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Introduction: The construction of nanomaterial-based ratiometric detection
systems usually requires covalent modification, which undergoes reactive
environments and may change the natural properties of supporting
nanomaterials.

Methods: In this study, dualemissive and fluorescein-decorated gold
nanoclusters (F-Au NCs) through cyclodextrin-supported host–guest
interaction (non-covalent modification) are explored as ratiometric Hg2+

nanoprobes through d10–d10-interactioncaused fluorescence quenching of
Au NCs.

Results and Discussion: The fluorescein decoration only provides a fluorescent
internal reference but does not change the Hg2+-Au NCs affinity nature.
Ratiometric and selective Hg2+ detection is achieved through the proposed
F-Au NC probes with a limit of detection of 15 nM. The Hg2+ analysis in river
water samples with small relative standard deviations validates the practical
application of these probes.
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Introduction

Ratiometric analysis with internal fluorescence reference has attracted growing
attention due to its high sensitivity and accuracy (Huang et al., 2018; Park et al., 2020).
Recently, the growth of nanoscience and nanotechnology has facilitated the development of
versatile and functional nanomaterials for ratiometric analysis (Fu et al., 2022; Li et al., 2022;
Li et al., 2017; Sun et al., 2023; Wu et al., 2024a; Wu et al., 2024b). For example, Zhang et al.
(2022) reported the visualization of polymer–surfactant interaction with hyperbranched
polyethyleneimine-encapsulated blue- and red-emitting gold nanoclusters (Au NCs). The
linkage of fluorescent nanomaterials and fluorophores has permitted the construction of
ratiometric detection systems for reactive oxygen species, small molecules, and metal ions
(Duan et al., 2019; Liu et al., 2022;Wang et al., 2021;Wen et al., 2019;Wu et al., 2024b; Yang
et al., 2020). These systems usually require covalent modification in reactive environments
and may change the natural properties of supporting nanomaterials. The development of
simple and effective modification strategies that do not require covalent bonds might benefit
the construction of advanced nanomaterials.
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Noncovalent interactions, including hydrogen bonding,
electrostatic attraction, π–π interaction, and hydrophobic affinity,
have been widely applied for designing functional nanoarchitectures
with diverse applications (Ghosh et al., 2023; Ju et al., 2024; Peluso and
Chankvetadze, 2022; Rap et al., 2024), In particular, host–guest
interaction occurs through various noncovalent forces, such as
hydrogen bonding, van der Waals forces, or π–π stacking, resulting
in the guest molecule being bound within a binding pocket of the host
(Sayed and Pal, 2021; Yang et al., 2018; Zhu et al., 2023). Without the
involvement of a covalent bond, it supports a dynamic noncovalent
association between a host molecule and a guest molecule and has been
extensively used for material fabrication. For instance, Fu et al. (2020)
reported the construction of a bola-type supra-amphiphile with
aggregation-induced emission characteristics by integrating
host–guest interaction and topological self-assembly and applied it
for mimicking light-harvesting antenna. In addition, the host–guest
interaction also allows cavity binding, which may alter the chemical
reactivity of guest molecules. As referred to in Eelkema’s report, the
transient host–guest complexation could regulate the enzymatic
catalysis and control the hydrolysis of esters (van der Helm et al.,
2022). Notice that the host–guest interaction does not change the
chemical nature of substances; the combination of this specific
interaction and target-responsive nanomaterials may permit the
construction of ratiometric and selective detection systems with
preserved recognition capability, which is theoretically feasible.

In recent decades, Au NC-based detection systems for metal
ions, small molecules, DNA, RNA, and proteins have been widely
explored because of their advantages of easy preparation, strong
fluorescence, and tunable emission (Chen et al., 2015; Huang et al.,
2007; Kurashige et al., 2016; Lu et al., 2020; Nasaruddin et al., 2018;
Pyo et al., 2015; Shi et al., 2017; Yuan et al., 2017; Yuan et al., 2015;
Yuan et al., 2011). As indicated in Duan et al. (2019) and Xie et al.
(2010), Au NCs with surface Au(I) species are responsive to Hg2+

due to d10–d10 interaction. However, sole intensity change might
suffer interference from matrix and cause instable signals. It is thus
speculated that Au NC-decoration with built-in fluorophore by
host–guest interaction might endow ratiometric and accurate
Hg2+ sensing. However, environment-sensitive characteristics
make Au NCs variable during covalent functionalization,
indicating that noncovalent modification is more proper for Au
NC functionalization. In this study, we attempt to demonstrate our
assumption by constructing a ratiometric Au NC-based sensing
system by integrating host–guest interaction (typical noncovalent
modification strategy). As a proof-of-concept, we propose
fluorescein-functionalized Au NCs (F-Au NCs) for ratiometrically
detecting Hg2+. The decoration of fluorescein onto an AuNC surface

was achieved by cyclodextrin (CD)-supported host–guest
interaction. The addition of Hg2+ suppressed the orange emission
of Au NCs, while the green emission of fluorescein only showed
slight variation, leading to a ratiometric fluorescence response. The
schematic illustration of Hg2+ detection using F-Au NCs probes is
shown in Figure 1. The specificity of Hg2+-caused ratiometric
response of F-Au NC probes was investigated with other metal
ions as possible interferents. The limit of detection (LOD) toward
Hg2+ was found to be 15 nM (S/N = 3). Moreover, the practical
application of proposed F-Au NC probes was verified by accurate
Hg2+ analysis in river water samples. This strategy of using
noncovalent modification-supported surface functionalization
should be generalizable to the functionalization of a wide range
of nanomaterials and the construction of ratiometric
detection systems.

Methods

Materials, reagents, and instruments

Chloroauric acid tetrahydrate (HAuCl4.4H2O) was purchased from
Damas-beta (Shanghai, China). Glutathione (GSH) was purchased
from Shanghai Yuanye Bio-Technology Co. Ltd. (Shanghai, China).
Mono-(6-mercapto-6-deoxy)-beta-cyclodextrin (β-CD-SH) was
purchased from HWRK Chem. (Beijing, China). Potassium chloride
(KCl), sodium chloride (NaCl), and sodium borohydride (NaBH4) were
purchased from Fuchen (Tianjin, China). Anhydrous calcium chloride
(CaCl2), hydrochloric acid (HCl), sodium hydroxide (NaOH), ethanol,
and other chemicals were purchased from Beijing Chemical Reagent
Company (Beijing, China). All chemicals used are analytical-reagent
grade and used without further purification. All solutions were freshly
prepared with deionized water (18.2 MΩ cm, Milli-Q, Millipore,
Barnstead, CA, United States).

Transmission electron microscopy (TEM) images were collected
with a HT7700 transmission electron microscope (Hitachi, Japan).
UV–Vis absorption spectra were measured with a UV−3900H
spectrophotometer (Shimadzu, Japan). Fluorescence spectra were
obtained using an F-7000 fluorescence spectrophotometer (Hitachi,
Japan). The pH values were measured with a benchtop pH meter
(Orion plus, Thermo-Fisher, United States).

Synthesis of dual-emissive F-Au NCs

Dual-emissive F-Au NCs were prepared using a two-step
strategy. First, CD-modified Au NCs (CD-Au NCs) were
synthesized by a dual-ligand stabilization route based on our
previous research with slight modification (Yang et al., 2018).
Typically, freshly prepared HAuCl4 (20 mM, 0.5 mL) and GSH
(100 mM, 0.15 mL) were mixed, and 4.35 mL ultrapure water was
added to make a 5.0-mL solution. The resultant mixture was stirred
at 70°C for 24 h to yield GSH-capped Au NCs (GSH-Au NCs). Then,
β-CD-SH was introduced into the solution, and the mixture was
stirred at 50°C for 3 h to produce CD-Au NCs. The final
concentration of β-CD-SH was 5 mM. The CD-Au NCs
generated were filtered with a 10-KDa ultrafiltration tube
(8,000 rpm, 10 min) to remove any unwanted thiol ligands and

FIGURE 1
Schematic illustration of ratiometric Hg2+ detection with F-Au
NC probes.
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reactants. To prepare F-Au NCs, 30-mL CD-Au NC solution was
mixed with 300 μL fluorescein (final concentration: 300 nM). After
2 h shaking at 30°C, the mixture was filtered with a 10-KDa
ultrafiltration tube (8,000 rpm, 10 min) and dispersed in 10.0 mL
solution and then stored at 4°C before use. The concentration of
F-Au NCs was determined to be 0.25 mg/mL.

Sensitivity and selectivity measurement

For sensitivity evaluation, a serial of Hg2+ stock solutions were
prepared. In Hg2+ detection assays, 750 μL ultrapure water was
added into a 1.5-mL centrifuge tube containing 100 μL PB buffer
(pH 7.4) and 100 μL F-Au NCs probes, and then 50 μL Hg2+ solution
with various concentrations was added to make the final volume of
1 mL. After 5-min reaction at room temperature, the fluorescence
emission spectra were collected by a F-7000 fluorescence
spectrophotometer. For selectivity tests, 750 μL ultrapure water
was added into a 1.5-mL centrifuge tube containing 100 μL PB
buffer (pH 7.4) and 100 μL F-Au NC probes, and then 50 μL metal
ion solution was added to make the final volume of 1 mL. The final
concentration of all metal ions was 5.0 μM. After 5-min reaction at
room temperature, the fluorescence emission spectra were collected
by an F-7000 fluorescence spectrophotometer. For anti-interference
assays, 700 μL ultrapure water was added into a 1.5-mL centrifuge
tube containing 100 μL PB buffer and 100 μL F-Au NCs probes, and
then 50 μL metal ion solution and 50 μL Hg2+ solution were added to
make the final volume of 1 mL. After 5-min reaction at room
temperature, the fluorescence emission spectra were collected by an
F-7000 fluorescence spectrophotometer.

River water sample analysis

River water samples were obtained from the local Xiaoyue River
in Yuandadu Park. The water samples obtained were first passed
through a filter membrane with a pore size of 0.22 μm and were then
ultrafiltered with a 3-KDa ultrafiltration tube to remove large
aggregates or particles. To detect Hg2+ content, an 800-μL water
sample was added into a 1.5-mL centrifuge tube containing
100 μL PB buffer (pH 7.4) and 100 μL F-Au NC probes to make
the final volume of 1 mL. After 5-min reaction at room temperature,
the fluorescence emission spectra were collected by an F-7000
fluorescence spectrophotometer. To conduct standard addition
experiments, a 750-μL water sample was added to a 1.5-mL
centrifuge tube containing 100 μL PB buffer (pH 7.4) and
100 μL F-Au NC probes, and then 50 μL Hg2+ solution was
added to make the final volume of 1 mL. The final
concentrations of added Hg2+ were 5.0 μM, 10.0 μM, and
15.0 μM. After 5-min reaction at room temperature, the
fluorescence emission spectra were collected by an F-7000
fluorescence spectrophotometer.

Results and discussion

Synthesis and characterization of F-Au NCs

At the start, the dual-emissive F-Au NCs were synthesized
based on a two-step protocol. That is, CD-Au NCs were first
prepared, and the F-Au NCs were obtained after fluorescein
decoration. As shown in Figure 2A, the maxima fluorescence

FIGURE 2
Fluorescence excitation and emission spectra (A) and UV–Vis absorption spectra (B) of CD-Au NCs. Inset image: photograph of CD-AuNCs solution
under room light. (C) Fluorescence emission of GSH-Au NCs and CD-Au NCs. (D) TEM image of CD-Au NCs. (E) Statistic size distribution of CD-Au NCs.
(F) Fluorescence emission of dual-emissive F-Au NCs.
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excitation and emission wavelengths of CD-Au NCs were found
at 421 nm and 570 nm, respectively. The fluorescence excitation
and emission spectra were consistent with Yang et al. (2018). In
addition, the UV–Vis absorption spectrum of CD-Au NCs
showed a broad absorbance band at approximately
300–450 nm (Figure 2B). In comparison with GSH-Au NCs,
CD-Au NCs showed stronger fluorescence without a change in
the emission profile (Figure 2C). The fluorescence increment
might be attributed to the CD modification-mediated increase of
surface thiolate ligand density and the diminution the
nonradiative transition. The TEM image indicates that the
CD-Au NCs were spherical, with an average size of 2.4 ±
0.2 nm (Figures 2D, E). These results suggest the generation
of CD-Au NCs. After fluorescein decoration, a new emission
band centered at 514 nm was observed (Figure 2F), while the
emission band centered at 567 nm was preserved, revealing the
successful preparation of dual-emissive F-Au NCs.

Hg2+-induced ratiometric
fluorescence variation

To investigate the fluorescence response of dual-emissive
F-Au NCs toward Hg2+, the fluorescence emission spectra of
F-Au NCs were obtained before and after the addition of Hg2+. As
shown in Figure 3, the orange emission centered at 567 nm
displayed a dramatic decrement (~75%) during the introduction
of Hg2+, indicating that Hg2+ can cause the fluorescence
quenching of Au NCs. However, the green emission centered
at 514 nm showed no distinct variation. The maintained green
emission might act as an internal fluorescence reference for Hg2+

recognition. The emission profile of Au NCs showed no visible
change with the addition of Hg2+, suggesting that the fluorescence
quenching is not assigned to the generation of new Au NCs with
different structure. It is well-known that Hg2+ can strongly bind
to Au+ through d10–d10 interaction, which alters the electron

transition and quenches the fluorescence of Au NCs (Xie et al.,
2010). In general, partial Au(I) exists on the surface of thiolate-
stabilized Au NCs, which is important for the emission character
of Au NCs (Wang et al., 2023; Yuan et al., 2013). To understand
the d10–d10-mediated Hg2+-Au+ interaction-induced fluorescence
quenching, a strong reducing agent (NaBH4) was introduced into
the Hg2+-F-Au NC mixture. Interestingly, the fluorescence at
approximately 567 nm showed visible recovery after the addition
of NaBH4. The recovered orange emission indicated that the
Hg2+-induced fluorescence variation can be attributed to the
Hg2+-Au+ d10–d10 interaction-supported fluorescence
quenching of Au NCs. Additionally, we found that fluorescein
emits strong green light compared to F-Au NCs, while the
introduction of Hg2+ only caused the quenching of orange
emission but did not enhance the green emission of adsorbed
fluorescein. It can be seen that the UV–Vis absorption spectra of
Au NCs displayed an overlap in the emission profile of
fluorescein, leading to fluorescence resonance energy transfer
between fluorescein and Au NCs. Despite the Hg2+-induced
fluorescence quenching of Au NCs, the absorption character
of Au NCs was not affected. Therefore, the fluorescence
resonance energy transfer process was not suppressed, leading
to the unchanged green emission. Hg2+-F-Au NC binding not
only suppresses the orange emission of Au NCs through strong
d10–d10 interaction but also maintains the green emission of
fluorescein by reserving the fluorescence resonance energy
transfer pathway, which endows a ratiometric and sensitive
fluorescence response toward Hg2+.

Hg2+ sensing in aqueous media

Since the introduction of Hg2+ into dual-emissive F-Au NC
solution caused ratiometric fluorescence variation, such a
response might be able to be utilized for fluorometric Hg2+

detection by using F-Au NCs as the fluorescence reporters.
Since fluorescein decoration is important to ratiometric
variation, the fluorescein dosage was optimized to achieve
sensitive Hg2+ detection. As shown in Figure 4A, the relative
fluorescence ratio variation was monitored under different
fluorescein dosage using R (R = (I514/I567)/(I514/I567)0) as the
reporting signal. It can be seen that the R value showed an
increment with the increasing fluorescein concentration from
100 to 300 nM. However, it showed reverse trends when the
fluorescein concentration was higher than 300 nM. A possible
reason for this phenomenon is that the low fluorescein
concentration cannot support effective green emission due to
the fluorescence resonance energy transfer and thus shows a
small R value only. However, ultrahigh fluorescein concentration
contributes strong green emission and a large value of (I514/I567)0.
As a result, only a small R value is obtained with ultrahigh
fluorescein concentration. In this case, 300 nM fluorescein was
used for the decoration of Au NCs. In addition, the solution pH is
also important to Hg2+ sensing. The fluorescein only shows
strong emission under alkaline conditions, with only weak
emission in an acidic environment. In addition, a Hg2+

dismutation reaction occurs in acidic conditions and forms
Hg(OH)2 in alkaline solution. Those pH-dependent factors

FIGURE 3
Fluorescence emission spectra of F-Au NCs without (black line)
and with (red line) the addition of Hg2+ in the absence and presence
(blue line) of NaBH4.
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FIGURE 4
Optimization of Hg2+-sensing parameters. Fluorescence intensity ratio variation R (R = (I514/I567)/(I514/I567)0) of F-Au NC solution with the addition of
Hg2+ versus fluorescein decoration concentration (A) and reaction pH value (B).

FIGURE 5
(A) Fluorescence emission spectra of F-Au NC solution upon adding Hg2+ with various concentrations. (B) Plots of fluorescence intensity ratio
variation R (R = (I514/I567)/(I514/I567)0) of F-Au NC solution versus Hg2+ concentrations. (C) Fluorescence intensity ratio variation R of 11 repeated
measurements of F-Au NC solution toward 3.0 µM Hg2+.

TABLE 1 Hg2+ analysis in Xiaoyue River water and tap water samples with the proposed F-Au NC probes.

Sample Spiked Hg2+ (μM) Found (μM) Recovery (%) RSD (%, n = 5)

River water 0.5 0.5 ± 0.1 100.0 2.6

5.0 5.1 ± 0.1 102.0 1.8

10.0 9.9 ± 0.2 99.0 2.4

15.0 15.2 ± 0.2 101.3 2.1

Tap water 0.5 0.5 ± 0.1 100.0 2.8

5.0 4.9 ± 0.1 98.0 2.1

10.0 10.1 ± 0.3 101.0 2.3

15.0 15.1 ± 0.2 100.7 2.4
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can influence Hg2+ detection sensitivity. It was seen that the
maximum R value occurred under pH 7.4 (Figure 4B), so the
following experiments were conducted at pH 7.4 without further
pH adjustment.

The sensitivity evaluation toward Hg2+-sensing with F-Au
NCs was first investigated based on ratiometric analysis. The
fluorescence emission spectra of F-Au NC solution were recorded
after the addition of Hg2+ with various concentrations. As shown
in Figure 5A, the orange fluorescence (567 nm) of Au NCs
gradually decreased with the increasing Hg2+ concentration
without change of spectral shape. The maintained emission
profile forms a Hg2+-F-Au NC complex rather than producing
new Au NC components. Meanwhile, the green fluorescence was
unchanged, resulting in the increased fluorescence intensity ratio
of I514/I567. Using the R value as the reporting signal, a linear
response relation was found with the Hg2+ concentration range
from 0.1 to 15.0 μM. As manifested in Figure 5B, the R-value
plots could be described with the linear equation y = 0.995 + K
[Q] (R2 = 0.996), where y is the R value, K is the corresponding
fluorescence response constant, and [Q] is the Hg2+

concentration. Throughout the linear regression treatment, the
fluorescence response constant K was calculated to be 1.72 ×
105 M-1. The reproducibility of Hg2+ sensing was also investigated
by ten repeated measurements of the Hg2+-induced fluorescence
response of F-Au NCs. As displayed in Figure 5C, with
11 repeated measurements of 3.0 µM Hg2+-induced
fluorescence changes, only a slight variation was observed in
the R value, and a low relative standard deviation (RSD) value of
1.6% was obtained, suggesting the high reproducibility of
proposed F-Au NC probes. The LOD toward Hg2+ by F-Au
NC probes was determined to be 15 nM (S/N = 3). This LOD
is comparable to many reported Hg2+ detection methods (Bharati
Jaryal et al., 2024; Luo et al., 2021; Musikavanhu et al., 2024; Zhao
et al., 2024).

To evaluate the proposed F-Au NCs probes, the selectivity
assessment is important. To understand whether the Hg2+-

induced ratiometric fluorescence change is specific, the
fluorescence emission spectra of F-Au NC probes in the
presence of Hg2+ and other possible interferents were
measured. In this study, metal ions including K+, Ca2+, Fe3+,
Co2+, Ni2+, Zn2+, Mg2+, Cr3+, and Al3+ were chosen for the
specificity evaluation. The concentrations of Hg2+ and other
metal ions were set at 5 µM. None of these metal ions could
cause a comparable increment of R value as did Hg2+, indicating
that the Hg2+-induced ratiometric variation of F-Au NC probes is
selective. The Hg2+-induced ratiometric variation was not
affected by the co-existence of various metal ions (Figure 6),
even with the mixture of metal ions, further demonstrating the
high specificity of Hg2+ detection with F-Au NC probes. The
satisfying selectivity is largely ascribed to the strong Hg2+-Au+

d10–d10 interaction. Taken together, the F-Au NC probes enabled
selective and reproducible Hg2+ detection, with comparable
sensing performances compared to other reported probes.

Hg2+ analysis in river water and tap
water samples

The favorable sensitivity and selectivity of F-Au NC probes
suggest the possibility of Hg2+ analysis in real samples. In this study,
the practical application of F-Au NC probes was verified by Hg2+

analysis in river- and tap-water samples. The collected river- or tap-
water samples were first centrifuged-filtered to remove large
aggregates. The Hg2+-induced signal variation was not detected in
the river- or tap-water samples, indicating that the Hg2+ contents in
both river- and tap-water were lower than the LOD of Au NC
probes. Accuracy was validated using standard addition protocols.
As shown in Table 1, the detected Hg2+ contents were generally
consistent with those added, with recovery values close to 100%
(98.0–102.0%). The RSD values were also small (& 2.8%, n = 5),
further revealing the high accuracy of the proposed F-AuNC probes.
It can be concluded that the proposed dual-emissive F-Au NC-based
ratiometric system is applicable for Hg2+ detection in real
water samples.

Conclusion

We established a ratiometric Hg2+ detection platform based
on dual-emissive F-Au NC probes. The CD-assisted fluorescein
modification replies on host–guest interaction and does not
change the reactivity of Au NCs. By integrating the Hg2+-Au+

d1–-d10 interaction-mediated fluorescence quenching of Au NCs
and fluorescein internal reference, the proposed platform enables
a ratiometric and selective response toward Hg2+ over other metal
ions. On the basis of F-Au NC probes, rapid Hg2+ perception with
an LOD of 15 nM is achieved under optimized conditions.
Practical application is also validated by accurate Hg2+

analysis in river-water samples. This study not only reports a
ratiometric Hg2+ detection system but also demonstrates the
preparation of functional Au NCs by utilizing host–guest
interaction. Thus, the development of versatile Au NCs with
designed functions for expected applications is possible by
involving noncovalent modification.

FIGURE 6
Fluorescence intensity ratio variation R (R = (I514/I567)/(I514/I567)0)
of F-Au NCs upon adding various metal ions in the presence of Hg2+.
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