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Mass spectrometry (MS) is a powerful analytical technique employed for a variety
of applications including drug development, quality assurance, food inspection,
and monitoring environmental pollutants. Recently, in the production of actively
developed antibody and nucleic acid pharmaceuticals, impurities with various
modifications have been generated. These impurities can lead to a decrease in
drug stability, pharmacokinetics, and efficacy, making it crucial to distinguish
between them. We previously modeled mass spectrometry for each possible
number of constituents in a sample, using parameters such as monoisotopic
mass and ion counts, and employed stochastic variational inference to determine
the optimal parameters and the maximum posterior probability for each model.
By comparing the maximum posterior probabilities among models, we selected
the optimal number of constituents and inferred their corresponding
monoisotopic masses and ion counts. However, MS spectra are sparse and
predominantly flat, which can lead to vanishing gradients when using simple
optimization techniques. To solve this problem, using MCMC as in our previous
studies would take a very long time. To address this difficulty, in this study, we blur
the comparative spectra and gradually reduce the blur to prevent vanishing
gradients while inferring accurate values. Furthermore, we incorporate MS/MS
spectra into the model to increase the amount of information available for
inference, thereby improving the accuracy of parameter inference. This
modification improved the mass error from an average of 1.348 Da–0.282 Da.
Moreover, the required time, even including the processing of additional five MS/
MS spectra, was reduced to less than half.
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1 Introduction

Mass Spectrometry (MS) serves as a robust analytical method
and is employed across various fields including drug development,
food safety inspections, and environmental pollutant monitoring. In
recent years, with the vigorous development of antibodies and
nucleic acid drugs, impurities with different modifications have
been produced. Such impurities may adversely affect the stability,
pharmacokinetics, and efficacy of drugs (Sanghvi, 2011; Weinberg
et al., 2005; Tamara, den Boer, and Heck, 2022; Pecori et al., 2022). It
is, therefore, essential in pharmaceutical development and quality
control to identify and address these multiple impurities.
Additionally, understanding the monoisotopic mass of the
constituents can offer crucial insights into the origins of impurity
formation. Similarly, knowledge of the ion concentrations of these
constituents assists in evaluating the potential impact of the
impurities.

In contemporary mass spectrometry, accurately identifying
impurities in middle or high molecules with minor modifications
remains challenging. Traditional chromatography methods
frequently struggle to effectively separate these impurities. It is
also difficult to separate them on the MS axis due to increased
spectral complexity from isotopes and multivalent ions.

Enhancing the hardware resolution allows for the distinction of
subtle variations between isotopes and modifications. However,
high-resolution techniques like Fourier Transform Ion Cyclotron
Resonance (FT-ICR) necessitate large-scale equipment and
significant investment, making them cumbersome to manage.
Therefore, it is more practical to use devices suited for standard
laboratories, such as Triple Quadrupole MS and Quadrupole Time-
of-Flight MS (Q-TOF-MS).

Consequently, there is ongoing research into software-driven
signal analysis. Efforts have beenmade to deduce mass from the data
provided by mass spectrometers. Basic techniques for generating m/
z lists from spectral data include wavelet transformations (Zhang
et al., 2009). However, for spectra from medium to high molecular
compounds that display broad isotope distributions, particularly
those ionized by electrospray ionization (ESI) which generates
multivalent ions, pinpointing the monoisotopic mass becomes
more complex.

For tackling charge deconvolution and deisotoping in spectra
from multivalent ions, numerous algorithms have been introduced,
including heuristic Gaussian fitting via nonlinear least squares
minimization (Dasari et al., 2009). The ReSpect algorithm,
employing the Maximum Entropy method (Ferrige et al., 1992),
has been widely utilized (Zhang and Alecio, 1998; Tranter, 2000;
Ferrige et al., 2003). This algorithm calculates m/z lists by applying
constraints based on charge distribution, facilitating the
identification of monoisotopic masses. Nevertheless, ReSpect does
not provide a clear estimation of the number of constituents in the
spectrum, nor does it handle discrete conditions, such as
determining the likelihood of having k or k + 1 constituents.
Furthermore, as the number of peaks in a deconvoluted
spectrum increases, so does the entropy term of the objective
function, often leading to the selection of spectra with numerous
peaks. More recently, novel approaches like UniDec, which employs
Bayesian deconvolution, have been developed (Marty et al., 2015;
Marty, 2020). UniDec is inspired by the Richardson-Lucy algorithm

(Richardson, 1972; Lucy, 1974) and operates more rapidly than
ReSpect. However, its iterative technique for matching the observed
data with a convoluted spectrum still fails to address the challenge of
assessing the probability of specific constituent counts.

In prior research (Tomono et al., 2024), we inferred the number
of constituents based on their monoisotopic masses and ion counts.
We modeled these using multiple assumed constituent counts and
then derived the maximum posterior probability and optimal model
parameters for each numbers of constituents using NUTS (No-U-
Turn Sampler), Simulated Annealing, and Stochastic Variational
Inference. Despite these efforts, the accuracy of our results was
insufficient.

Consequently, this study introduces an improved methodology
to accurately infer the optimal number of constituents and their
monoisotopic masses and ion counts using MS/MS (Tandem Mass
Spectrometry) spectra. This methodology is beneficial for detecting
impurities in pharmaceutical products, optimizing synthesis
conditions for medium to high molecular drugs, and enhancing
quality assurance processes in manufacturing settings.

2 Proposed method

2.1 Analytical method framework

Our method initially models the physical MS and MS/MS
system with all possible numbers of constituents. For each model
with a different number of constituents, we calculate the optimal
monoisotopic masses and ion counts and derived the posterior
probabilities. The monoisotopic mass refers to the sum of the
masses of the most abundant isotopes of each element present in
a molecule or ion. This calculation is achieved by using Stochastic
Variational Inference (SVI) (Wingate and Weber, 2013; Ranganath
et al., 2014; Kingma and Welling, 2013).

However, this model encounters specific issues inherent in mass
spectrometry. The MS spectrum we are comparing is mostly flat
with several sharp peaks localized in certain areas. Applying simple
optimization methods to such data often leads to vanishing
gradients, making it difficult to effectively explore parameters.
One way to avoid this difficulty is to use Markov chain Monte
Carlo methods (MCMC) and Simulated Annealing, but this requires
significant computational time.

Therefore, we propose a new method called Spectral Annealing
Inference (SAI). SAI combines SVI and spectral annealing by Point
Spread Function (PSF) to explore optimal parameters while avoiding
vanishing gradients and local optima. After calculating all posterior
probabilities by SAI, we select the most probable number of
constituents, as well as their monoisotopic masses and ion counts.

To prevent selecting overfitted complex models, we introduce a
prior distribution of the number of constituents. In this paper, we
define a constituent as a set of ions that share the samemonoisotopic
masses,m′. Namely, we regard all isotopic variants and isomers as a
single constituent.m′ is calculated by replacing all constituent atoms
of an ion with their most abundant isotopes. Additionally, we
impose constraints on the prior distribution to ensure that m′ of
each constituent do not overlap.

To avoid the curse of dimensionality where the search space
expands exponentially with the number of constituents, we employ a

Frontiers in Analytical Science frontiersin.org02

Tomono et al. 10.3389/frans.2025.1494615

https://www.frontiersin.org/journals/analytical-science
https://www.frontiersin.org
https://doi.org/10.3389/frans.2025.1494615


staged search approach. We incrementally increase the number of
constituents from k � 1 to a predefined maximum k � kmax,
calculating the optimal parameters and their posterior
probabilities at each stage. This method efficiently narrows down
the search space for the parameters of the next level of constituents,
enhancing both the efficiency and accuracy of our parameter
inference. The value of kmax is determined based on prior
knowledge, such as the expected complexity of the sample or
physical constraints. For k constituents, we calculate the optimal
parameters and their posterior probabilities. These parameters are
then used to efficiently focus the parameter search areas for the k + 1
constituents.

Initially, we develop a model for k � 1 constituent and derive the
optimal parameters and the highest posterior probability from the
aforementioned prior distributions and observed data.
Subsequently, we construct a model for k � 2 constituents, where
we apply a prior distribution centered around the optimal
parameters previously inferred for k � 1, thus limiting its range.
This strategy helps prevent a significant expansion in the parameter
search space. Leveraging this new prior distribution, we infer the
optimal parameters and achieve the highest posterior probability.
We continue this process, systematically determining the maximum
posterior probability for each model as the number of constituents
increases to kmax. Finally, we compare the maximum posterior
probabilities across all models, selecting the model with the
highest probability. From this model, we derive the inferences for
the monoisotopic masses and ion counts, ensuring themost accurate
representation of the sample composition.

2.2 Physical model of mass spectrometers

2.2.1 MS spectrum for intact ions
According to prior research, the spectrum in mass spectrometry

can be approximated using the following model (Tomono et al.,
2024). The probability distribution of mass of constituent j can be
described by a binomial distribution ~pj(ωj). Here, ωj �
round(m−m′

j

ε ) is the increase in neutron number from the
monoisotopic ions of constituent j, where m′

j represents the
monoisotopic mass of constituent j. m represents a variable in
the mass space, and m≥ 0. ε represents the mass of neutron,
1.008664 Da. We postulate ωj ≥ 0, because, in the biochemical
domain, the most abundant isotope is usually also the lightest. In

this model, we assume that nj atoms within a molecule can be
replaced by isotopes with a mass increase of ε Da at a probability of
uj. Additionally, for the charge distribution ~qj(z), we assume that lj
chargeable sites can acquire a charge of +1 (in the case the mass
spectrometry system is in positive mode) at a charge rate of vj. z
denotes the variable representing the absolute value of charge, where
z≥ 1 and z is an integer.

The mathematical expressions of the distributions generated by
these binominal processes are:

~pj ωj( ) � nj
ωj

( )uj
ωj 1 − uj( )nj−ωj

0

⎧⎪⎨⎪⎩ ωj ≥ 0( )
otherwise,

(1)

~qj z( ) � lj
z

( )vjz 1 − vj( )lj−z. (2)

Here,
j: constituent index (j � 1, 2,/k),
m: a variable in themass space where m≥ 0,
z: a variable representing the absolute value of charge, where

z≥ 1 and z is an integer,
m′

j: monoisotopicmass of constitutent j,
lj: monoisotopicmass of constitutent j,
nj: number of atoms of constitutent j,
uj: isotopic replacing rate of constitutent j,
vj: charge rate of charge able sites of constitutent j, and
ε: the mass of a neutron.
Typically, the spectrum obtained from a mass spectrometer is

represented along the mass-to-charge ratiom/z axis. Here, we define
φ as the variable representing m/z. The total number of ions
belonging to a set, i.e., a constituent j, is denoted by Ij. Each ion
in the set is indexed by ij. Themass and charge of each individual ion
ij are denoted as ωij ~ ~pj and zij ~ ~qj. When an ion ij is detected, its
observed ideal spectrum would be δ(φ − (m′

j + εωij)/zij) where δ is
Kronecker delta function. Regardless of its charge state or mass, a
single ion contributes to the observed spectrum as a single delta
function. Therefore, the ideal spectrum formed by this set of ions
(from ij � 1 to Ij), Dj(φ), can be represented as shown in
Equation 3

Dj φ( ) � ∑Ij
ij�1

δ φ − m′
j + εωij( )/zij( ) (3)

where φ: a variable representing the mass to charge ratio,
and δ: Kronecker delta function

TABLE 1 Computational environment used for validation.

CPU Intel (R) Xeon (R) Platinum 8280 CPU @ 2.70 GHz

GPU NVIDIA A100

RAM 1,024 GB

OS Ubuntu 20.04.6 LTS

Software Python 3.10.12

Numpyro 0.14.0

jax 0.4.14

CUDA 12.1

TABLE 2 Settings for constituent spectrum generation.

ID Sequence Molecular
formula

Monoisotopic
mass m′

j [Da]

A gcgtttgctcttctt
cttgcg

C204H263N63O134P20 6361.088

B gcgtttgutcttctt
cttgcg

C204H262N62O135P20 6362.072

C gugtttgutcttctt
cttgcg

C204H261N61O136P20 6363.057
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The theoretical probability distribution Uj(φ) of the ions
belonging to constituent j on the φ axis is determined solely by
ωj and z, which are mutually independent. Their independence
comes from the facts that ωj is a function of m, and a chemical
property z is hardly affected by the isotope mass m. Accordingly,
Uj(φ) is obtained by summing the product of the probabilities of ωj,
the probabilities of z, and the Kronecker delta function δ(φ − (m′

j +
εωj)/z) over all ωj and z as shown in Equation 4.

Uj φ( ) � ∑∞
z�1

∑∞
ωj�1

~pj ωj( ) · ~qj z( ) · δ φ − m′
j + εωj( )/z( ) (4)

As previously stated, regardless of its charge state or mass, a
single ion contributes as a single delta function. Therefore, the
observed spectrum of ions is proportional to the probability
distribution of ions along the φ axis. According to the Glivenko-
Cantelli Theorem, the empirical spectrum Dj(φ) converges
uniformly to the theoretical distribution Uj(φ) as sample size

increases as far as our physical assumptions argued in the former
explanation is valid. Therefore, the ideal spectrum of constituent j,
Dj(φ), can be approximated by Uj(φ) as shown in Equation 5.

Dj φ( ) � ∑Ij
ij�1

δ φ − m′
j + εωij( )/zij( ) ~ Ij · Uj φ( ) Ij ≫ 1( ) (5)

Due to the point spread of the detector’s response R(φ), the
observed spectrum becomes the convolution of approximated
spectrum of constituent j, denoted as Ij · Uj(φ), with R(φ),
resulting in Ij · (Uj pR)(φ). Consequently, the summation of
the spectra over all constituents contained in the sample yields
the spectrum inferred to be observed, Ŝms(φ) as shown in
Equation 6.

Ŝms φ( ) � ∑k
j�1
Ij · Uj pR( ) φ( ) (6)

where k: number of constituents in the sample

2.2.2 M/MS spectra for fragment ions
In this subsection, we particularly focus on the generation

process of MS/MS spectra. Hybrid mass spectrometers equipped
with multiple separation mechanisms allow for the selective passage
of precursor ions based on specific m/z values at the first stage, and
the dissociation of these precursor ions using argon gas or similar
agents in the collision cell. The m/z of the resulting fragment ions
can then be measured in the subsequent separation stage. In this
study, we consider a scenario where ions contained within a specific
region of the MS spectrum, denoted as peakd (d � 1 to dmax) are
selected and forwarded to the subsequent stage for MS/MS spectral
measurement. Neutral molecules formed during this collision-
induced dissociation are not detected.

We define a set of ions sharing the monoisotopic mass m′
f

produced in the collision cell as constituent f (f � 1 to fmax). We
assume that totally fmax fragment constituents are produced. As
with constituent j, we assume a binomial distribution as the isotopic
distribution of fragment constituent f. Here we define the increase
in neutron number ωf � round(m−m′

f

ε ), and its distribution is

TABLE 3 Combinations of constituents when generating spectra.

Mixture
no.

Ion counts

Constituents
A

Constituents
B

Constituents
C

1 200,000 200,000 200,000

2 200,000 200,000 20,000

3 200,000 20,000 200,000

4 20,000 200,000 200,000

5 200,000 20,000 20,000

6 20,000 200,000 20,000

7 20,000 20,000 200,000

8 200,000 200,000 —

9 200,000 20,000 —

10 20,000 200,000 —

TABLE 4 Settings for constituent spectrum generation.

Precursor Fragment ID Sequence Molecular formula Monoisotopic mass m′
j [Da] Conversion rate

ρ

A F1 gcgtt C49H63N17O30P4 1494.077 0.3

F2 tgctcttct C87H114N24O57P8 2655.810 0.3

F3 tcttgcg C68H88N22O43P6 2087.450 0.3

B F1 gcgtt C49H63N17O30P4 1494.077 0.3

F4 tgutcttct C87H113N23O58P8 2656.795 0.3

F3 tcttgcg C68H88N22O43P6 2087.450 0.3

C F5 gugtt C49H63N17O30P4 1495.061 0.3

F4 tgutcttct C87H113N23O58P8 2656.795 0.3

F3 tcttgcg C68H87N21O44P6 2088.435 0.3
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denoted by ~pf(ωf), within the range ofωf ≥ 0. In biomolecules such
as nucleic acids and proteins, which consist of repeating structural
units, it is reasonable to regard that elements are uniformly
distributed across the ion of a precursor constituent. Therefore,
we assume the number of atoms in an ion of a fragment constituent
is roughly proportional to its monoisotopic mass.

Accordingly, the number of atoms in constituent f, nf, is
evaluated as nj · m′

f

m′
j

. Moreover, by similar argument on the
uniformity of the chemical composition across the molecule of a
precursor constituent, its fragments share the same chemical
composition with the precursor constituent. Therefore, we
assume the rate of isotopes in a fragment, uf, is equal to that of
its precursor constituent, uj. Consequently, the isotopic distribution
~pf(ωf) is represented as shown in Equation 7.

~pf ωf( ) � nf
ωf

( )uf
ωf 1 − uf( )nf−ωf

0

⎧⎪⎨⎪⎩ ωf ≥ 0( )
otherwise.

(7)

Additionally, we approximate the charge distribution of
constituent f, ~qf(z), using a binomial distribution. In a manner
similar to the discussion on isotopes, it is reasonable to approximate
that chargeable sites, such as phosphate groups in nucleic acids and
side chains in proteins, are uniformly distributed across the entire
precursor ion. Therefore, we assume that the number of chargeable
sites that can acquire a charge is also roughly proportional to the
monoisotopic mass of a fragment.

Accordingly, the number of chargeable sites of constituent f, lf,
is calculated as lj · m′

f

m′
j

. Since the distribution of chargeable sites in
the fragments are regarded as the same as those in the precursor
constituent j, we also assume that the probability of the chargeable
sites acquiring a charge, vf, is equal to vj. Thus ~qf(z) is represented
as shown in Equation 8.

~qf z( ) � lf
z

( )vfz 1 − vf( )lf−z (8)

When the total number of ions of constituent j within peakd is
given by Idj and the probability that a precursor constituent j
dissociates into a fragment constituent f is denoted by ρj→f

(where ρj→f < 1), the expected number of ions of constituent f
produced from constituent j within peakd, Idj→f, is calculated as
Idj→f � round(Idj · ρj→f). Each ion in the Idj→f ions is indexed by
idj→f. The mass and charge of each individual ion idj→f are denoted
as ωidj → f ~ ~pf and zidj → f ~ ~qf, respectively.

When an ion idj→f is detected, its observed ideal spectrumwould
be δ(φ − (m′

f + εωidj → f)/zidj → f). Regardless of its charge state or
mass, a single ion contributes to the observed spectrum as a single
delta function as well as Equation 3. Therefore, the ideal spectrum
formed by this set of ions (from idj→f � 1 to Idj→f), Ddj→f(φ), is
represented as shown in Equation 9

Ddj→f φ( ) � ∑Idj → f

idj → f�1
δ φ − m′

f + εωidj → f( )/zidj → f( ) (9)

The probability distributionUdj→f(φ) of constituent f, which is
produced by the dissociation of constituent j included in peakd, can
be calculated using the same approach as for constituent j. However,
when the increase in neutron number from the monoisotopic mass
and the charge of the precursor ion of constituent j in the peakd is
denoted as ωdj and zdj, the increase in neutron number and charge
of the precursor ion of fragment f produced from constituent j in
the peakd, ωf and z do not exceed ωdj and zdj. Therefore, the
domain of the fragment spectrum is limited to ωf <ωdj and < zdj.
Consequently, the probability distribution of fragment f produced
from the ions belonging to constituent j in peakd along the mass-to-
charge ratio, φ, axis, Udj→f(φ) is described by Equation 10.

Udj→f φ( ) � ∑zdj
z�1

∑ωdj

ωf�1
~pf ωf( ) · ~qf z( ) · δ φ − m′

f + εωf( )/z( ) (10)

In a manner similar to the MS spectrum, the observed spectrum
of ions is proportional to the probability distribution of ions along
the φ axis. Then, the empirical spectrum Ddj→f(φ) converges
uniformly to the theoretical distribution Udj→f(φ) as sample size
increases. Consequently, the spectrum of fragment constituent f
produced from constituent j in the peakd, Ddj→f(φ), is
approximated by Udj→f(φ) as shown in Equation 11.

TABLE 5 Logarithmic the maximum posterior probability assuming each constituent count.

Mixture no. True k k = 1 k = 2 k = 3 k = 4 k = 5

1 3 47,105,177,363 47,393,725,990 47,483,532,600 47,346,416,715 47,254,303,582

2 3 47,146,886,931 47,366,925,862 47,449,326,904 47,313,374,283 47,175,013,214

3 3 47,014,840,083 47,244,324,390 47,373,047,096 47,250,988,107 47,086,080,862

4 3 47,131,236,115 47,395,782,182 47,471,375,672 47,379,242,059 47,237,026,654

5 3 47,064,819,475 47,151,820,326 47,280,768,312 47,011,781,707 47,037,133,662

6 3 46,905,566,995 47,412,682,278 47,418,451,256 47,312,964,683 47,170,704,222

7 3 45,634,242,323 46,312,828,454 46,127,834,424 46,126,197,835 45,988,160,350

8 2 47,152,965,395 47,406,665,254 47,272,772,920 47,361,895,499 47,229,703,006

9 2 47,063,078,675 47,126,523,430 47,088,674,104 46,960,897,099 46,818,112,350

10 2 47,119,251,219 47,376,494,118 47,405,405,496 47,277,431,883 47,172,645,726

Bold values indicate the number of components k that yielded the highest posterior probability among different assumed component numbers for each mixture.
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Ddj→f φ( ) � ∑Idj → f

idj → f�1
δ φ − m′

f + εωif( )/zif( ) ~ Idj→f · Udj→f φ( )
Idj→f≫ 1( ) (11)

Therefore, the MS/MS spectrum for peakd, Ŝmsmsd(φ), is
obtained by summing Idj → f · Udj→f(φ) over all j and f as
shown in Equation 12.

Ŝmsmsd φ( ) � ∑k
j�1

∑fmax

f�1
Idj→f · Udj→f pR( ) φ( ) (12)

Here, we set fmax to an appropriate number of potential
fragment constituents. In actual inference, the fitting progresses

from the most prominent fragment constituents identified by the
magnitude of the spectrum. To infer the number of precursor
constituents and their parameters, it is not necessary to identify
all the fragment constituents, and it suffices to cover some key
fragments. Consequently, fmax may be set to a number less than the
actual number of fragment constituents produced.

2.3 Bayesian inference of number of
constituents and parameters

We consider a scenario in which we obtain a set of observed
spectra Sobs, consisting of MS spectrum Sobsms and MS/MS spectra

TABLE 6 Optimal monoisotopic masses of the model with the maximum posterior probability.

Mixture no. True SAI UniDec

Mass [Da] Mass [Da] Error [Da] Mass [Da] Error [Da]

1 6361.088 6361.086 −0.002 6361.070 −0.018

6362.072 6362.273 0.201 6362.070 −0.002

6363.057 6363.055 −0.002 — —

2 6361.088 6361.084 −0.004 6361.080 −0.008

6362.072 6362.277 0.205 6362.070 −0.002

6363.057 6363.056 −0.001 — —

3 6361.088 6361.099 0.011 6361.080 −0.008

6362.072 6362.059 −0.013 6362.070 −0.002

6363.057 6363.265 0.208 — —

4 6361.088 6360.231 −0.857 6361.070 −0.018

6362.072 6362.066 −0.006 6362.060 −0.012

6363.057 6363.054 −0.003 6364.050 0.993

5 6361.088 6360.146 −0.942 6361.080 −0.008

6362.072 6361.073 −0.999 — —

6363.057 6363.282 0.225 — —

6 6361.088 6359.248 −1.840 6361.070 −0.018

6362.072 6361.069 −1.003 6362.070 −0.002

6363.057 6362.068 −0.989 — —

7 6361.088 — — 6361.060 −0.028

6362.072 6362.064 −0.008 6362.060 −0.012

6363.057 6363.264 0.207 6364.050 0.993

8 6361.088 6360.224 −0.864 6361.080 −0.008

6362.072 6361.072 −1.000 6362.080 0.008

9 6361.088 6361.102 0.014 6361.090 0.002

6362.072 6362.041 −0.031 — —

10 — 6360.075 — — —

6361.088 6361.071 −0.017 6361.070 −0.018

6362.072 6362.257 0.185 6362.070 −0.002

Frontiers in Analytical Science frontiersin.org06

Tomono et al. 10.3389/frans.2025.1494615

https://www.frontiersin.org/journals/analytical-science
https://www.frontiersin.org
https://doi.org/10.3389/frans.2025.1494615


Sobsmsmsd
(d � 1, 2, . . . , dmax). Assuming the number of constituents

as k, our inference target is a parameter vector θk. A posterior
probability distribution Pk(θk|Sobs) is defined according to Bayes’
theorem, as shown in Equation 13. Here Pk(Sobs|θk) represents a
likelihood of parameters θk given under Sobs. Pk(θk) denotes a prior
distribution.

Pk θk|Sobs( )∝Pk Sobs|θk( )Pk θk( ) (13)

We determine the posterior probability and optimal parameters
by maximizing logarithmic posterior probability LPk, defined as:

LPk ≔ log Pk Sobs|θk( )( ) + log Pk θk( )( ) (14)
In this study, the set of parameters for inference, denoted as

θk � {m′
j, Ij, nj, uj, lj, vj, m′

f, Idj, ρj→f, nf, uf, lf, vf | j � 1, 2, . . . ,
k, d � 1, 2, . . . dmax, f � 1, 2, . . . , fmax } is defined for each
combination of a precursor constituent j and a fragment
constituent f. Substituting nj, uj into Equation 1 and lj, vj into
Equation 2, and m′

j, Ij, into Equation 5 yields the MS spectrum
Ŝms(φ) as derived from Equation 6. Further, substituting nf, uf into
Equation 7, lf, vf into Equation 8, and m′

f, Idj, ρj→f into Equation
11 leads to the derivation of the MS/MS spectra Ŝmsmsd(φ) from
Equation 12.

Here, we introduce two likelihoods derived from observation
error models. The observed spectrum typically includes thermal
noise from detection circuitry, which is assumed to follow a normal
distribution. Therefore, we base the observational error,
representing a deviation between observed data and true values,
on this distribution. For inference, we employ square error-based
likelihood derived from the normal distribution. However, because
low-intensity regions within the spectrum have less contribution to
the overall error evaluation if we use a square error-based likelihood,
relying solely on this likelihood reduces accuracy of parameter
estimation where the errors in the low-intensity spectral regions
must be reflected. To overcome this difficulty, we additionally
introduce a likelihood function sensitive to errors in the low-
intensity parts of the spectrum. To evaluate the discrepancies
between the observed and inferred spectra regardless of spectral
intensity, we use the correlation coefficient along the φ axis as the
additional likelihood. This coefficient, calculated by normalizing the

inner product of both spectra against their intensities, excludes the
influence of each spectrum’s intensity, thus providing a measure that
assesses the similarity of their shapes over the entire spectrum
domain including the low-intensity region.

Let Lmsems denote a logarithmic likelihood based on the normal
error distribution of theMS spectrum and Lmsemsmsd

denote that of the
MS/MS spectrum at peak d, respectively. The standard deviation of
the normal distribution, σ, is set to 0.5 based on actual
measurements. Lmsems and Lmsemsmsd

are calculated by summing the
logarithms of the probability densities of the error between the
observed spectrum and inferred spectrum over φ. Here, N
specifically denotes the number of data points on the φ axis
within a single spectrum. Lmsems, Lmsemsmsd

are expressed as shown
in Equations 15, 16.

Lmsems � ∫ log
1����
2πσ2

√ exp − Ŝms φ( ) − Sobsms φ( )∣∣∣∣ ∣∣∣∣2
2σ2

⎛⎝ ⎞⎠⎛⎝ ⎞⎠dφ

� − 1

2σ2
∫ Ŝms φ( ) − Sobsms φ( )∣∣∣∣ ∣∣∣∣2dφ +N log σ( ) + N

2
log 2π( )

(15)

Lmsemsmsd
� ∫ log

1����
2πσ2

√ exp − Ŝmsmsd φ( ) − Sobsmsmsd
φ( )∣∣∣∣∣ ∣∣∣∣∣2

2σ2
⎛⎜⎝ ⎞⎟⎠⎛⎜⎝ ⎞⎟⎠dφ

� − 1

2σ2
∫ Ŝmsmsd φ( ) − Sobsmsmsd

φ( )∣∣∣∣∣ ∣∣∣∣∣2dφ +N log σ( ) + N

2
log 2π( )

(16)
To introduce the additional correlation-based likelihood, we

employ the von Mises distribution as an error model, which is
defined by the correlation coefficient between two vectors
representing the observed and inferred spectra. The logarithmic
likelihoods based on the von Mises distribution are denoted as Lcosms

and Lcosmsmsd
, respectively. The probability density function of the von

Mises distribution is given by f(Ŝ) � 1
2πI0(β) exp{β 〈Ŝ,S〉

|̂Ŝ||S|
} (Mardia

and Jupp, 2008). Here, Ŝ and S represent inferred and observed
spectra, respectively, viewed as vectors. The parameter β represents
concentration of the probability distribution. I0 is a modified Bessel
function of the first kind of order zero, and 2πI0(β) serves as
normalization factor. β is experimentally determined to be the
aforementioned number of data points N. Consequently, the log-
likelihoods, Lcos ms and Lcos msmsd

, are calculated as shown in Equations
17, 18.

Lcosms � log
1

2πI0 N( ) exp N
〈Ŝms φ( ), Sobsms φ( )〉
Ŝms φ( )∣∣∣∣ ∣∣∣∣ Sobsms φ( )∣∣∣∣ ∣∣∣∣⎛⎝ ⎞⎠⎛⎝ ⎞⎠

� N
〈Sms φ( ), Sobsms φ( )〉
Ŝms φ( )∣∣∣∣ ∣∣∣∣ Sobsms φ( )∣∣∣∣ ∣∣∣∣ − log 2πI0 N( )( )

(17)

Lcosmsmsd
� log

1
2πI0 N( ) exp N

〈Ŝmsmsd φ( ), Sobsmsmsd
φ( )〉

Ŝmsmsd φ( )∣∣∣∣ ∣∣∣∣ Sobsmsmsd
φ( )∣∣∣∣∣ ∣∣∣∣∣⎛⎝ ⎞⎠⎛⎝ ⎞⎠

� N
〈Ŝmsmsd φ( ), Sobsmsmsd

φ( )〉
Ŝmsmsd φ( )∣∣∣∣ ∣∣∣∣ Sobsmsmsd

φ( )∣∣∣∣∣ ∣∣∣∣∣ − log 2πI0 N( )( )

(18)
The total log-likelihood of the inferred spectrum set (Ŝms(φ);

Ŝmsmsd(φ)(d � 1, 2, . . . , dmax)) under the observed spectrum set Sobs
is expressed as shown in Equation 19.

FIGURE 1
Distribution of errors in the inferred monoisotopic masses
(excluding points that the algorithm could not infer).
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log Pk Sobs|θk( )( ) � Lmsems +
1

dmax
∑dmax

d�1
Lmsemsmsd

+ Lcosms

+ 1
dmax

∑dmax

d�1
Lcosmsmsd

(19)

In determining the appropriate number of constituents k in
Bayesion framework, we need to prevent the selection of overfitted
complex models of its logarithmic posterior probability LPk. For
doing so, we incorporate a penalty term wbic(k) based on prior
knowledge. wbic(k) is defined using the Bayesian Information
Criterion (BIC), a statistical measure that evaluates the trade-off

between model fit and complexity (Schwarz, 1978; Neath and
Cavanaugh, 2012). Incorporating wbic(k) into the prior
probability allows us to determine the appropriate number of
constituents k. By applying λ � 6.0 × 107 (a hyperparameter) and
using the number of data points N in the spectrum, as defined
earlier, wbic(k) is represented as shown in Equation 20.

wbic k( ) � λ · k
2
· logN (20)

Additionally, to ensure that the monoisotopic masses of the
constituents do not overlap, we introduce a penalty function
wex(k,m1

′ . . .m′
k), inspired by the Laplace distribution. The

TABLE 7 Optimal ion counts and relative quantities of the model with the maximum posterior probability.

Mixture No. True SAI UniDec

Count Count Error [%] Relative quantity Error [%]

1 20,000 33,690 68.4 100.0 200.0

20,000 8,179 −59.1 41.1 23.2

20,000 22,228 11.1 — —

2 20,000 31,058 55.3 100.0 110.0

20,000 5,900 −70.5 18.0 −62.3

2,000 8,098 304.9 — —

3 20,000 13,215 −33.9 100.0 110.0

2,000 26,190 1209.5 34.1 615.7

20,000 5,580 −72.1 — —

4 2,000 10,643 432.1 85.8 1700.8

20,000 19,684 −1.6 100.0 110.0

20,000 17,031 −14.8 14.6 −69.4

5 20,000 6,889 −65.6 100.0 20.0

2,000 16,208 710.4 — —

2,000 2,328 16.4 — —

6 2,000 5,143 157.2 100.0 1100.0

20,000 3,697 −81.5 56.4 −32.3

2,000 17,125 756.3 — —

7 2,000 — — 57.0 583.5

2,000 22,439 1022.0 100.0 1100.0

20,000 3,287 −83.6 26.1 −68.6

8 20,000 10,689 −46.6 100.0 100.0

20,000 34,062 70.3 15.0 −70.0

9 20,000 18,739 −6.3 100.0 10.0

2,000 3,369 68.4 — —

10 — 616 — — —

2,000 21,303 965.1 100.0 1000.0

20,000 3,867 −80.7 48.6 −46.6
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reason why we use such a penalty is because we define a constituent
by its unique monoisotopic mass. Here, we experimentally set the
gain coefficient a � 10 × N. Ifm′

i andm
′
j differ by more than ε, they

are certainly different constituents. Consequently, we also
experimentally determine the appropriate value below ε as the
threshold coefficient b � 0.8. We then define wex(k,m1

′ . . .m′
k) as

shown in Equation 21.

wex k,m1
′ . . .m′

k( ) � a∑k−1
i�1

∑k
j�i+1

max 1 − m′
i −m′

j

∣∣∣∣∣ ∣∣∣∣∣
b

, 0⎛⎝ ⎞⎠ (21)

This penalty function reaches its maximum value when the
monoisotopic masses of different constituents
completely coincide.

By assuming a uniform prior distribution of each parameter, the
logarithmic prior probability is defined as:

log Pk θk( )( ) � −wbic k( ) − wex k,m1
′ . . .m′

k( ). (22)

Here, by substituting Equations 19, 22 into Equation 14, we
obtain the logarithmic posterior probability LPk to be maximized, as
shown in Equation 23.

LPk ≔ log Pk Sobs|θk( )( ) + log Pk θk( )( )
� Lmsems +

1
dmax

∑dmax

d�1
Lmsemsmsd

+ Lcosms +
1

dmax
∑dmax

d�1
Lcosmsmsd

−wbic k( ) − wex k,m1
′ . . .m′

k( ). (23)

2.4 Parameter exploration and optimization

We use Stochastic Variational Inference (SVI) to infer the
Maximum A Posteriori (MAP) values of each parameter and to
determine the model’s highest posterior probability. SVI replaces the
complex posterior probability distribution with a more manageable
approximate distribution (variational posterior Qk(θk|μk)),
minimizing the Kullback-Leibler (KL) divergence between the
approximate and true posterior distributions. Since the KL
divergence cannot be computed directly, we instead maximize
the Evidence Lower Bound (ELBO) to find the optimal
variational function (Tranter, 2000). For this study, only the
MAP values were needed, so Qk(θk|μk) is defined by a delta
function δ(θk − μk) to approximate the posterior probability

distribution of each number of constituents. μk is a point in the
parameter space θk and serves as a candidate for the parameter set
θkMAP that maximizes the posterior probability. In themaximization
of ELBO, since the variational distribution Qk(θk|μk) is defined as a
delta function, the integral involving logQk(θk|μk) simplifies as its
contribution becomes negligible except at μk. Thus, for practical
purposes within this optimization framework, we can consider its
impact to be zero, focusing solely on the log likelihood component
evaluated at μk. Therefore, the desired θkMAP is given by
Equation 24.

θkMAP � argmax
μk

ELBO θk
∣∣∣∣μk( )( )

� argmax
μk

EQk θk|μk( ) logPk Sobs|θk( ) − logQk θk
∣∣∣∣μk( )[ ]( )

(24)
SinceQk(θk|μk) is delta function δ(θk − μk), we obtain Equation

25 as follows:

θkMAP � argmax
μk

logPk Sobs
∣∣∣∣μk( ) − logQk θk

∣∣∣∣μk( )( ) (25)

Given that Qk(θk|μk) is represented as a delta function, its
contribution to the ELBO becomes negligible except at μk,
simplifying the calculation by effectively eliminating the
logQk(θk|μk) term in the optimization, leading to Equation 26.

θkMAP � argmax
μk

logPk Sobs
∣∣∣∣μk( )( ) (26)

The optimization problem under this setup can be solved using
conventional numerical optimization techniques. In this case, we
used Adam (Kingma and Jimmy, 2014), a type of stochastic gradient
descent widely used in machine learning, to find the value of μk that
maximizes the likelihood function. The resulting θkMAP is the MAP
inference we sought.

However, the MS andMS/MS spectra to be compared are mostly
flat with several localized sharp peaks. Simply applying SVI to such
data can result in vanishing gradients, making it difficult to
effectively explore parameters. Therefore, to create appropriate
gradients of the likelihood function, we convolve a Gaussian
distribution g(φ) with both the observed spectra Sobs and the
inferred spectra Ŝms(φ), Ŝmsmsd(φ) (where d � 1, 2, . . . , dmax). We
define the mean of g(φ) as zero and the variance as T, and g(φ) is
represented as shown in Equation 27.

TABLE 8 UniDec setting parameters.

Parameter Setting value

UniDec parameters Charge range 1–20

Mass range 6,000–6,800

Sample mass every (Da) 0.1

Additional deconvolution parameters Isotopes Mono

Peak selection and plotting Peak detection range (Da) 0.1

Peak detection threshold 0.1

*The other parameters were set at their default values.
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g φ( ) � 1�����
2πT2

√ exp − 1
2T2

φ( )2( ) (27)

Then, we performed SVI and iteratively narrowing the variance
of g(φ), T, to effectively search for θk. This process, resembling
annealing, is termed Spectral Annealing Inference (SAI) in this
paper. Let s denote the step of this iteration, and smax denote the total
number of iterations. We define T as shown in Equation 28.

T � λ
smax − s

smax
( )4

s � 0, 1, 2, . . . , smax( ) (28)

For this study, smax is set to 46. The coefficient λ is set to 8750.
When s � smax, the spectrum after convolution becomes identical to
the spectrum before convolution.

The blurred spectra at each step are represented as shown in
Equations 29–32.

FIGURE 2
Comparison of observed and inferred spectra for Mixture No. 1. (A)MS spectrum overall view, (B)MS spectrum enlarged view, (C)MS/MS spectrum
overall view, (D) MS/MS spectrum enlarged view.
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Sobsms
′ φ( ) � Sobsmspg( ) φ( ) (29)

Sobsmsms
′ φ( ) � Sobsmsmspg( ) φ( ) (30)
Ŝms
′ φ( ) � Ŝmspg( ) φ( ) (31)

Ŝmsms
′ φ( ) � Ŝmsmspg( ) φ( ) (32)

Using these blurred spectra, we derive the modified log-
likelihood Lmsems

′ , L′msemsmsd
, Lcosms

′ and L′cosmsmsd
, as expressed in

Equations 33–36, and the logarithm of the posterior probability
log(Pk(Sobs′ |θk)), given in Equation 37.

Lmsems
′ � − 1

2σ2
∫ Ŝ′ms φ( ) − S′obsms φ( )∣∣∣∣ ∣∣∣∣2dφ +N log σ( ) + N

2
log 2π( )

(33)
L′msemsmsd

� − 1
2σ2

∫ Ŝ′msmsd φ( ) − S′obsmsmsd
φ( )∣∣∣∣∣ ∣∣∣∣∣2dφ +N log σ( )

+ N

2
log 2π( ) (34)

Lcosms
′ � N

〈Ŝms
′ φ( ), Sobsms

′ φ( )〉
Ŝms
′ φ( )∣∣∣∣ ∣∣∣∣ Sobsms

′ φ( )∣∣∣∣ ∣∣∣∣ − log 2πI0 N( )( ) (35)

L′cosmsmsd
� N

〈Ŝmsmsd
′ φ( ), S′obsmsmsd

φ( )〉
Ŝmsmsd
′ φ( )∣∣∣∣ ∣∣∣∣ S′obsmsmsd

φ( )∣∣∣∣∣ ∣∣∣∣∣ − log 2πI0 N( )( ) (36)

log Pk Sobs
′ ∣∣∣∣θk( )( ) � Lmsems

′ + 1
dmax

∑dmax

d�1
L′msemsmsd

+ Lcosms
′

+ 1
dmax

∑dmax

d�1
L′cosmsmsd

(37)

By substituting Equation 37 in place of Equation 19 into
Equation 14, the modified logarithmic likelihood LP′k is obtained
as shown in Equation 38.

LP′k ≔ log Pk Sobs
′ ∣∣∣∣θk( )( ) + log Pk θk( )( )

� Lmsems
′ + 1

dmax
∑dmax

d�1
L′msemsmsd

+ Lcosms
′ + 1

dmax
∑dmax

d�1
L′cosmsmsd

−wbic k( ) − wex k,m1
′ . . .m′

k( ). (38)

At each iteration step s (s � 0, 1, 2, . . . , smax), we maximize LP′k
to iteratively refine and determine the parameters θk and the
posterior probability assuming a number of constituents k. θk
from each iteration are carried forward to the next step.

By repeating this process from k � 1 to kmax, we obtain the
posterior probabilities of each k. We then compare the posterior
probabilities across all k and select the number of constituents with
the highest posterior probability and its corresponding parameter
set as the optimal choice.

3 Results

In this section, we detail the outcomes of our experiments to
validate the inference accuracy of constituent counts, monoisotopic
mass, and ion quantities in our proposed method. All the
experiments were conducted exclusively using numerical
simulations. These simulations generated data to mimic real-
world mass spectrometry analyses. We specifically focused on
simulating the mass spectra of nucleic acid drugs and their

impurities, such as Fomivirsen and its altered sequences. This is
because current analytical methodologies have challenges in
accurately identifying these substances, due to the complexities
arising from their isotopic and charge distributions. We
compared the performance of our proposed method against
established baseline method, UniDec. The performance was
evaluated based on accuracy of constituent count inference,
deviations in monoisotopic mass, and discrepancies in ion
quantities.

3.1 Validation environment

The specifications of a computer used to verify the proposed
method, as well as the software versions, are summarized in Table 1.
The proposed method handled data with high dimensions along the
time axis, requiring a large memory size. Additionally, to rapidly
explore the parameter space using SVI, the high-speed probabilistic
programming library, NumPyro, along with its compatible CUDA
and GPU, were used.

3.2 Creation of simulation data for validation

Based on the nucleic acid drug Fomivirsen (Perry and Balfour,
1999) (ID: A), two impurities with modified base sequences were
added, and MS spectra for a total of three constituents were
generated using simulation methods presented in the prior
research (Tomono et al., 2024). Specific details were provided in
Table 2. This setup replicated a system where the principal
constituent’s isotopic distribution was mixed with the spectra of
the impurities. The mutation from C (Cytosine) to U (Uracil),
known as deamination, can occur during the synthesis process
due to solvent conditions and thermal stress (Gao, Choudhry,
and Cao, 2018; Stavnezer, 2011).

The single constituents A to C were combined according to the
10 combinations listed in Table 3. These combinations included
both three-constituents mixtures (A, B, and C) and two-
constituents mixtures (A and B, A and C, or B and C). To
verify the accuracy of ion count inference, the ion counts of
constituents A, B, and C were mixed at a ratio of 200,000:
200,000 and 200,000:20,000. The reason for testing both
balanced and imbalanced mixing ratios was to validate if our
proposed algorithm tends to provide appropriate ratios of
multiple constituents whether their actual ratios were balanced
or imbalanced. When the ratio of ion counts between constituents
was 10:1, the algorithm should not excessively provide less
imbalanced ratios. This setup enabled the analysis of complex
mixtures consisting of a few constituents. For instance, the
standards for total desamido impurity and total impurities in
injectable glucagon are set at 14% or less and 31% or less,
respectively (Bao et al., 2022). To ensure rigor, we selected a
stricter ratio of 10:1 (10%), which is below these standards yet
sufficiently impactful to be considered as impurities. Additionally,
the 10 patterns of combinations of each constituent were selected to
comprehensively evaluate differences of 1 Da due to deamidation,
while also considering workload required for our experimental
performance evaluation and the constraints of a budget.
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We set the number of chargeable sites lj to 224 and the charge
rate vj to 0.035. This was done to ensure that the generated spectra
closely resembled real data. Then, we generated the test spectra listed
in Table 3.

Next, we generated the MS/MS spectra of these mixture. The
sequences, molecular formulas, monoisotopic masses, and
conversion rates of the fragments generated from the dissociation
of constituents A, B, and C are defined in Table 4. The MS/MS
spectra were generated using these parameters. This time, we
selected five peaks in ascending order of m/z from the most
prominent isotopic distribution, and we assumed two fragment
constituents. Thus, dmax was 5, and fmax was 2.

3.3 Evaluation of accuracy in inferred
constituent counts

We estimated the optimal parameters for assumed constituent
count models. Table 5 presents the logarithm of the maximum
posterior probabilities of each model. By selecting the constituent
count that maximizes the logarithm of the posterior probability in
eachmixture, we inferred the number of constituents present in each
mixture. Our method successfully inferred the true number of
constituents in 80% of cases (8 out of 10 datasets). In the two
cases where estimation failed, it is possible that the algorithm
converged to a different local minimum.

Currently, there are no established guidelines for the quality
control of nucleic acid-based pharmaceuticals (International
Council for Harmonisation, 2023; World Health Organization,
2018). Therefore, we believe this result serves as a valuable
benchmark for identifying the presence and quantity of
impurities in pharmaceuticals and implementing appropriate
corrective measures. However, there is still room for
improvement in its accuracy.

3.4 Accuracy of parameter inference

Table 6 shows the optimal monoisotopic mass of the models
of the selected number of constituents for each mixture, as
described in Table 3. The median error was −0.005 Da, the
average error in monoisotopic mass was −0.282 Da, and the
maximum error was −1.840 Da. The standard deviation was
0.552 Da. The distribution of these errors is shown in Figure 1.
As observed in the box plot in Figure 1, the errors in the
monoisotopic masses inferred by the proposed method are
discretely distributed approximately 1 Da apart,
corresponding to the mass differences between isotopes. The
extreme case of No. 6, which produced the maximum error
of −1.840 Da, can also be explained by this discrete distribution.
This large error is likely caused by the posterior probabilities of
the monoisotopic masses being distributed in a comb-like
pattern (Tomono et al., 2024), increasing the chances of the
algorithm converging to a local minimum 1–2 steps away.
However, no clear trend was observed between the ion count
ratios of the constituents and the error magnitudes. Using the
mean as the representative value and all data from No. 1 to No.
10, the 95% confidence interval calculated using the

t-distribution (Student, 1908) ranges from −0.721 Da to
+0.157 Da. This indicates the method could potentially be
used to investigate the causes of impurities that occur with a
difference of 1 Da (Rentel et al., 2019; Pourshahian, 2021).

Additionally, the inferred ion counts for each constituent
showed errors with a median of 1.1 times the true values,
averaging up to twice the true values, with some errors
reaching up to twelve times the true values, as shown in
Table 7. This was thought to be due to the trade-off
relationship between the ion counts of different constituents;
that was, a decrease in the ion count of one constituent was
compensated by an increase in another. This was further
supported by the fact that the average error across the total
ion counts of all constituents stabilized at 8% of the true value.
For instance, the standard for total desamido impurities and
total impurities in injectable glucagon were, respectively, below
14% and 31%. Therefore, the accuracy of ion count inference in
our proposed method was insufficient to assess the impact of
impurities.

We also performed deconvolution on the same mixture data
using UniDec, a popular deconvolution software, and compared the
inference results. For this verification, we used UniDec (Version
7.0.1). The specific parameter settings used during this verification
are shown in Table 8. The Mass Range was set to the same range as
the proposed method, and Sample Mass Every (Da) was set to 0.1 to
ensure sufficient detection of impurities with a difference of 1 Da.
Default values were used for parameters not mentioned.

The accuracy of estimating the number of constituents was
40% (4 out of 10). This was thought to be because the UniDec
algorithm, which iterated through multiple deconvolutions to
arrive at the number of constituents, did not necessarily
guarantee the accuracy of the constituent count. Note that
using UniDec to determine the number of constituents was
not its intended application. The median error of the
monoisotopic mass inferred using UniDec was −0.008 Da,
which is slightly worse than that of the proposed method. On
the other hand, the average error was 0.091 Da, and the
maximum error was 0.993 Da, both slightly better than those
of the proposed method. However, in principle, accurate
inference on the monoisotopic mass required precise
identification of the number of constituents. The error in
estimating the number of ions was, on average, 3.2 times the
true value and up to 17 times at maximum. This result was not
better than that of the proposed method.

For reference, Figure 2 presents a comparison between the
spectrum of Mixture No. 1 and the spectrum reconstructed from
its inferred parameters. Figure 2A provides an overview of the
charge distribution, while Figure 2B offers a detailed view of the
isotopic distribution. The gray vertical dashed lines in Figures 2A, B
indicate the m/z of the fragmented ions. Additionally, Figures 2C, D
display the MS/MS spectrum of the fragmented ion groups and its
detailed view, respectively. The five graphs correspond to the five
peaks in Figure 2B, each representing the MS/MS spectra of the ions
contained in those peaks when they are fragmented. These results
demonstrated that the generated spectrum closely matched with the
observed data. Furthermore, the appearance of the MS/MS spectra
was consistent with findings from prior research cited in references
(Agthoven et al., 2019; Szalwinski et al., 2020; Gonzalez et al., 2022).
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4 Discussion

We confirmed that our proposed method allowed for accurate
inference of parameters such as monoisotopic mass from simulated
MS and MS/MS data of the nucleic acid drug Fomivirsen and its
impurities, and it also successfully selected the correct number of
constituents with an 80% probability, even in mixtures with a mass
ratio of 10:1. These results were better compared to the 40% accuracy
rate achieved with UniDec. This success was attributed to our
approach of creating models for each constituent count, enabling
comparative evaluation and selection of models for each constituent
count. This capability suggests the presence of impurities in
pharmaceuticals and could aid in the search for better synthesis
conditions for medium to high molecular weight drugs, as well as in
quality assurance in manufacturing facilities.

As shown in Table 6, we were able to infer monoisotopic mass
with greater accuracy than previous studies (Tomono et al., 2024),
with an average inference error of −0.282 Da, which was an
improvement over the 1.348 Da error reported in prior research.
Although this accuracy was slightly inferior to UniDec’s 0.091 Da, it
was sufficient for distinguishing differences as small as 1 Da due to
deamidation. We believe this improvement is due to the
incorporation of the MS/MS spectra into the physical model,
which increased the constraints on the model’s degrees of
freedom. Additionally, the use of the correlation-based likelihood
contributed to more stringent constraints on the spectral shape.

As indicated in Table 7, the inferred ion quantities for each
constituent showed an average relative error of twice the true value.
Although a direct comparison with the prior studies, which used a 1:
1 mixing ratio, was not straightforward due to our use of a 10:1 ratio,
the results were favorable compared to UniDec, which had an
average error of 3.2 times the true value. The errors observed in
our proposed method might result from a trade-off among the ion
quantities of each constituent, where a decrease in one was offset by
an increase in another. Despite our expectations that incorporating
MS/MS spectra would tighten inference constraints and enhance
both mass and ion quantity accuracy, the performance fell short of
expectations, failing to reduce the relative error to below the 10%
threshold required for impurity analysis in nucleic acid drugs. A
possible solution to these issues would be to represent the ion
quantities as probability distributions. By accounting for the
uncertainty in the ion quantities of constituents in the sample, an
improvement in inference accuracy was expected.

Despite the sixfold increase in data volume due to the
incorporation of MS/MS spectra as observational data, the
analysis time per data point was 13 h. While this duration did
not match the few seconds required by UniDec, it was less than half
the time required by existing methods (Tomono et al., 2024)
that use MCMC.

5 Conclusion

In this study, we assumed the numbers of constituents in a given
sample and created models of MS and MS/MS mass spectrometry
based on parameters such as monoisotopic mass and ion quantity.
We then applied our proposed method, Spectral Annealing
Inference (SAI), which effectively seeks the maximum posterior

probability by optimizing parameters for the observed data. After
obtaining the maximum posterior probability for each constituent
count model, we selected the model that had the highest maximum
posterior probability across all models. As a result, we successfully
estimated the number of constituents and simultaneously inferred
the monoisotopic mass with high accuracy.

Future challenges include adapting to complex samples with a
large number of constituents and improving the accuracy of ion
counts inference.
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