coefficients
are hypothesized.

TABLE 1 (Continued) Summary of various simulation-based methods used for the removal of heavy metals.

S.No. Heavy metal Simulation References

6 Hg Artificial neural network Kemper and Sommer (2002)

Gonzalez-Calabuig et al., 2018

7 Cr Artificial neural network Anagu et al., 2009

Mortensen et al., 2000

Response surface methodology Jaafari and Kamyar 2019

8 Sb Artificial neural network Anagu et al., 2009

Kemper and Sommer (2002)

9 As — Jaiswal et al., 2018

Response surface methodology Jaafari and Kamyar 2019

10 Co — Yin et al., 2017

Response surface methodology Jaafari and Kamyar 2019

11 Cs — Yin et al., 2017

12 Mo Artificial neural network Anagu et al., 2009

13 Fe Artificial neural network Kemper and Sommer (2002)

Response surface methodology Jaafari and Kamyar 2019

14 Al — Boeris et al., 2018
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The RSM has been implemented effectively, and its most
significant uses have been in industrial research (Prabhakaran
et al., 2010). According to Jain et al. (2011), there have been
numerous studies, and various adsorbents have yielded different
results. Using chemically treated Helianthus annuus flowers, they
investigated the removal of Cr (VI) from aqueous solutions by using
the Box-Behnken model and a combined RSM approach. Esmaeili
and Khoshnevisan (2016) used an alginate-coated chitosan
nanoparticle to remove heavy metals from industrial effluents
(Esmaeili and Khoshnevisan, 2016). An RSM approach was taken
in order to carry out the optimization of the process of using biomass
for the removal of heavy metals from synthetic and industrial
effluents that contained nickel (Table 1).

With an RSM-based Box-Behnken experimental strategy, Ighalo
and Eletta (2020) optimized the loading of Zn (II) and Pb (II) onto
the scales ofMicropogonias undulatus. The operating factors (Ni (II)
initial concentration, adsorbent dose, and solution pH) affecting Ni
(II) removal by dried Bacillus cereus were analyzed using the RSM
based on CCD (Zhang et al., 2016). In order to optimize the
biosorption process for the removal of Zn (II), Ni (II), and Cr
(VI) ions by immobilized bacterial biomass sp. Bacillus brevis,
Kumar et al. (2009) used the response surface methodology
approach. Afraz et al., 2021, reported the potential of
Lactobacillus acidophilus for biosorption of Pb2+ and Cd2+ and
the design of experiment RSM was interpreted to acquire the
optimum condition for the independent operational factors
affecting the process. A statistical design of experiments was used
by Banerjee et al. (2016a) to optimize the As (v) biosorption by

immobilized bacterial biomass. Ibrahim et al., 2022 studied the
biosorption of heavy metals by Alcaligenes faecalis strain isolated
from soil based on optimization and simulation of process
parameters using RSM. Afolabi et al., 2021 applied response
surface methodology for the removal of heavy metals using
biosorbent. Their investigation contributed to the search for
environment-friendly and sustainable explanations towards heavy
metal-contaminated (Cu2+ and Pb2+) water bodies. The bacterial
mechanism of biosorption is shown in Figure 2. The application of
different simulation based approach towards removal of emerging
contaminants with special reference to heavy metals has been shown
in Figure 3.

Plackett-Burman and Response Surface Methodological
Approaches were used by Reddy et al. (2008) to optimize
alkaline protease production using batch cultures of Bacillus
sp. RKY3. Using a statistical design of experiments based on
RSM and BBD, Banerjee et al. (2016b) optimized the maximum
arsenate reductase production by Kocuria palustris (RJB-6) and
immobilization parameters in polymer beads. Using RSM
modelling, Djinni and Djoudi, 2022 showed enhanced Cu (II)
removal by Streptomyces sp. WR1L1S8, a powerful endophytic
marine strain.

In addition to allowing for the effective estimation of the linear
and quadratic terms of the model, Box and Behnken (Box and
Behnken, 1960) proposed a method for choosing design points from
the three-level factorial arrangement. Because of the large number of
factors, the designs are essentially more effective and economical
than their corresponding 3K designs. The BBD for three-factor

FIGURE 2
Bacterial mechanism of metal uptake.
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optimization with 13 experimental points is also shown. The
analysis of variance (ANOVA) is used to analyze the outcomes
of the experimental trial runs, and the second-order polynomial
model (Eq. 1) is used to fit the observations:

Y � β0 + Σβixi + Σβiix
2
ii + βijxixj (3)

Where Y is the anticipated response, or the biomass’s ability to
absorb pollutants, b0 is the constant coefficient, bi is the ith linear
coefficient of input factor xi, bii is the ith quadratic coefficient of
input factor xii, and bij is the various interaction coefficient between
input factors xi and xj. Fisher’s F-test for the analysis of variance
(ANOVA) is used to determine the interactions between the process
variables and response in order to assess the statistical
appropriateness and significance of the model. The second order
polynomial model equation’s quality of fit is shown by the
correlation coefficient (R2) and adjusted R2. The three-
dimensional contour plots are used to illustrate the relationship
between the experimental levels of each parameter and the resultant
response from the model (Banerjee et al., 2016b).

According to Ghoniem et al., 2020, the Box-Behnken design
matrix controlled the interactions between the independent
operational factors of initial concentration of Cu2+, initial culture
pH, and incubation times in the culture medium growth to achieve
the highest copper removal percentage by Azotobacter nigricans
NEWG-1. The data show variations in the percentage of Cu2+

removed, which ranged from 12.12% to 80.56%. These variations
suggested that the optimization process was crucial for maximizing
A. nigricans NEWG-1’s ability to remove copper. The data also
demonstrate the greatest removal of Cu2+ (80.56%).

4 Conclusion and future perspective

Heavy metals, drugs, biotoxins, and pesticides are examples of
environmental pollutants that are extremely dangerous for all
different aspects of being an organism, which would include
health, food, energy, etc. Traditional monitoring methods for
these contaminants are constrained by their poor effectiveness,

high cost, and time-intensive nature. In order to model
environmental monitoring, this paper reviewed the key
applications and recent developments in sensing strategies
incorporating artificial intelligence. AI biosensors are thought to
be an effective analytical tool for quickly and accurately identifying
one or more pollutants in challenging samples.

For in situ operations and analytical performance, there are a
few cutting-edge artificial intelligence for environmental monitoring
based on chemometrics, multivariate process optimization based on
artificial neural networks (ANN), and response surface methodology
(RSM). Therefore, creating more sophisticated and sensitive AI tools
to find pollutants presents a new challenge. And finally, AI
biosensing will offer a fresh foundation for upcoming innovation.
Additionally, significant work is needed to design dependable and
durable tools that will improve pollutant detection.

Author contributions

SS acquired resources and prepared figures. SS and AB
developed the concept. AB and SS wrote the manuscript with the
help of AG. AB and SS revised, edited and formatted the manuscript.
All authors contributed to the article and approved the submitted
version.

Acknowledgments

The authors would like to thank Sister Nivedita University for
providing the Article Processing Fee as financial support. The
authors also thank the reviewers for their contribution.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

FIGURE 3
Illustration showing the application of ANN, RSM and PCA in the removal of emerging contaminants (heavy metals) from wastewater.

Frontiers in Analytical Science frontiersin.org08

Banerjee et al. 10.3389/frans.2023.1115540

https://www.frontiersin.org/journals/analytical-science
https://www.frontiersin.org
https://doi.org/10.3389/frans.2023.1115540


Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Abdel-Baki, A. S., Dkhil, M. A., and Al-Quraishy, S. African bioaccumulation of some
heavy metals in tilapia fish relevant to their concentration in water and sediment of
Wadi Hanifah. J. Biotechnol. (2011) 10:2541–2547. doi:10.5897/AJB10.1772

Afolabi, F. O., Musonge, P., and Bakare, B. F. Application of the response surface
methodology in the removal of Cu2+ and Pb2+ from aqueous solutions using orange
peels. Sci. Afr. (2021) 13:e00931. doi:10.1016/j.sciaf.2021.e00931

Afraz, V., Younesi, H., Bolandi, M., and Hadiani, M. R. Assessment of resistance and
biosorption ability ofLactobacillus paracaseito remove lead and cadmium from aqueous
solution. Water Environ. Res. (2021) 93:1589–1599. doi:10.1002/wer.1540

Altowayti, W. A. H., Haris, S. A., Almoalemi, H., Shahir, S., Zakaria, Z., and Ibrahim,
S. The removal of arsenic species from aqueous solution by indigenous microbes: Batch
bioadsorption and artificial neural network model. Environ. Technol. Innovation (2020)
19:100830. doi:10.1016/j.eti.2020.100830

Anagu, I., Ingwersen, J., Utermann, J., and Streck, T. Estimation of heavy metal
sorption in German soils using Artificial neural networks. Geoderma (2009) 152:
104–112. doi:10.1016/j.geoderma.2009.06.004

Ariza-Avidad, M., Cuellar, M., Salinas-Castillo, A., Pegalajar, M., Vukovi´c, J., and
Capitan-Vallvey, L. Feasibility of the use of disposable optical tongue based on neural
networks for heavy metal identification and determination. Anal. Chim. Acta. (2013)
783:56–64. doi:10.1016/j.aca.2013.04.035

Banerjee, A., Sarkar, P., and Banerjee, S. Application of statistical design of
experiments for optimization of as (v) biosorption by immobilized bacterial
biomass. Ecol. Eng. (2016a) 86:13–23. doi:10.1016/j.ecoleng.2015.10.015

Banerjee, A., Banerjee, S., and Sarkar, P. Statistical design of experiments for
optimization of arsenate reductase production by Kocuria palustris (RJB-6) and
immobilization parameters in polymer beads. RSC Adv. (2016b) 6:49289–49297.
doi:10.1039/c6ra00030d

Barnes, K. K., Kolpin, D. W., Furlong, E. T., Zaugg, S. D., Meyer, M. T., and Barber, L.
B. A national reconnaissance of pharmaceuticals and other organic wastewater
contaminants in the United States — I) groundwater. Sci. Total Environ. (2008)
402:192–200. doi:10.1016/j.scitotenv.2008.04.028

Bhateria, R., and Renu, D. Optimization and statistical modelling of cadmium
biosorption process in aqueous medium by Aspergillus niger using response surface
methodology and principal component analysis. Ecol. Eng. (2019) 135:127–138. doi:10.
1016/j.ecoleng.2019.05.010

Boeris, P. S., Liffourrena, A. S., and Lucchesi, G. I. Aluminum biosorption using non-
viable biomass of Pseudomonas putida immobilized in agar–agar: Performance in batch
and in fixed-bed column. Environ. Technol. &Innovation (2018) 11:105–115. doi:10.
1016/j.eti.2018.05.003

Bonanno, G., and Giudice, R. L. Heavy metal bioaccumulation by the organs of
Phragmites australis (common reed) and their potential use as contamination
indicators. Ecol. Indic. (2010) 10:639–645. doi:10.1016/j.ecolind.2009.11.002

Box, G. E. P., and Behnken, D. W. Some new three level designs for the study of
quantitative variables. Technometrics (1960) 2:455–475. doi:10.1080/00401706.1960.
10489912

Cai, C. X., Xu, J., Deng, N. F., Dong, X. W., Tang, H., Liang, Y., et al. A novel approach
of utilization of the fungal conidia biomass to remove heavy metals from the aqueous
solution through immobilization. Sci. Rep. (2013) 6:36546. doi:10.1038/srep36546

Chapman, J., Truong, V. K., Elbourne, A., Gangadoo, S., Cheeseman, S., Rajapaksha,
P., et al. Combining chemometrics and sensors: Toward new applications in monitoring
and environmental analysis. Chem. Rev. (2020) 120:6048–6069. doi:10.1021/acs.
chemrev.9b00616

Chuan, O. M., Chuen, Y. J., Shaari, H., Bidai, J., Shazili, N. A. M., Pradit, S., et al. The
application of chemometrics in metals source of identification in Brunei Bay surface
sediment. Environ. Geochem Health (2022). doi:10.21203/rs.3.rs-2053109/v1

Cîrtînă, D., Mecu, R., and Nănescu, V. The considerations relating to the effects of toxic
substances from the environment on the organism. Romania: Constantin Brancusi”
University of Targu Jiu: Targiu Jiu (2019).

Cui, L., Meng, Q., Bi, H., Zhou, L., and Ye, Z. Simultaneous removal of Pb(II) and
chemical oxygen demand from aqueous solution using immobilized microorganisms on
polyurethane foam carrier. Korean J. Chem. Eng. (2016) 30:1729–1734. doi:10.1007/
s11814-013-0095-7

De Souza, W. M., Ribeiro, A. J., and Da Silva, C. A. Use of ANN and visual-manual
classification for prediction of soil properties for paving purposes. Int. J. Pavement Eng.
(2020) 23:1482–1490. doi:10.1080/10298436.2020.1807546

Djinni, I., and Djoudi, W. Streptomyces sp. WR1L1S8 a potent endophytic marine
strain for heavy metal resistance and copper removal enhanced by RSMmodeling. Acta
Ecol. Sin. (2022) 42:80–89. doi:10.1016/j.chnaes.2021.04.004

Edelstein, M., and Ben-Hur, M. Heavy metals and metalloids: Sources, risks and
strategies to reduce their accumulation in horticultural crops. Sci. Hortic. (2018) 234:
431–444. doi:10.1016/j.scienta.2017.12.039

El Tabach, E., Lancelot, L., Shahrour, I., and Najjar, Y. Use of artificial neural network
simulation metamodelling to assess groundwater contamination in a road project.
Math. Comput. Model. (2007) 45:766–776. doi:10.1016/j.mcm.2006.07.020

Elsayed, A., Moussa, Z., Alrdahe, S. S., Alharbi, M. M., Ghoniem, A. A., El-Khateeb, A.
Y., et al. Optimization of heavy metals biosorption via artificial neural network: A case
study of cobalt (II) sorption by Pseudomonas alcaliphila NEWG-2. Front. Microbiol.
(2022) 13:893603. doi:10.3389/fmicb.2022.893603

Emamgholizadeh, S., Shahsavani, S., and Eslami, M. A. Comparison of artificial neural
networks, geographically weighted regression and Cokriging methods for predicting the
spatial distribution of soil macronutrients (N, P, and K). Chin. Geogr. Sci. (2017) 27:
747–759. doi:10.1007/s11769-017-0906-6

Environmental Protection Agency (EPA). Environmental pollution control
alternatives. Cincinnati, US: Environmental Protection Agency (1990).EPA/625/5-
90/025, EPA/625/4-89/023.

Esmaeili, A., and Khoshnevisan, N. Optimization of process parameters for removal
of heavy metals by biomass of Cu and Co-doped alginate-coated chitosan nanoparticles.
Biores Technol. (2016) 218:650–658. doi:10.1016/j.biortech.2016.07.005

Ferentinos, K., Yialouris, C., Blouchos, P., Moschopoulou, G., Tsourou, V., and
Kintzios, S. The use of artificial neural networks as a component of a cell-based
biosensor device for the detection of pesticides. Procedia Eng. (2012) 47:989–992. doi:10.
1016/j.proeng.2012.09.313

Filetti, F. M., Vassallo, D. V., Fioresi, M., and Simões, M. R. Reactive oxygen species
impair the excitation-contraction coupling of papillary muscles after acute exposure to a
high copper concentration. Toxicol. Vitr. (2018) 51:106–113. doi:10.1016/j.tiv.2018.
05.007

Ghoniem, A. A., El-Naggar, N. E. A., Saber, W. I., El-Hersh, M. S., and El-Khateeb, A.
Y. Statistical modeling-approach for optimization of Cu2+ biosorption by Azotobacter
nigricans NEWG-1; characterization and application of immobilized cells for metal
removal. Sci. Rep. (2020) 10, 9491. doi:10.1038/s41598-020-66101-x

González-Calabuig, A., Cetó, X., and Del Valle, M. A. A voltammetric electronic
tongue for the resolution of ternary nitrophenol mixtures. Sensors (2018) 18:216. doi:10.
3390/s18010216

Gros, M., Petrovi´c, M., and Barceló, D. Development of a multi-residue analytical
methodology based on liquid chromatography– tandem mass spectrometry (LC–MS/
MS) for screening and trace level determination of pharmaceuticals in surface and
wastewaters. Talanta (2006) 70:678–690. doi:10.1016/j.talanta.2006.05.024

Guo, Q., Li, N., Bing, Y., Chen, S., Zhang, Z., Chang, S., et al. Denitrifier communities
impacted by heavy metal contamination in freshwater sediment. Environ. Pollut. (2018)
242:426–432. doi:10.1016/j.envpol.2018.07.020

Gurr, C. J., and Reinhard, M. Harnessing natural attenuation of pharmaceuticals and
hormones in rivers. Environ. Sci. Technol. (2006) 40:2872–2876. doi:10.1021/es062677d

Hassani, S., Momtaz, S., Vakhshiteh, F., Maghsoudi, A. S., Ganjali, M. R., Norouzi, P.,
et al. Biosensors and their applications in detection of organophosphorus pesticides in
the environment. Arch. Toxicol. (2016) 91:109–130. doi:10.1007/s00204-016-1875-8

Hernandez-Vargas, G., Sosa-Hernández, J. E., Saldarriaga-Hernandez, S., Villalba-
Rodríguez, A. M., Parra-Saldivar, R., and Iqbal, H. Electrochemical biosensors: A
solution to pollution detection with reference to environmental contaminants.
Biosensors (2018) 8:29. doi:10.3390/bios8020029

Honeychurch, K. C., and Piano, M. Electrochemical (bio) sensors for environmental
and food analyses. Biosens. (Basel). (2018) 8:57. doi:10.3390/bios8030057

Huang, S., Liao, Q., Hua, M., Wu, X., Bi, K., Yan, C., et al. Survey of heavy metal
pollution and assessment of agricultural soil in Yangzhong district, Jiangsu
Province, China. Chemosphere (2007) 67:2148–2155. doi:10.1016/j.
chemosphere.2006.12.043

Ibrahim, U. B., Yahaya, S., Yusuf, I., and Kawo, A. H. Optimization and
simulation of process parameters in biosorption of heavy metals by Alcaligenes
faecalis strain UBI (MT107249) isolated from soil of local mining area in North-
West Nigeria. Soil Sediment Contam. Int. J. (2022) 31:438–455. doi:10.1080/
15320383.2021.1963211

Frontiers in Analytical Science frontiersin.org09

Banerjee et al. 10.3389/frans.2023.1115540

https://doi.org/10.5897/AJB10.1772
https://doi.org/10.1016/j.sciaf.2021.e00931
https://doi.org/10.1002/wer.1540
https://doi.org/10.1016/j.eti.2020.100830
https://doi.org/10.1016/j.geoderma.2009.06.004
https://doi.org/10.1016/j.aca.2013.04.035
https://doi.org/10.1016/j.ecoleng.2015.10.015
https://doi.org/10.1039/c6ra00030d
https://doi.org/10.1016/j.scitotenv.2008.04.028
https://doi.org/10.1016/j.ecoleng.2019.05.010
https://doi.org/10.1016/j.ecoleng.2019.05.010
https://doi.org/10.1016/j.eti.2018.05.003
https://doi.org/10.1016/j.eti.2018.05.003
https://doi.org/10.1016/j.ecolind.2009.11.002
https://doi.org/10.1080/00401706.1960.10489912
https://doi.org/10.1080/00401706.1960.10489912
https://doi.org/10.1038/srep36546
https://doi.org/10.1021/acs.chemrev.9b00616
https://doi.org/10.1021/acs.chemrev.9b00616
https://doi.org/10.21203/rs.3.rs-2053109/v1
https://doi.org/10.1007/s11814-013-0095-7
https://doi.org/10.1007/s11814-013-0095-7
https://doi.org/10.1080/10298436.2020.1807546
https://doi.org/10.1016/j.chnaes.2021.04.004
https://doi.org/10.1016/j.scienta.2017.12.039
https://doi.org/10.1016/j.mcm.2006.07.020
https://doi.org/10.3389/fmicb.2022.893603
https://doi.org/10.1007/s11769-017-0906-6
https://doi.org/10.1016/j.biortech.2016.07.005
https://doi.org/10.1016/j.proeng.2012.09.313
https://doi.org/10.1016/j.proeng.2012.09.313
https://doi.org/10.1016/j.tiv.2018.05.007
https://doi.org/10.1016/j.tiv.2018.05.007
https://doi.org/10.1038/s41598-020-66101-x
https://doi.org/10.3390/s18010216
https://doi.org/10.3390/s18010216
https://doi.org/10.1016/j.talanta.2006.05.024
https://doi.org/10.1016/j.envpol.2018.07.020
https://doi.org/10.1021/es062677d
https://doi.org/10.1007/s00204-016-1875-8
https://doi.org/10.3390/bios8020029
https://doi.org/10.3390/bios8030057
https://doi.org/10.1016/j.chemosphere.2006.12.043
https://doi.org/10.1016/j.chemosphere.2006.12.043
https://doi.org/10.1080/15320383.2021.1963211
https://doi.org/10.1080/15320383.2021.1963211
https://www.frontiersin.org/journals/analytical-science
https://www.frontiersin.org
https://doi.org/10.3389/frans.2023.1115540


Ighalo, J. O., and Eletta, O. A. A. Response surface modelling of the biosorption of
Zn(II) and Pb(II) ontoMicropogonias undulatus scales: Box–Behnken experimental
approach. Appl. Water Sci. (2020) 10:197. doi:10.1007/s13201-020-01283-3

Ince, M., and Ince, O. K. Heavy metal removal techniques using response surface
methodology: Water/wastewater treatment. In: M. Ince, O. K. Ince, and G. Ondrasek,
editors. Biochemical toxicology - heavy metals and nanomaterials. London: IntechOpen
(2019). doi:10.5772/intechopen.88915

Iwamori, H., Yoshida, K., Nakamura, H., Kuwatani, T., Hamada, M., Haraguchi, S.,
et al. Classification of geochemical data based on multivariate statistical analyses:
Complementary roles of cluster, principal component, and independent component
analyses. Geochem. Geophys. Geosyst. (2017) 18:994–1012. doi:10.1002/2016gc006663

Jaafari, J., and Kamyar, Y. Optimization of heavy metal biosorption onto freshwater
algae (Chlorella coloniales) using response surface methodology (RSM). Chemosphere
(2019) 217:447–455. doi:10.1016/j.chemosphere.2018.10.205

Jain, M., Garg, V. K., and Kadirvelu, K. Investigation of Cr(VI) adsorption onto
chemically treated Helianthus annuus: Optimization using response surface
methodology. Biores Technol. (2011) 102:600–605. doi:10.1016/j.biortech.2010.08.001

Jaiswal, V., Saxena, S., Kaur, I., Dubey, P., Nand, S., Naseem, M., et al. Application of
four novel fungal strains to remove arsenic from contaminated water in batch and
column modes. J. Hazard. Mater. (2018) 356:98–107. doi:10.1016/j.jhazmat.2018.
04.053

Justino, C. I., Freitas, A. C., Pereira, R., Duarte, A. C., and Santos, T. A. R. Recent
developments in recognition elements for chemical sensors and biosensors. Trac.
Trends Anal. Chem. (2015) 68:2–17. doi:10.1016/j.trac.2015.03.006

Keerthanan, S., Jayasinghe, C., Biswas, J. K., and Vithanage, M. Pharmaceutical and
personal care products (PPCPs) in the environment: Plant uptake, translocation,
bioaccumulation, and human health risks. Crit. Rev. Environ. Sci. Technol. (2021)
51:1221–1258. doi:10.1080/10643389.2020.1753634

Kemper, T., and Sommer, S. Estimate of heavy metal contamination in soils after a
mining accident using reflectance spectroscopy. Environ. Sci. Technol. (2002) 36:
2742–2747. doi:10.1021/es015747j

Kumar, R., Singh, R., Kumar, N., Bishnoi, K., and Bishnoi, N. R. Response surface
methodology approach for optimization of biosorption process for removal of Cr (vi),
Ni (ii) and Zn (ii) ions by immobilized bacterial biomass sp. Bacillus brevis. Chem. Eng.
J. (2009) 146:401–407. doi:10.1016/j.cej.2008.06.020

Kurniawan, T. A., Lo, W., Othman, M. H. D., Goh, H. H., and Chong, K. K.
Biosorption of heavy metals from aqueous solutions using activated sludge, Aeromasss
hydrophyla, and Branhamella spp based on modeling with GEOCHEM. Environ. Res.
(2022) 214:114070. doi:10.1016/j.envres.2022.114070

Kushwaha, A., Hans, N., Kumar, S., and Rani, R. A critical review on speciation,
mobilization and toxicity of lead in soil-microbe-plant system and bioremediation
strategies. Ecotoxicol. Environ. Saf. (2018) 147:1035–1045. doi:10.1016/j.ecoenv.2017.
09.049

Lapworth, D. J., Baran, N., Stuart, M. E., and Ward, R. S. Emerging organic
contaminants in groundwater: A review of sources, fate and occurrence. Environ.
Pollut. (2012) 163:287–303. doi:10.1016/j.envpol.2011.12.034

Majumdar, S. S., Das, S. K., Saha, T., Panda, G. C., Bandyopadhyoy, T., and Guha, A.
K. Adsorption behavior of copper ions on Mucor rouxii biomass, through microscopic
and FTIR analysis. Colloids Surfaces B Biointerfaces (2008) 63:138–145. doi:10.1016/j.
colsurfb.2007.11.022

Milojković, J., Pezo, L., Stojanović, M., Mihajlović, M., Lopičić, Z., Petrović, J., et al.
Selected heavy metal biosorption by compost of Myriophyllum spicatum—A
chemometric approach. Ecol. Eng. (2016) 93:112–119. doi:10.1016/j.ecoleng.2016.
05.012

Mimendia, A., Gutiérrez, J., Leija, L., Hernández, P. R., Favari, L., Muñoz, R., et al. A
review of the use of the potentiometric electronic tongue in the monitoring of
environmental systems. Environ. Model. Softw. (2010a) 25:1023–1030. doi:10.1016/j.
envsoft.2009.12.003

Mimendia, A., Legin, A., Merkoçi, A., and Del Valle, M. Use of Sequential Injection
Analysis to construct a potentiometric electronic tongue: Application to the
multidetermination of heavy metals. Sens. Actuators B Chem. (2010b) 146:420–426.
doi:10.1016/j.snb.2009.11.027

Montgomery, D. C. Design and analysis of experiments. John Wiley & Sons (2017).

Mortensen, J., Legin, A., Ipatov, A., Rudnitskaya, A., Vlasov, Y., and Hjuler, K. A
flow injection system based on chalcogenide glass sensors for the determination of
heavy metals. Anal. Chim. Acta. (2000) 403:273–277. doi:10.1016/s0003-2670(99)
00544-9

Mourzina, Y. G., Schubert, J., Zander, W., Legin, A., Vlasov, Y. G., Lüth, H., et al.
Development of multisensor systems based on chalcogenide thin film chemical
sensors for the simultaneous multicomponent analysis of metal ions in complex
solutions. Electrochim. Acta. (2001) 47:251–258. doi:10.1016/s0013-4686(01)
00563-1

Myers, R. H., Montgomery, D. C., and Anderson-Cook, C. M. Response surface
methodology: Process and product optimization using designed experiments. Hoboken,
New Jersey: John Wiley & Sons (2009).

Naidu, R., Arias Espana, V. A., Liu, Y., and Jit, J. Emerging contaminants in the
environment: Risk-based analysis for better management. Chemosphere (2016) 154:
350–357. doi:10.1016/j.chemosphere.2016.03.068

Nayik, G. A., and Nanda, V. A chemometric approach to evaluate the phenolic
compounds, antioxidant activity and mineral content of different unifloral honey types
from Kashmir, India. LWT (2016) 74:504–513. doi:10.1016/j.lwt.2016.08.016

Otto, M. Chemometrics: Statistics and computer application in analytical chemistry.
Hoboken, NJ, USA: John Wiley & Sons (2016).

Pandey, G., and Madhuri, S. Heavy metals causing toxicity in animals and fishes. Res.
J. Anim. Vet. Fish. Sci. (2014) 2:17–23.

Piccirillo, C., Pereira, S. I. A., Marques, A. P. G. C., Pullar, R. C., Tobaldi, D. M.,
Pintado, M. E., et al. Bacteria immobilisation on hydroxyapatite surface for heavy metals
removal. J. Environ. Manag. (2013) 121:87–95. doi:10.1016/j.jenvman.2013.02.036

Prabhakaran, D., Basha, C. A., Kannadasan, T., and Aravinthan, P. Removal of
hydroquinone from water by electrocoagulation using flow cell and optimization by
response surface methodology. J. Environ. Sci. Health, Part A. (2010) 45:400–412.
doi:10.1080/10934520903540174

Rasheed, T., Bilal, M., Nabeel, F., Adeel, M., and Iqbal, H. M. N. Environmentally-
related contaminants of high concern: Potential sources and analytical modalities for
detection, quantification, and treatment. Environ. Int. (2019) 122:52–66. doi:10.1016/j.
envint.2018.11.038

Reddy, L. V. A., Wee, Y. J., Yun, J. S., and Ryu, H. W. Optimization of alkaline
protease production by batch culture of Bacillus sp. RKY3 through plackett–burman
and response surface methodological approaches. Bioresour. Technol. (2008) 99:
2242–2249. doi:10.1016/j.biortech.2007.05.006

Sajdak, M., and Pieszko, C. Chemometric analysis of heavy metal content for various
environmental matrices in terms of their use in biomass thermal processing. Open
Chem. (2012) 10:1696–1706. doi:10.2478/s11532-012-0096-0

Sharaf, S. Comparative study of heavy metals residues and histopathological
alterations in large ruminants from selected areas around industrial waste drain.
Pak. Veter J. (2019) 40:55–60. doi:10.29261/pakvetj/2019.111

Shi, X., Zhou, G., Liao, S., Shan, S., Wang, G., and Guo, Z. Immobilization of cadmium
by immobilized Alishewanella sp. WH16-1 with alginate-lotus seed pods in pot
experiments of Cd-contaminated paddy 1059 soil. J. Hazard. Mater. (2018) 357:
431–439. doi:10.1016/j.jhazmat.2018.06.027

Suliman, R., Mitul, A. F., Mohammad, L., Djira, G., Pan, Y., and Qiao, Q. Modeling of
organic solar cell using response surface methodology. Results Phys. (2017) 7:
2232–2241. doi:10.1016/j.rinp.2017.04.037

Talib, N. S. R., Halmi, M. I. E., Abd Ghani, S. S., Zaidan, U. H., and Shukor, M. Y. A.
Artificial neural networks (ANNs) and response surface methodology (RSM) approach
for modelling the optimization of chromium (VI) reduction by newly isolated
Acinetobacter radioresistens strain NS-MIE from agricultural soil. BioMed Res. Int.
(2019) 2019:5785387. doi:10.1155/2019/5785387

Teniou, A., Rhouati, A., and Marty, J. L. Mathematical modelling of biosensing
platforms applied for environmental monitoring. Chemosensors (2021) 9:50. doi:10.
3390/chemosensors9030050

Volesky, B., and Naja, G. Biosorption technology: Starting up an enterprise. Int.
J. Technol. Transf. Commer. (2007) 6:196–211. doi:10.1504/ijttc.2007.017806

Wang, J., and Chen, C. Biosorbents for heavy metals removal and their future.
Biotechnol. Adv. (2009) 27:195–226. doi:10.1016/j.biotechadv.2008.11.002

Wantala, K., Khongkasem, E., Khlongkarnpanich, N., Sthiannopkao, S., and Kim, K.
W. Optimization of as (V) adsorption on Fe-RH-MCM-41- immobilized GAC using
box–Behnken design: Effects of pH, loadings, and initial concentrations.Appl. Geochem.
(2012) 27:1027–1034. doi:10.1016/j.apgeochem.2011.11.014

Wilson, M., and Aqeel-Ashraf, M. Study of fate and transport of emergent
contaminants at waste water treatment plant. Environ. Contam. Rev. (2018) 1:
01–12. doi:10.26480/ecr.01.2018.01.12

Wilson, D., Alegret, S., and Del Valle, M. Simultaneous titration of ternary mixtures of
Pb(II), Cd(II) and Cu(II) with potentiometric electronic tongue detection.
Electroanalysis (2015) 27:336–342. doi:10.1002/elan.201400480

Yin, Y., Hu, J., and Wang, J. Removal of Sr2+, Co2+, and Cs+ from aqueous solution by
immobilized Saccharomyces cerevisiae with magnetic chitosan beads. Environ. Prog.
Sustain. Energy (2017) 36:989–996. doi:10.1002/ep.12531

Zhang, J., Yang, T., Wang, H., and Yang, K. Optimization of process variables by dried
Bacillus cereus for biosorption of nickel(II) using response surface method.Desalination
Water Treat. (2016) 57:16096–16103. doi:10.1080/19443994.2015.1091995

Zhang, W., Yin, K., Li, B., and Chen, L. A glutathione S-transferase from Proteus
mirabilis involved in heavy metal resistance and its potential application in removal of
Hg2⁺. J. Hazard Mater (2018) 261, 646–652. doi:10.1016/j.jhazmat.2013.08.023

Zouboulis, A. I., Matis, K. A., Loukidou, M., and Šebesta, F. Metal biosorption by
PAN-immobilized fungal biomass in simulated wastewaters. Colloids Surfaces A
Physicochem. Eng. Aspects (2003) 212:185–195. doi:10.1016/s0927-7757(02)00304-7

Zurada, J. M. Introduction to artificial neural systems. West St. Paul: Minnesota, MN,
USA (1992).

Frontiers in Analytical Science frontiersin.org10

Banerjee et al. 10.3389/frans.2023.1115540

https://doi.org/10.1007/s13201-020-01283-3
https://doi.org/10.5772/intechopen.88915
https://doi.org/10.1002/2016gc006663
https://doi.org/10.1016/j.chemosphere.2018.10.205
https://doi.org/10.1016/j.biortech.2010.08.001
https://doi.org/10.1016/j.jhazmat.2018.04.053
https://doi.org/10.1016/j.jhazmat.2018.04.053
https://doi.org/10.1016/j.trac.2015.03.006
https://doi.org/10.1080/10643389.2020.1753634
https://doi.org/10.1021/es015747j
https://doi.org/10.1016/j.cej.2008.06.020
https://doi.org/10.1016/j.envres.2022.114070
https://doi.org/10.1016/j.ecoenv.2017.09.049
https://doi.org/10.1016/j.ecoenv.2017.09.049
https://doi.org/10.1016/j.envpol.2011.12.034
https://doi.org/10.1016/j.colsurfb.2007.11.022
https://doi.org/10.1016/j.colsurfb.2007.11.022
https://doi.org/10.1016/j.ecoleng.2016.05.012
https://doi.org/10.1016/j.ecoleng.2016.05.012
https://doi.org/10.1016/j.envsoft.2009.12.003
https://doi.org/10.1016/j.envsoft.2009.12.003
https://doi.org/10.1016/j.snb.2009.11.027
https://doi.org/10.1016/s0003-2670(99)00544-9
https://doi.org/10.1016/s0003-2670(99)00544-9
https://doi.org/10.1016/s0013-4686(01)00563-1
https://doi.org/10.1016/s0013-4686(01)00563-1
https://doi.org/10.1016/j.chemosphere.2016.03.068
https://doi.org/10.1016/j.lwt.2016.08.016
https://doi.org/10.1016/j.jenvman.2013.02.036
https://doi.org/10.1080/10934520903540174
https://doi.org/10.1016/j.envint.2018.11.038
https://doi.org/10.1016/j.envint.2018.11.038
https://doi.org/10.1016/j.biortech.2007.05.006
https://doi.org/10.2478/s11532-012-0096-0
https://doi.org/10.29261/pakvetj/2019.111
https://doi.org/10.1016/j.jhazmat.2018.06.027
https://doi.org/10.1016/j.rinp.2017.04.037
https://doi.org/10.1155/2019/5785387
https://doi.org/10.3390/chemosensors9030050
https://doi.org/10.3390/chemosensors9030050
https://doi.org/10.1504/ijttc.2007.017806
https://doi.org/10.1016/j.biotechadv.2008.11.002
https://doi.org/10.1016/j.apgeochem.2011.11.014
https://doi.org/10.26480/ecr.01.2018.01.12
https://doi.org/10.1002/elan.201400480
https://doi.org/10.1002/ep.12531
https://doi.org/10.1080/19443994.2015.1091995
https://doi.org/10.1016/j.jhazmat.2013.08.023
https://doi.org/10.1016/s0927-7757(02)00304-7
https://www.frontiersin.org/journals/analytical-science
https://www.frontiersin.org
https://doi.org/10.3389/frans.2023.1115540

	Detection and removal of emerging contaminants from water bodies: A statistical approach
	1 Introduction
	2 Emerging contaminants and sources
	3 Source of heavy metals
	3.1 Simulation-based approach towards treatment of emerging contaminants
	3.1.1 Heavy metal analysis based on chemometrics
	3.1.2 Environmental monitoring based on artificial neural networks (ANNs)
	3.1.3 Heavy metal removal from industrial wastewater using a response surface methodological approach


	4 Conclusion and future perspective
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


