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Introduction:Gas chromatography combinedwithmass spectrometry (GC/MS) is
popular analytical instrumentation for chemical separation and identification. A
novel framework for chemical forensics based on the visualization of GC/MS data
and transfer learning is proposed.

Methods: To evaluate the framework, 228 GC/MS data collected from two
standard cannabis varieties, i.e., hemp and marijuana, were utilized. By
processing the raw GC/MS data, analytical features, including retention times,
mass-to-charge ratios, intensities, and summed ion mass spectra, were
successfully transformed into two types of image representations. The GC/MS
data transformed imageswere fed into a pre-trained convolutional neural network
(CNN) to develop intelligent classifiers for the sample classification tasks. The
effectiveness of several hyper-parameters for improving classification
performance was investigated during transfer learning.

Results: The proposed analytical workflowcould classify hemp andmarijuanawith
97% accuracy. Furthermore, the transfer-learning-based classifiers were
established without requiring big data sets and peak alignment.

Discussion: The potential application of the new artificial intelligence (AI)-
powered framework for chemical forensics using GC/MS data has been
demonstrated. This framework provides unique opportunities for classifying
various types of physical evidence using chromatography and mass
spectrometry signals.
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1 Introduction

Gas chromatography combined with mass spectrometry (GC/MS) is popular analytical
instrumentation for chemical separation and identification, including evidence classification
tasks in forensics (Gin and Imwinkelried, 2018). The high efficiency of GC/MS in separating
components with great sensitivity allows the analysts to perform qualitative and quantitative
chemical analyses of physical evidence (Liu et al., 2016). However, the interpretation of GC/
MS data typically involves an analyst’s knowledge and highly relies on the analyst’s training,
skill, and experience (Baerncopf and Hutches, 2014). Therefore, the turnaround time may be

OPEN ACCESS

EDITED BY

James J. Harynuk,
University of Alberta, Canada

REVIEWED BY

Véronique Cariou,
Agroalimentaire et de l’alimentation de
Nantes-Atlantique (Oniris), France
Martina Foschi,
University of L’Aquila, Italy

*CORRESPONDENCE

Jorn Chi Chung Yu,
jornyu@shsu.edu

RECEIVED 15 December 2022
ACCEPTED 03 April 2023
PUBLISHED 17 April 2023

CITATION

Huang TY and Yu JCC (2023), Intelligent
framework for cannabis classification
using visualization of gas
chromatography/mass spectrometry
data and transfer learning.
Front. Anal. Sci. 3:1125049.
doi: 10.3389/frans.2023.1125049

COPYRIGHT

© 2023 Huang and Yu. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Analytical Science frontiersin.org01

TYPE Original Research
PUBLISHED 17 April 2023
DOI 10.3389/frans.2023.1125049

https://www.frontiersin.org/articles/10.3389/frans.2023.1125049/full
https://www.frontiersin.org/articles/10.3389/frans.2023.1125049/full
https://www.frontiersin.org/articles/10.3389/frans.2023.1125049/full
https://www.frontiersin.org/articles/10.3389/frans.2023.1125049/full
https://www.frontiersin.org/articles/10.3389/frans.2023.1125049/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frans.2023.1125049&domain=pdf&date_stamp=2023-04-17
mailto:jornyu@shsu.edu
mailto:jornyu@shsu.edu
https://doi.org/10.3389/frans.2023.1125049
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/analytical-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/analytical-science
https://www.frontiersin.org/journals/analytical-science#editorial-board
https://www.frontiersin.org/journals/analytical-science#editorial-board
https://doi.org/10.3389/frans.2023.1125049


affected in a high-throughput forensic laboratory. Furthermore, the
use of GC/MS data to assist evidence classification and association is
critical because essential intelligence can be provided to support case
investigation (Zadora and Neocleous, 2009). In this scenario,
multivariate modeling is constantly adopted to analyze GC/MS
data by various approaches (Belmonte-Sánchez et al., 2018; Sales
et al., 2019).

Cannabis sativa L. (cannabis) has been known to produce
cannabinoids that may have diverse bioactivities (Marsh and Smid,
2021). The Agriculture Improvement Act of 2018 provided a new
statutory definition of hemp, which defines the cannabis plant, and any
part of it, with a delta-9-tetrahydrocannabinol (THC) concentration of
not more than 0.3% on a dry weight basis (United States Congress,
2018]. Therefore, the new law limits the definition of marijuana to
include cannabis containing more than 0.3% THC.While hemp is used
in manufacturing versatile products, marijuana remains a Schedule I
controlled substance under the federal Controlled Substances Act (the
United States Drug Enhancement Administration, 2022). To
discriminate between hemp and marijuana, validated analytical
workflows for cannabis samples have been revised for quantitative
analysis of THC and improved by forensic associations and laboratories
(McRae and Melanson, 2020; Sgrò et al., 2021; Oregon Environmental
Laboratory Accreditation Program, 2022). Headspace sampling
provides a solvent-free extraction process that features shorter
extraction time, nearly non-destruction, and less sample
consumption (Kataoka, 2011; Leghissa et al., 2017). Several
laboratories have demonstrated the capability of headspace chemical
analysis for cannabis samples (Osman and Caddy, 1985; Ilias et al.,
2005; Wiebelhaus et al., 2016). McDaniel and co-workers have
developed a heated headspace solid phase microextraction (HHS-
SPME)-GC/MSmethod formarijuana profiling (McDaniel et al., 2018).

Recently, a deep convolutional neural network (CNN) in the
framework of artificial intelligence (AI) is emerging as a potential
candidate for performing multivariate predictive analysis in
analytical chemistry (Lussier et al., 2020; Ayres et al., 2021; Debus
et al., 2021). Deep learning has extensive applications in categorizing
various kinds of data, such as sounds, speech, and text (Zhang et al.,
2021), but particularly gains increasing attention in classifying image
tasks (ObaidKavi et al., 2019). In the structure of a CNN,multiple layers
are responsible for identifying features in the images in a hierarchical
manner and making inferences on categorical classification (Murata
et al., 2018). Though deep CNNs have been praised for extracting
relevant features from the images without manual engineering, the
downside of this technique is that it fails to perform well when dealing
with a small amount of data (Tammina, 2019). As a result, transfer
learning is becoming popular for AI development because it is a more
efficient learning approach regarding computation, costs, and time than
training a CNN from scratch with randomly initialized weights (Khan
et al., 2019). The transfer learning approach exploits existing knowledge
of a pre-trained CNN, which has been trained to solve a particular
classification problem on an extensive data set. The transfer learning
process involves fine-tuning the pre-trained model weights to re-train
the model for a new task with a smaller data set (Talo et al., 2019). In
addition to saving the costs and time for data collection and modeling,
the benefits of transfer learning also reflect in achieving higher
classification performance (Thenmozhi and Srinivasulu Reddy,
2019). In mass spectrometry, the application of transfer learning is
still at its early stage, and a few examples can be found in the retention

time predictions (Ju et al., 2021; Osipenko et al., 2021; Yang et al., 2021).
Compared to other approaches, for instance, PLS-DA, sparse PLS-DA,
RandomForests, the transfer learning approach does not require feature
selection, such as the determination of a matrix of abundance values or
pretreatment of GC/MS peaks.

Digital image analysis has been investigated to process
chromatograms and mass spectra to generate various 2-
dimensional (2D) images in recent years. In those data, the
retention times in the total ion chromatogram (TIC) and the ion
fragments in the mass spectrum can be considered unique chemical
profiles of a sample. It has also been reported that the summed ion
mass spectrum, derived from adding up the intensities of individual
nominal mass overall retention times, is characteristic of different
volatile substances (Sigman et al., 2008). Therefore, by taking
advantage of data visualization techniques, distinctive patterns
can be generated from raw chromatography and mass spectral
data, which allow the analysts to conduct a comparative analysis
of the samples. For example, Bi et al. created a fingerprint image
generation process for GC/MS data to evaluate food flavor quality
(Bi et al., 2019). Crutchfield et al. and Zhao et al. employed a pseudo-
color image approach to process liquid chromatography and mass
spectrometry (LC/MS) data (Crutchfield et al., 2013; Zhao et al.,
2021). Du et al. applied a continuous wavelet transform (CWT)-
based peak detection algorithm with Mexican Hat wavelet to process
mass spectra for improving denoising and peak detection (Du et al.,
2006). Hence, it can be expected that the visualization of GC/MS
data offers enormous potential for discrimination between different
substances, including forensic evidence.

This work aimed to propose a new framework that integrates
converting GC/MS data into 2D images and applying transfer
learning for solving classification tasks in chemical forensics. Our
research question was to explore whether a pre-trained CNN could
distinguish the features of the images transformed from a small set of
GC/MS data (<250). Additionally, it was hypothesized that, besides
retention times, m/z values, and peak intensities, the summed ion
mass spectrum could be a viable candidate for generating
characteristic patterns in 2D images. To evaluate the feasibility of
the framework, the discrimination between hemp and marijuana
was chosen in this work. Briefly, HHS-SPME-GC/MS data collected
from standard cannabis samples were visualized in 2D image
formats using pseudo-color-heat-map-based and scalogram-based
strategies. Two classifiers for differentiating hemp samples from
marijuana samples were developed by transfer learning. The settings
of the hyper-parameters were optimized, and the performance of the
classifiers was evaluated through several standard benchmarks. This
research work investigated and presented a promising approach that
combined GC/MS data visualization and transfer learning as a new
framework for solving various forensic classification tasks.

2 Materials and methods

2.1 Cannabis data set, headspace sampling,
and instrumentation

The cannabis data set was built from the data previously
collected by McDaniel et al. (McDaniel et al., 2018). As shown in
Table 1, the standard reference cannabis samples were provided by
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the National Institute on Drug Abuse (NIDA). The data set
contained 14 different cannabis groups with known levels of
THC and cannabidiol (CBD). The cannabis samples comprised
mixed dry botanical structures, including buds, leaves, and stems,
except groups 1, 3, 4, and 9 had somemissing structures, as indicated
in Supplementary Table S1. Each group was divided into several sub-
portions: individual structure (i.e., buds, leaves, and stems, coded as
B, L, S, respectively); a mixture of all structures (coded asW); ground
materials from all structures (coded as C). Note that the
concentration of THC and CBD were determined by NIDA, the
grouping of hemp and marijuana were labeled based on the pre-
determined concentration of THC in each variety.

When processing industrial hemp samples, a drying step of the
cannabis sample is commonly employed to ensure the sample
weight is in fact the dry weight (Health Canada, 2021). In our
procedure, the sample provided by NIDA has been dried and
packaged in glass bottles. Therefore, the weighting process did
not include a drying step. Instead, an aliquot of each cannabis
sample, 10 ± 0.1 mg measured by an analytical balance, was
transferred into a 20-mL headspace vial for HHS-SPME extraction.

The HHS-SPME extraction parameters were selected from the
optimized extraction method reported by Ilias et al. with the
implementation of an autosampler (Ilias et al., 2005). All
botanical structures were extracted using identical headspace
sampling parameters. Briefly, a 23 gauge and 100 μm
polydimethylsiloxane (PDMS) SPME fiber obtained from Sigma-
Aldrich (St. Louis, MO) was installed onto the autosampler for
headspace sampling. The pre-SPME fiber conditioning temperature
was 250 °C. The sample pre-SPME incubation temperature was
140°C for 5 min. During HHS-SPME, the fiber was exposed to
the headspace of a 20-ml sample vial for 2.5 min. After SPME,

the fiber was retracted into a needle and introduced into the GC
injection port for thermal desorption. Desorption time was set at
0.5 min. SPME for blank samples, i.e., empty headspace vials, were
performed between runs to ensure no contaminants and carryovers
on the SPME fiber. An Agilent 7890B and 5975A mass selective
detector were used for GC/MS data collection. The GC column for
separating cannabinoids was Rxi 35Sil-M3 (15 m × 0.25 mm ×
0.25 μm) supplied by Restek (Bellefonte, PA). The initial GC oven
temperature was 170 °C (hold 1 min). The temperature program for
cannabinoids separation was as follows: 15°C/min to 228 °C (hold
3 min), 10°C/min to 250 °C, 5°C/min to 270 °C (hold 1.4 min). A
detailed experimental explanation can be found in a previous report
presented by our research group (McDaniel et al., 2018).

In the standard cannabis GC/MS data set, Groups 1 and 2 were
labeled as “hemp” class and groups 3 to 14 were labeled as
“marijuana” class according to the concentration of THC in the
samples. There was a total number of 228 GC/MS data in the entire
cannabis data set, which included 30 data in the hemp class and
198 data in the marijuana class. In each class, the GC/MS data were
separated into training (total: 162 data) and verification (total:
66 data) subsets for the purposes of transfer learning and
confirmation of the training outcomes. In the training data set,
80% (130 data) were used for model training, and 20% (32 data)
were used for validation.

The verification data set (66 data) is a separate ground truth data
set that was never used in the classifier training and validation
process. The verification data were also used to evaluate the
efficiency of several hyper-parameters for the proposed classifiers.
Specifically, the verification data were obtained by random selection
of one object in every sub-portion of the 14 groups, as listed in
Supplementary Table S1.

TABLE 1 Cannabis data sets used in this study.

Label Cannabis
group

THC%
(w/w)

CBD%
(w/w)

Number of training and validation
data

Number of verification
data

Total

Hemp 1 N/A N/A 10 4

2 0.08 3.4 11 5

Marijuana 3 1 0.01 10 4

4 2 0.16 10 4

5 3.1 0.01 14 5

6 3.8 6.5 12 5

7 4.7 0.01 12 5

8 7 0.03 14 5

9 7.5 13.9 10 4

10 7.9 0.05 12 5

11 8.9 9.3 12 5

12 10.4 0.03 12 5

13 10.6 0.03 10 5

14 13.4 0.03 13 5

Total 162 (training: 130, validation: 32) 66 228
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2.2 GC/MS data processing

2.2.1 Data structure construction and signal
resampling

The GC/MS data were first exported into NetCDF format using the
Agilent ChemStation (Agilent Technologies, Inc., California,
United States) to facilitate subsequent data processing in MATLAB
(MATLAB 2021a and Bioinformatics Toolbox, MathWorks, Natick,
Massachusetts, United States). As a starting point, we constructed a
scalar of the vector of retention times (denoted as Time in the following
statements) and a two-columnmatrix named “peaks.” The vector Time
has 2,913 elements (i.e., scans) associated with retention times recorded
from 0 to 16 min. The “peaks” matrix was representative of the mass
spectrum in each scan, where the first column containedm/z values and
the second column contained intensity values. It is worth noting that
the idea of data matrix construction was to “resample” signals by fitting
raw GC/MS data into equal sizes of arrays for all the samples. This task
was achieved using the “msppresample” function, where a Gaussian
kernel was used to reconstruct the signal. The outcome of resampling
comprised recreated m/z values (denoted as MZ) and intensity values
(denoted as Y). Consequently, the GC/MS data array consisted of MZ
as a column vector of 2,000 elements. The elements were derived from
the scanned mass range, initially set fromm/z 40 to 450. Therefore, the
unified data array enabled the transformation of chemical signals into
image presentations using pseudo-color heat maps and scalograms.

2.2.2 GC/MS data selection
The major cannabinoids in cannabis plants include THC, CBD,

and cannabinol (CBN). Supplementary Figures S1 shows an
example of the total ion chromatogram (TIC) of sample
08059AB1. The THC, CBD, and CBN were detected between
6 and 13 min of retention time. Supplementary Figures S2A–C
illustrate the extracted ion profiles (mass spectra) of sample
08059AB1, which represent the three cannabinoids. The primary
ion fragments of THC, CBD, and CBN appeared betweenm/z 210 to
390. Supplementary Table S2 summarizes the retention times and

major ions specific to each cannabinoid. Based on those
observations, a range of data characteristic of the cannabinoids in
vector Time and matrix MZ was selected, as indicated in
Supplementary Table S3.

2.2.3 Pseudo-color heat map approach
The first approach for 2D image visualization of GC/MS data

proposed in this study was using a pseudo-color heat map. The
image displays the intensities for the spectra after a log
transformation of the selected range of m/z values at the chosen
range of retention times in matrix Y. In a pseudo-color heat map, the
x and y-axes depict m/z values and retention times accordingly.
Figure 1 shows the pseudo-color heat maps created from a typical
hemp and marijuana sample.

2.2.4 Scalogram approach
The second proposed 2D image visualization of GC/MS data was

to create scalograms based on summed ion mass spectrum. The
image was generated through CWT, a technique that has been
applied to denoise or detect signals in various research areas, such as
bioinformatics (Li et al., 2008; Xie et al., 2009), Raman spectroscopy
(Ramos and Ruisánchez, 2005; Cooper et al., 2011; Li et al., 2013),
and mass spectrometry (Du et al., 2006; Zheng et al., 2016). The
mother wavelet used in this analysis was the Morse wavelet, widely
used in processing modulated signals with time-varying amplitude
and frequency (Sarraf et al., 2019). In this work, the summed ion
mass spectrumwas a column vector, denoted sY, by summing up the
elements in each row in the extracted region in matrix Y. The
summed ion mass spectrum was thereby regarded as modulated-
analog signals. More precisely, the vector sY referred to the sum of
the intensities of each m/z value over retention times in the selected
region. The next step was to compute the vector sY by CWT to
produce a wavelet scalogram, with the x and y-axes representingm/z
values and the CWT coefficient scale, respectively. The CWT
parameters are listed in Table 2. Figure 2 gives examples of
scalograms of a hemp and marijuana sample. More information

FIGURE 1
Examples of pseudo-color heat maps transformed from cannabis headspace GC/MS data. The axes, labels, and color bars were removed for the
transfer learning.
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on the application of the Morse wavelet in 2D data processing can be
found in research work by Huang et al. (Huang and Yu, 2021) and
other related reports (Olhede and Walden, 2002; Lilly and Olhede,
2009; Lilly and Olhede, 2010; Lilly and Olhede, 2012; Lilly, 2016). To
be compatible with the pre-trained CNN used in this study, the
pseudo-color heat maps and the scalograms were produced in RGB
images with an array size of 224 by 224 by 3. Moreover, the axes,
labels, and color bars were also removed from the images for the
subsequent transfer learning.

2.3 Transfer learning

2.3.1 Pre-trained CNN selection
A pre-trained CNN, GoogLeNet (Szegedy et al., 2015), was

selected for transfer learning to classify pseudo-color heat maps
and scalograms representing standard cannabis samples. This CNN
model was originally trained to solve a 1,000-categories classification
problem and is well-known for winning the ImageNet Large-Scale
Visual Recognition Challenge 2014 (ILSVRC14) with an
achievement of a top-5 error rate of 6.67% (Abbasi et al., 2020;
Yilmaz and Trocan, 2021). It was hypothesized that GoogleNet can
be retrained for the purpose of image analysis of analytical signals
using CNN classification algorithm.

2.3.2 Network modification
To make the original GoogLeNet adapt to our new data, the

initial layers were retained. The final layers, including dropout

(pool5-drop_7 × 7_s1), fully connected (loss3-classifier), and
classification (output) layers, were replaced with new layers. The
goal of employing a new dropout layer was to increase the
probability of randomly removing input data from the network
to prevent overfitting. A new fully connected layer was revised to the
number of filters equaling the number of cannabis classes.
Moreover, the learning rate factors for weights and bias at the
new fully connected layer were increased to speed up the learning
process. Finally, a new classification layer was utilized to specify the
output classes investigated in this work.

2.3.3 Classifier training and verification
A stochastic gradient descent with 0.9 momentum was employed

as an optimizer to minimize the loss function involved in the iterative
process. To optimize the performance of the re-trained GoogLeNet,
several hyper-parameters that might affect the classification error or
cause overfitting were selected as “test parameters.” Those parameters
include maximum epochs, learning rate, and mini batch size, as
shown in Table 3. Both classifiers (one for pseudo-color-heat-map-
based and another for scalogram-based) were constructed following
the above-stated methodology.

2.3.4 Training options setting
The experiments of classifier training were conducted in

MATLAB 2021a with 8 GB RAM and Intel(R) Core(TM) i7-
5600U @2.60 GHz CPU. During transfer learning, the training
data were randomly divided into 80% (130 images) and 20%
(32 images) for the training and validation phases. Once the
training was completed, the verification data were inputted into
the classifiers to evaluate the classifier performance.

2.4 Evaluation of model performance

2.4.1 Performance measures
The effectiveness of the proposed cannabis classification systems

was assessed by computing the average classification probability of

TABLE 2 Parameters for CWT image transformation.

Parameter Setting

Signal length 1,000

Sampling frequency 128

Voices per octave 12

FIGURE 2
Examples of scalograms transformed from cannabis headspace GC/MS data. The axes and labels were removed for the transfer learning.
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the images in the verification data set. Five performance measures
derived from the confusion matrices of the verification data were
calculated. The measures involved accuracy, sensitivity, specificity,
precision, and F1 score, computed by the formula in Supplementary
Table S4.

2.4.2 Comparison tests
The classification performance of the proposed classifiers was

compared with several common machine learning (ML) algorithms,
including k-nearest neighbor (KNN), discriminant analysis (DA),
Naive Bayes, support vector machine (SVM), and ensemble
classification models. The ML and proposed CNN classifiers were
developed using the same training data set. To compare with the
pseudo-color-heat-map-based classifier, TICs between retention times
of 6 and 13 min were chosen to train the ML classifiers. To compare
with the scalogram-based classifier, summed ion mass spectra between
6 and 13 min retention times andm/z 210 to 390 were used to train the
ML classifiers. Therefore, the data selection for theML classifiers shared
the same data range (retention time and m/z) of the proposed
classifiers. The training of the ML classifiers was conducted in
MATLAB with the Statistics and Machine Learning Toolbox (The
MathWorks Inc, 2021). Once the final classifiers were obtained,
bootstrap sampling of the verification data set was utilized to
provide a comprehensive and statistical comparison (Harrington,
2006; Lu and Harrington, 2007). The means and uncertainties of
the prediction outcome reported in the confusion matrix were
computed from the 100 bootstrap samples with a 95% confidence
interval. Note that the procedures for multiple ML techniques have
been well-developed and detailed in the MATLAB platform. The
technical details can be found in the operation manual.

3 Results and discussion

3.1 Optimization of hyper-parameters in
transfer learning

To evaluate the effect of hyper-parameters in transfer learning,
different settings of hyper-parameters were adjusted to construct
initial classifiers. Sixty-six standard cannabis data (9 hemp images

and 57 marijuana images) new to the initial classifiers were used to
compare their performance using accuracy and prediction
probability.

3.1.1 Maximum epochs
To determine the optimal number of epochs for final transfer

learning, the training epochs were adjusted at 3, 5, 10, 15, and 20.
The learning rate andmini batch size values were set at 0.001 and 10,
respectively. As shown in Supplementary Figures S3A,D, both
accuracy and average probabilities improved as the number of
epochs increased in the pseudo-color heat-map-based classifier.
In the scalogram-based classifier, the accuracy reached 0.97 as
early as epoch 3 and maintained the same level through epoch
20. However, an increase in average probabilities along with an
increment of the number of epochs was observed before epoch
15 both in the pseudo-color-heat-map-based classifier and the
scalogram-based classifier. Therefore, the classification
performance of the proposed classifiers was improved when the
number of epochs increased. The optimal number of epochs for the
pseudo-color-heat-map-based and scalogram-based classifiers in
our experiments were determined to be 20 and 15, respectively.

3.1.2 Learning rate
Learning rates ranging from 0.00005, 0.0001, 0.0005, and

0.001 with a fixed mini batch size of 0.001 and maximum epochs
of 20 and 15 for the pseudo-color-heat-map-based and scalogram-
based classifiers were tested. As shown in Supplementary Figures
S3B,E, the highest score for accuracy in both image types was
obtained when the learning rate was set at 0.001. Further
comparison of the average probabilities among all learning rates
indicates that the prediction probabilities gradually improved when
the value of the learning rate increased. In this study, a higher
learning rate decreased the prediction error for the proposed
classifiers. Therefore, the optimal learning rate was set to a value
of 0.001 for both pseudo-color-heat-map-based and scalogram-
based classifiers.

3.1.3 Mini batch size
To evaluate the effects of mini batch size, the initial classifiers

were trained with a batch size of 10, 15, 32, 64, and 128. The learning

TABLE 3 Parameters for transfer learning of GoogLeNet.

Parameter Setting

Fixed parameter Layers replaced pool5-drop_7 × 7_s1, loss3-classifier, output

New dropout layer probability 0.6

New fully connected layer weight learn rate factor 5

New fully connected layer bias learn rate factor 5

Validation frequency 10

Execution environment CPU

Test parameter Max epochs Varied as 3, 5, 10, 15, 20

Initial learn rate Varied as 0.00005, 0.0001, 0.0005, 0.001

Mini batch size Varied as 10, 15, 32, 64, 128
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rate was set at 0.001, and the maximum epochs were set at 20 and
15 for the pseudo-color-heat-map-based classifier and the
scalogram-based classifier, accordingly. In Supplementary Figures
S3C,F, the highest accuracy and average probabilities of both
classifiers were observed when the mini batch size was set at 10.
Overall, setting a small mini batch size resulted in higher
classification performance. Hence, the optimal mini batch size
was set at 10 for final transfer learning.

3.2 Deviation of standard cannabis data

During the optimization of the hyper-parameters, two
misclassifications were found in all tests for both image
transformation approaches. After checking the data, the two
misclassified events were produced from samples 07271AS1 and
08171BC1. The former sample was a stem structure. The latter
sample was ground cannabis materials from all plant structures.
Both samples were within hemp group 1. It was observed that the
two samples had relatively higher THC peaks. Comparing the
median of peak intensities of THC in all the samples in hemp
group 1, the THC peak intensities in 07271AS1 and
08171BC1 exceeded three scaled median absolute deviations away
from the median of the THC peak intensities of all group 1 hemp

samples. Since cannabis samples are plant materials, cannabinoids
could be localized in different plant structures. Because the sampling
size in each HHS-SPME-GC/MS test was only 10 mg, the deviations
in the THC peak intensities might attribute to the heterogeneity of
cannabinoids in the cannabis plants.

3.3 Final training progress

Supplementary Figures S4A,B present the training progress of
the final transfer learning by using the optimal hyper-parameter
values discussed in the previous section. The elapsed training times
were 20 min 41 s for the pseudo-color-heat-map-based and 15 min
26 s for the scalogram-based classifier. There were 260 (pseudo-
color-heat-map-based classifier) and 195 (scalogram-based
classifier) iterations used for the stochastic gradient descent
algorithm to repeatedly evaluate the gradient and update the
descent algorithm weights to minimize the loss function for the
final classifiers. Every 10 iterations, the classifiers validated the
performance using the previously divided 20% of the images in
the training data. Supplementary Figures S4A,B display that both
image transformation approaches had some variations in the
validation accuracy and loss at the beginning of the training due
to the GoogLeNet starting to learn the new classification task. By

TABLE 4 Comparison ofmeans of prediction outcome and uncertainties at 95% confidence intervals obtained from pseudo-color-heat-map-based classifier andML
classifiers using 100 bootstrap sampling of verification data.

CNN
(GoogLeNet)

KNN DA Naive Bayes SVM Ensemble

Hemp Marijuana Hemp Marijuana Hemp Marijuana Hemp Marijuana Hemp Marijuana Hemp Marijuana

Hemp 7.23
± 0.21

1.77 ± 0.21 8.17
± 0.12

0.83 ± 0.12 7.97
± 0.16

1.03 ± 0.16 7.85
± 0.18

1.15 ± 0.16 7.84
± 0.18

1.16 ± 0.18 8.1
± 0.15

0.9 ± 0.15

Marijuana 0 ± 0 57 ± 0 0 ± 0 57 ± 0 0 ± 0 57 ± 0 2.84
± 0.28

54.16
± 0.28

0 ± 0 57 ± 0 4.14
± 0.34

52.86
± 0.34

TABLE 5 Comparison of means of prediction outcome and uncertainties at 95% confidence intervals obtained from scalogram-based classifier and ML classifiers
using 100 bootstrap sampling of verification data.

CNN
(GoogLeNet)

KNN DA Naive Bayes SVM Ensemble

Hemp Marijuana Hemp Marijuana Hemp Marijuana Hemp Marijuana Hemp Marijuana Hemp Marijuana

Hemp 7.25
± 0.2

1.75 ± 0.2 5.01
± 0.25

3.99 ± 0.25 6.82
± 0.21

2.18 ± 0.21 5.97
± 0.26

3.03 ± 0.26 4.81
± 0.26

4.19 ± 0.26 2.9
± 0.24

6.1 ± 0.24

Marijuana 0 ± 0 57 ± 0 0 ± 0 57 ± 0 0.93
± 0.18

56.07
± 0.18

6.27
± 0.4

50.73 ± 0.4 0 ± 0 57 ± 0 3.49
± 0.30

53.51
± 0.30

TABLE 6 Comparison of accuracies and uncertainties at 95% confidence intervals for the proposed classifiers and ML classifiers using 100 bootstrap sampling of
verification data.

CNN (GoogLeNet) KNN DA Naive Bayes SVM Ensemble

Pseudo-color-heat-map-based classifier 0.97 ± 0.12 0.99 ± 0.15 0.98 ± 0.16 0.94 ± 0.14 0.98 ± 0.16 0.92 ± 0.17

Scalogram-based classifier 0.97 ± 0.12 0.94 ± 0.08 0.97 ± 0.1 0.86 ± 0.1 0.94 ± 0.08 0.85 ± 0.09
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comparing the variations, the oscillation of the validation accuracy
and loss were more easily observed in the pseudo-color-heat-map-
based approach, indicating an unstable learning process. Therefore,
the pseudo-color-heat-map-based classifier required more epochs
(11 epochs) and iterations (approximately 138 iterations) to reach
100% validation accuracy and 0% validation loss. In comparison, the
scalogram-based approach took 7 epochs and 90 iterations to reach
the same training accuracy. Nevertheless, both approaches achieved
100% and 0% for validation accuracy and loss at the end of the
training. The training progress result suggests that the GoogLeNet
with the proposed hyper-parameter values has successfully
developed two new classification systems by transfer learning.

3.4 Comparison of CNN and ML classifier
performance

The verification data set was also utilized to compare the
performance of the final CNN classifiers and several ML
classifiers. Tables 4, 5 shows the confusion matrices obtained
from 100 bootstrap sampling of verification data, and Table 6
shows the accuracies and uncertainties at 95% confidence
intervals for the CNN and ML classifiers. As shown in Tables 4,
5, the pseudo-color-heat-map-based classifier performs well (57 ± 0)
in classifying marijuana samples. The decreased performance in
classifying hemp samples was attributed to samples 07271AS1 and
08171BC1, whose THC peak intensities were deviated from the
median of the THC peak intensities of all group 1 hemp samples, as
discussed previously. A similar prediction outcome was observed for
the scalogram-based classifier. When comparing the accuracies of
the CNN and ML classifiers, as shown in Table 6, it is found that the
pseudo-color-heat-map-based classifier has comparable
performance with KNN, DA, and SVM classifiers. In contrast,
the scalogram-based and DA classifiers perform better (0.97 ±
0.12 and 0.97 ± 0.1, respectively) than the other ML classifiers.

Overall, the results suggest that the pseudo-color-heat-map-
based and scalogram-based approaches offered satisfactory
capabilities to transform GC/MS data for transfer learning.
Compared to the conventional ML methods for GC/MS data
classification, the proposed framework can reduce human
intervention in feature engineering and eliminate the tedious trial
and error process, similar to the work reported by Janiesch et al.
(Janiesch et al., 2021).

3.5 Discussion of experimental results

The pre-trained deep learning model, GoogLeNet, was
structurally modified and fine-tuned to learn the features of the
images transformed from GC/MS data. The experimental results
show that both final classifiers obtained 97% accuracy in classifying
the verification data into correct cannabis classes using the transfer
learning technique. The average prediction probabilities also
achieved nearly 100%. This performance not only reveals the
successful development of the intelligent classifiers through the
proposed framework but also indicates that the framework is
feasible for solving GC/MS data classification problems without
the need for a big training data set.

Another breakthrough of this study is the visualization of GC/
MS data to facilitate transfer learning. The efficiency of the
visualization of GC/MS data for cannabis classification has been
demonstrated by obtaining high scores in the performance
evaluation measures, including sensitivity, specificity, precision,
and F1 score. The performance of the final classifiers provided
promising results that the pseudo-color heat maps and scalograms
can transform the characteristic information of GC/MS data for
feature recognition in the transfer learning process. Moreover, the
adoption of digital image analysis coupling with CNN transfer
learning empowers the classifiers with the capability of
translation invariance, meaning to ignore slight changes in the

FIGURE 3
Radar charts showing the evaluation measures of the verification data in the hyper-parameter optimization tests. (A) Pseudo-color-heat-map-
based classifier; (B) Scalogram-based classifier.
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position of the feature in the input image. This type of classifier can
effectively eliminate the peak alignment of the same sample analyzed
in multiple runs, which is often required in traditional chemometric
techniques (Li and Wang, 2019).

To further compare the two strategies for image transformation,
Figures 3A,B display the scores of the evaluation measures derived
from the hyper-parameter optimization tests. Though both GC/MS
data visualization methods achieved good performance, the pseudo-
color heat maps approach appeared more difficult than the
scalograms approach to attain satisfying classification
performance during the tuning process. In other words, the
pseudo-color heat maps-based classifier relied more on
optimizing critical hyper-parameters than the scalogram-based
classifier. It was also found that the pseudo-color heat maps-
based classifier encountered a more unstable learning process at
the beginning and required more training cycles than the scalogram-
based classifier to obtain 100% validation accuracy. Moreover, when
using the bootstrap method to compare the classifier performance,
the scalogram-based classifier gave better prediction results than the
pseudo-color-heat-map-based classifier. These results support our
hypothesis that the summed ion mass spectra can provide valuable
features when visualized in 2D images. Moreover, it suggested that
the GoogLeNet, a pre-trained CNN for image classification, could
more readily recognize the chemical features in a scalogram than in a
pseudo-color heat map.

4 Conclusion

We proposed a new framework to successfully demonstrate the
construction of AI-powered classification systems for cannabis
samples using small data sets. The classifiers were assessed by
careful examinations and comparisons of the hyper-parameters.
An additional verification data set was prepared and tested to
ensure the robustness of the performance checks. The results
indicated that the classifiers achieved high performance in several
performance measures. In addition, the proposed framework
successfully eliminated the pre-processing of GC/MS data
required by traditional multivariate modeling approaches. Given
the novelty of the proposed framework, the most crucial step was the
visualization of GC/MS data by transforming the summed ion mass
spectra into scalograms and employing transfer learning of
GoogLeNet to recognize the features representing characteristic
headspace chemical profiles of the target substance. However, no
biological-chemical interpretation of the CNN model may be the
limitation of the proposed framework.

Moreover, the probability-based classification outcome given by
the proposed framework aids statistical evaluations for unknown
samples in some analytical and applied chemical disciplines, such as
evidence interpretation in forensics. The workflow was accurate,
fast, and relied on minimal manual involvement. The combination
of GC/MS data transformation and transfer learning offered a new
way for cannabis sample classification. More reliable cannabis
sources and attributes can be collected in future work to assess
the generalization capacities of this new approach. Due to the
heterogeneity of cannabis plants, homogenizing cannabis plant
samples and increasing the sample mass for HHS-SPME are

highly recommended. In summary, the proposed framework
provides a new perspective for chemical forensics in
chromatography and mass spectrometry. We envision this new
AI-powered classification framework for GC/MS data as a
promising tool for other types of forensic evidence in a criminal
investigation.
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