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Cosmetic researchers recruit consumers to evaluate new formulas as part of the
product development process. This screens out poorly performing formulas in
favor of better ones for further testing. Trained experts score new formulas on a
battery of sensory attributes until a few formulas are selected for more costly,
blind-use tests (BUTs) featuring randomly recruited consumers. Once formulas
pass a BUT, they are ready for commercialization. Resources would be more
efficiently used if BUT results could be predicted from earlier rounds of testing.
However, predicting the relationship between sensory testing and BUT testing is
limited by the lack of data in common between the two methods. Even though
hundreds of consumer responses are recorded, only their means aremerged into
the set of data used for analysis. This reduces the amount of data available for
decision-making and introduces the challenges associated with analyzing small
samples. This paper proposes improving on this mean-based approach by adding
bootstrapping when combining sensory expert responses with BUT responses. It
compares the BUT predictions captured via bootstrapping versus the predictions
obtained using only the means from the original data sets.
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1 Introduction

Protecting skin from sunlight-related damage is an important way to reduce the
appearance of aging and a growing portion of the cosmetics market (Hughes et al.,
2013). Consumers spent an estimated $8.5 billion on sun care cosmetics in 2022, with
sales expected to reach $16 billion by 2030, based on an 8.3% compound annual growth rate
(CAGR) estimate (Grand View Research, 2024). This growth is driven by rising awareness
of the benefits of photoprotection over time, as shown by research in the United States on
middle and high school students who demonstrated increasing use of sunscreen from
2007 to 2019 (Rajagopal et al., 2021).

To remain competitive in this growing market, product researchers work to improve the
sensorial attributes of photoprotection products without sacrificing their UV-shielding
efficacy. New formulations are measured on their sensorial attributes and categorized by
their different sensory profiles. Researchers use these categories to benchmark new formulas
against sensorially similar known market winners and to look for promising sensorial
white space.

After sensorial testing is completed, the most promising formulas are approved for
more costly, blind-use testing that features randomly recruited samples of current
photoprotection product consumers. This test is usually the last step in validating a
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new formula, as scoring significantly higher than competing
formulas in a blind-use test remains one of the best ways to
eliminate confirmation bias (Kardish et al., 2015).

Being able to accurately predict a BUT result based on data
collected from a sensorial panel would significantly improve the
process of validating new formulas. Researchers would know in
advance how a new formula performs sensorially and would adjust it
before proceeding to the final stage of BUT validation. However,
these sorts of predictions are made difficult thanks to the lack of a
common dataset on which to base the analysis work. Test subjects
and protocols are completely different, so the data must first be
merged in an unbiased way.

A common approach to combining these two types of tests is to
first calculate means by formula and then pair them across the test
results (Dijksterhuis, 1995). This approach tomerging and analyzing
data hails back to the days of Pearson and is called data fusion, as
carefully documented by Marcoulides (2017) in her thesis. However,
even though many sensory and blind-use responses are recorded,
only a single mean from each test remains for predictive analysis.
Thus, the BUT prediction comes from a small (often fewer than 30)
sample of means and carries with it all the risks associated with a
small sample size.

This paper describes one method for increasing the reliability of
predictions made from small sample sizes, such as these, through a
re-sampling technique known as bootstrapping. Bootstrapping is
used in a variety of ways, such as to make better use of electronic
health record (EHR) databases when researching clinical events and
diseases (Wanyan et al., 2021; Garg and Shah, 2016), to build
sufficiently large databases for the training of machine learning
algorithms (Hu et al., 2023), to assess the feasibility of different
controlled study designs (Sengupta et al., 2023), and to use real-
world data (RWD) for clinical trial simulation (CTS) in preparation
for conducting actual trials (Chen et al., 2021). This paper compares
BUT predictions made using the means-based approach with those
made using the bootstrapping approach.

2 Materials and methods

Research on photoprotection formulas was conducted between
2018 and 2021 in a series of eight BUTs held in China and Spain.
Twenty-one of the formulas in these BUTs were matched against
previously executed sensorial test results. This combined data set
was then used to build a linear regression model to predict the BUT
results of four newly created formulas based on their performance in
sensory testing. These predictions were compared against the actual
study results of the four new photo-protection formulas tested in
the 2023 BUT.

Agreement with the descriptive statement “Lets skin breathe”
was chosen as the attribute to predict based on research showing a
correlation (R = 0.51) with how well consumers liked each formula
overall. It is abbreviated as Breath and was measured using a 5-point
Likert rating scale (Likert, 1932). The sensorial attributes of
Slipperiness on the skin, Penetration of the formula into the skin,
and Greasiness of the formula on the skin were chosen as predictive
attributes based on their supposed relationship to Breath. These
three attributes are abbreviated as Slipperiness, Penetration, and
Greasiness and are based on a 15-point line (Gomide et al., 2021)

rating scale. Descriptive statistics for these variables are calculated in
Table 1 for both the original means-based dataset and the
bootstrapped dataset.

Regression analysis was used to predict the BUT attribute Breath
by using Slipperiness, Penetration, and Greasiness as regressors, as
shown in Table 2. The results are significant—each of the sensory
attributes is significant with p < 0.05. The model passes the
Shapiro–Wilks test for normality and the F test for model fit
with p < 0.05. R2 is below 0.5, but a literature review shows that
an R2 between 0.10 and 0.50 is acceptable when “some or most of the
explanatory variables are statistically significant” for data obtained
from human behavior (Ozili, 2022), which is the case here.

However, there are reasons to be concerned about the
predictive capability of the model because of its small sample
size. Here is where the bootstrapping technique provided useful,
additional understanding. As background, bootstrapping is a
commonly applied technique for managing around the
difficulties of small sample sizes (Wright and Field, 2011) by
resampling the underlying data that were originally summarized.
Through bootstrapping, the means were calculated anew and
then randomly paired from the sensory data to the BUT data
hundreds of times. The results from these randomly resampled
means were then analyzed to understand the likelihood of the
regression result, given the distribution of the underlying data.
Bootstrapping the predictive model this way provided confidence
intervals for regression coefficients and goodness of fit measures
based on the empirical distribution of the estimates drawn from
all the available data.

Bootstrapping was performed using the Bayesian bootstrapping
technique proposed by Rubin (Rubin, 1981), which is implemented
by the bayesboot (Bååth, 2018) library package accessible through
the R software (R Core Team, 2023) environment. The regression
analysis was calculated using the lm procedure, and confidence
intervals for each statistic were calculated using the hdi function
from the bayestestR (Makowski et al., 2019) library, also accessible
through R. Finally, the prediction was compared to the actual
research conducted in 2023 on the new formulas.

3 Results

The bootstrapped regression results are shown in Table 3.
Despite the significant results obtained for each dependent
variable when performing regression using the original means,
the bootstrapped results show that the highest density intervals
(hdi) for F and R2 calculations were close to 0 on the low end and
included 0 when adjusted R2 was measured.

Table 4 compares the results for Breath calculated via the
bootstrapped prediction model versus the results calculated using
the original means-based model. The prediction based on the
bootstrapped data was closer to the actual data in three of the
four new formulas tested. This is not surprising—bootstrap
estimates, which are based on the empirical distribution of the
coefficients, are known to be more robust and potentially less biased
than the corresponding estimates from classical theory-based
approaches.

To visualize the difference between the two predictions, an
independent regression analysis was performed against Breath for
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each of the three dependent variables. These results differ from those
of the regression analysis shown in Tables 2, 3 because they are
univariate regression analyses rather than multivariate. Even so,
these plots illustrate how the bootstrapped result differed from the
original means-based result. In these univariate visualizations, the

regression coefficients are consistently smaller for the bootstrapped
results, which is consistent with the differences in the multivariate
analysis. Additionally, the means of the 2023 test results are
visualized, so the difference in the predictions can also be seen
via two regression line plots.

TABLE 1 Descriptive measures–original and bootstrapped datasets.

Original data Sensory expert variables (dependent) But variable (indep.)

Variable name Slipperiness Penetration Greasiness Breath

Scale, Range, Count 0–15, 3–15, 412 0–15, 0–15, 403 0–15, 0–12.45, 409 1–5, [1.5], 4,980

Mean and Std. dev μ = 11.3, σ = 2.34 μ = 9.7, σ = 3.28 μ = 4.1, σ = 2.69 μ = 4.23, σ = 0.82

Bootstrapped data Sensory expert variables (dependent) BUT variable (indep.)

Variable name Slipperiness Penetration Greasiness Breath

Scale, Range, Count 0–15, 6.4–14.2, 6,300 0–15, 4.6–13.0, 6,300 0–15, 1.1–8.8, 6,300 1–5, 3.8–4.5, 6,300

Mean and Std. dev μ = 11.3, σ = 1.11 μ = 9.7, σ = 1.25 μ = 4.1, σ = 1.02 μ = 4.22, σ = 0.14

TABLE 2 Regression of Breath vs. Three Sensory Measures.

Data from original means (N = 21) Test for normality Goodness of fit

Measure Estimate Prob(>|t|) 95% CI Shapiro–Wilk Tests for model

Intercept +4.46 [3.64, 5.28] W = 0.984 F = 5.10

Greasiness −0.064 0.038 [–0.12, 0.00] p = 0.968 P = 0.01

Slipperiness −0.051 0.046 [–0.10, 0.00] R2 = 0.47

Penetrates +0.062 0.015 [+0.01, 0.11] Adj R2 = 0.38

TABLE 3 Regression of Breath vs. three sensory measures using Rubin’s Bayesian bootstrap.

Model from bootstrapped means Goodness of fit

Measure Estimate 95% CI via hdi Tests for model 95% CI via hdi

Intercept +4.43 [3.85, 5.10] F = 2.66 [0.37, 5.99]

Greasiness −0.034 [–0.07, 0.00]

Slipperiness −0.037 [–0.08, 0.00] R2 = 0.29 [+0.08, +0.53]

Penetrates +0.036 [+0.00, 0.07] Adj R2 0.23 [–0.08, +0.44]

TABLE 4 Comparison of actual BUT results versus predictions.

Var. Type Sensorial measures (regressors, μ) Lets skin breathe: actual vs. predicted (target, μ)

Var. Name Greasiness Slipperiness Penetration Actual result Original model Bootstrapped model

Formula 22 5.48 9.89 8.88 4.54 4.16 4.20

Formula 23 6.15 9.36 9.24 4.36 4.17 4.22

Formula 24 4.07 10.56 8.69 4.49 4.20 4.22

Formula 25 3.86 10.61 10.18 4.51 4.31 4.28
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FIGURE 1
Visualization of univariate regression analysis of Penetrates against Breath with 2023 formula means.

FIGURE 2
Visualization of univariate regression analysis of Slipperiness against Breath with 2023 formula means.
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3.1 Key to visualizations

In the visualizations, colored circles with white centers indicate
the 2023 test result means for the new formulas, and circles with
black centers indicate the prior results that the prediction was based
on. Each small colored dot indicates a randomly matched
bootstrapped mean. The black dashed line indicates the
regression line based on the original means, and the blue dashed
line indicates the regression line based on the bootstrapped data. The
thin, solid blue lines indicate regression lines drawn from the 95%
highest density interval for the regression coefficient.

Figure 1 illustrates the relationship between Penetrates and
Breath. Three of the four 2023 formula results are higher than
expected, and the relationship is maintained.

Figure 2 illustrates the relationship between Penetrates and
Slipperiness. Three of the four 2023 formula results are higher
than expected, and the relationship is maintained.

Figure 3 illustrates the relationship between Penetrates and
Greasiness. Three of the four 2023 formula results are higher
than expected, and the relationship is cast into doubt.

4 Conclusion

The classical approach using the 21 means calculated for each
formula yielded statistically significant results for the three sensory
attributes and for the overall regression model, as shown in Table 2.
These results proved less robust than they initially appeared when
data obtained from the most recent 2023 BUT scored beyond the

predictions of the regression model, as shown in Table 4. Even
though the original means-based regression met all the criteria for
model fit, the bootstrapped analysis result led to smaller coefficients
of regression and a tighter confidence interval that yielded
predictions that deviated less from the actual 2023 data.
Bootstrapping improved on the assumptions of the classical
approach and provided a clearer picture of the risk of prediction
error by calculating the highest density interval for each statistic.
This approach addressed the risks associated with small sample sizes
by returning to the larger sample of data on which the original
means were based. In this way, the BUT database of 4,980 responses
and the sensorial database of 412 responses were more fully utilized
to make the predictions.

This improved understanding of predictive accuracy is crucial in
the fast-paced cosmetics industry, where timely and reliable product
validation can significantly enhance competitive advantage. The
bootstrapping approach not only mitigates the risks associated
with small sample sizes but also leverages the richness of the
underlying data, paving the way for more informed and efficient
product development cycles. Further research could explore the
integration of additional sensory attributes into the predictive
model, as well as the application of this method to other product
categories within the cosmetics industry.

5 Discussion

As can be seen from the visualizations, the new formulas from
the 2023 BUT scored higher than expected, given their sensory

FIGURE 3
Visualization of univariate regression analysis of Greasiness against Breath with 2023 formula means.
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results. In fact, three of the four new formulas earned the highest
mean scores in the entire data set. However, these new high scores
for breathability did not correspond well with the scores in the
sensorial evaluations. While the higher BUT scores are a natural
result of continuously improving the formulas over the 5-year
period studied, they may also reflect improvements to the
breathability of the new formulas that remain uncaptured in the
scope of current sensory evaluations. Additional sensorial measures
may be needed to capture the root causes of these gains.

The bootstrapped coefficients improved on the original means-
based prediction, but they were more useful in describing the
precision of the prediction itself. Despite significant results for all
three dependent variables in the original means-based regression
analysis, the predictions were substantially lower than the actual
results. Slipperiness and Penetration remain valuable predictors; the
predictive relevance of Greasiness should be re-evaluated given the
recent BUT outcome. The results from the 2023 BUT illustrate the
peril of making predictions from a small sample size and the need to
continuously update predictive models to align with evolving
consumer preferences.

Although Bayesian bootstrapping was used in this case, the
wealth of data available to sample from suggests that any reasonable
bootstrapping approach would have yielded similar results. The
results from the Bayesian approach were more convenient because
of the smoother outcome they tend to generate and the ease of using
the bayesboot package.

An additional class of techniques that could be useful in this
type of analysis are measurement error correction models, such
as those provided in the mecor (Nab et al., 2021) package. These
techniques are particularly powerful when validation studies are
part of the data. Specifically designed validation studies could be
added to the sensorial data at a relatively low cost to enable the
use of this approach. This is an improvement opportunity to
suggest to sensory evaluation teams to further reduce
measurement error.

Data availability statement

The data analyzed in this study are subject to the following
licenses/restrictions: The data largely come from our China
organization. Recent changes to privacy laws in China make
sharing any datasets from China impossible. Internal privacy
teams are currently reviewing the options regarding data sharing,
but at the time of writing, it is not a possibility. Requests to access
these datasets should be directed to aaron.ping@loreal.com.

Ethics statement

The studies involving humanswere approved by the L’Oreal Research
& Innovation Evaluation Intelligence visa committee. The studies were
conducted in accordance with the local legislation and institutional
requirements. The participants provided their written informed
consent to participate in this study. Written informed consent was not
obtained from the individual(s) for the publication of any potentially
identifiable images or data included in this article because no personally
identifiable information (PII) data are included in this research project.

Author contributions

AP: writing–original draft and writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work was
funded by L’Oréal Research and Innovation. The funder was not
involved in the study design, collection, analysis, interpretation of
data, thewriting of this article, or the decision to submit it for publication.

Acknowledgments

The author thanks Philippe Bastien and Vahid Masuda for their
mentorship and advice during the writing and proofreading of
this article.

Conflict of interest

AP is an employee of Nihon L’Oréal KK, a wholly owned
subsidiary of L’Oréal SA.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors, and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Bååth, R. (2018). Bayesboot: an implementation of rubin’s (1981) bayesian bootstrap.
R. package version 0.2.2. doi:10.32614/CRAN.package.bayesboot

Chen, Z., Zhang,H., Guo, Y., George, T. J., Prosperi,M.,Hogan,W. R., et al. (2021). Exploring
the feasibility of using real-world data from a large clinical data research network to simulate
clinical trials of Alzheimer’s disease. npj Digit. Med. 4, 84. doi:10.1038/s41746-021-00452-1

Dijksterhuis, G. (1995). Multivariate data analysis in sensory and consumer science:
an overview of developments. Trends Food Sci. & Technol. 6 (6), 206–211. doi:10.1016/
S0924-2244(00)89056-1

Garg, D., and Shah, J. (2016), A bootstrap machine learning approach to identify rare
disease patients from electronic health records. doi:10.48550/arXiv.1609.01586

Gomide, S., Nascimento, Nascimento, M., Minim, L. A., andMinim, V. P. R. (2021). Study
of the influence of line scale length (9 and 15 cm) on the sensory evaluations of two descriptive
methods. J. Food Sci. Technol. 58, 2815–2824. doi:10.1007/s13197-020-04890-9

Grand View Research (2024). Sun care cosmetics market size, share & trends report
2023-2030. Available at: https://www.grandviewresearch.com/industry-analysis/sun-
care-cosmetics-market-report.

Hu, R., Luo, K., and Gupta, L. (2023), REBOOT: reuse data for bootstrapping efficient
real-world dexterous manipulation. doi:10.48550/arXiv.2309.03322

Hughes,W., Baker, G., Baker, P., and Green, A. C. (2013). Sunscreen and prevention of skin
aging. Ann. Intern. Med. 158 (11), 781–790. doi:10.7326/0003-4819-158-11-201306040-00002

Frontiers in Analytical Science frontiersin.org06

Ping 10.3389/frans.2024.1414039

mailto:aaron.ping@loreal.com
https://doi.org/10.32614/CRAN.package.bayesboot
https://doi.org/10.1038/s41746-021-00452-1
https://doi.org/10.1016/S0924-2244(00)89056-1
https://doi.org/10.1016/S0924-2244(00)89056-1
https://doi.org/10.48550/arXiv.1609.01586
https://doi.org/10.1007/s13197-020-04890-9
https://www.grandviewresearch.com/industry-analysis/sun-care-cosmetics-market-report
https://www.grandviewresearch.com/industry-analysis/sun-care-cosmetics-market-report
https://doi.org/10.48550/arXiv.2309.03322
https://doi.org/10.7326/0003-4819-158-11-201306040-00002
https://www.frontiersin.org/journals/analytical-science
https://www.frontiersin.org
https://doi.org/10.3389/frans.2024.1414039


Kardish, M., Mueller, U. G., Amador-Vargas, S., Dietrich, E., Ma, R., Barrett, B., et al.
(2015). Blind trust in unblinded observation in ecology, evolution, and behavior. Front.
Ecol. Evol. 3. doi:10.3389/fevo.2015.00051

Likert, R. (1932). A technique for the measurement of attitudes. Archives Psychol. 22
140, 55.

Makowski, D., Ben-Shachar, M. S., and Lüdecke, D. (2019). bayestestR: describing
effects and their uncertainty, existence and significance within the bayesian framework.
J. Open Source Softw. 4 (40), 1541. doi:10.21105/joss.01541

Marcoulides, K. M. (2017). A bayesian synthesis approach to data fusion using
augmented data-dependent priors. Multivar. Behav. Res. 52 (1), 111–112. doi:10.1080/
00273171.2016.1263927

Nab, van S., Keogh, G., Keogh, R.H., andGroenwold, R. H.H. (2021).Mecor: an R package
for measurement error correction in linear regression models with a continuous outcome.
Comput. Methods Programs Biomed. 208, 106238. doi:10.1016/j.cmpb.2021.106238

Ozili, P. K. (2022). The acceptable R-square in empirical modelling for social science
research. SSRN. Available at: https://api.semanticscholar.org/CorpusID:249858498

Rajagopal, T., Chuy, C., Cheng, A. L., andDall, L. (2021). Trends in sunscreen use amongUS
middle and high school students, 2007-2019. Cureus 13 (7), e16468. doi:10.7759/cureus.16468

R Core Team (2023). R: a language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing. Available at: https://www.R-
project.org/.

Rubin, D. B. (1981). The bayesian bootstrap. Ann. Statistics 9 (1), 130–134. doi:10.
1214/aos/1176345338

Sengupta, S., Ntambwe, I., Tan, K., Liang, Q., Paulucci, D., Castellanos, E., et al.
(2023). Emulating randomized controlled trials with hybrid control arms in oncology: a
case study. Clin. Pharmacol. & Ther. 113 (4). doi:10.1002/cpt.2841

Wanyan, Z., Ding, A., andWang, G. (2021). Bootstrapping your own positive sample:
contrastive learning with electronic health record data. Proc. Mach. Learn. Res. doi:10.
48550/arXiv.2104.02932

Wright, L., and Field (2011). Using bootstrap estimation and the plug-in principle for
clinical psychology data. J. Exp. Psycopathology 2 (2), p252–p270. doi:10.5127/
jep.013611

Frontiers in Analytical Science frontiersin.org07

Ping 10.3389/frans.2024.1414039

https://doi.org/10.3389/fevo.2015.00051
https://doi.org/10.21105/joss.01541
https://doi.org/10.1080/00273171.2016.1263927
https://doi.org/10.1080/00273171.2016.1263927
https://doi.org/10.1016/j.cmpb.2021.106238
https://api.semanticscholar.org/CorpusID:249858498
https://doi.org/10.7759/cureus.16468
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1214/aos/1176345338
https://doi.org/10.1214/aos/1176345338
https://doi.org/10.1002/cpt.2841
https://doi.org/10.48550/arXiv.2104.02932
https://doi.org/10.48550/arXiv.2104.02932
https://doi.org/10.5127/jep.013611
https://doi.org/10.5127/jep.013611
https://www.frontiersin.org/journals/analytical-science
https://www.frontiersin.org
https://doi.org/10.3389/frans.2024.1414039

	Predicting blind-use test (BUT) results from sensory testing using Bayesian bootstrapping
	1 Introduction
	2 Materials and methods
	3 Results
	3.1 Key to visualizations

	4 Conclusion
	5 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


